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Preface to the Second Edition

The publication of the first edition of
MATLAB for Neuroscientists was met with
a reception that far exceeded our expecta-
tions, vindicating our intuition that there
was an urgent need for such a text. Cynical
voices often suggest that a new edition of
a textbook is primarily designed to enrich
the publisher. Not so in this case. While the
first edition was widely adopted as a text-
book as well as by individual students and
investigators, several developments made
it prudent to consider a second edition.
First, neuroscience itself has changed, e.g.,
there is now an increased interest in
the exploration of LFP signals. Second,
MATLAB® has evolved, e.g., through the
introduction of parallel computing environ-
ments. Finally, and most importantly, we
received copious feedback in response to
the first edition. For example, there was an
overwhelming consensus that the book
would benefit from an increased number of
basic tutorials in the front matter. Taken
together, all of this suggested to us that
it might be time for an update. Deciding
to release a second edition afforded us the
opportunity to address these issues, and
also to improve upon the first version in
other ways. For instance, we were now able
to introduce full-color figures throughout
the book, something which we think will
improve its usability considerably, given
that data visualization is one of MATLAB's
greatest strengths.

One thing that has not changed in the
second edition is our philosophy of and
focus on trying to foster behavioral change.

XV

Unless a book somehow leads to a change in
behavior (that is, the way you go about
doing things), it is very likely that you will
forget what you read. We know; it happened
to us countless times. Sometimes, the only
thing one remembers about a book is that
one read it, but nothing else. That's not what
this book is about. This book is about creat-
ing lasting behavioral change, specifically
allowing you to use MATLAB more effec-
tively, which in turn will (hopefully) make
your research more productive. This requires
more than just reading. It requires interaction
with the content on a deep level. Thus, we
tried to frame the content of this book to
maximize the probability of meaningful
engagement with the material.

The unbroken popularity of MATLAB
among the neurosciences underscores the
need for an accessible and up-to-date guide
to its use. We hope that we succeeded in our
intention to fulfill this need.

Many people helped us in our attempt
to do so, and we thank them here. In addi-
tion to all the people we thanked in the first
edition (on which this second edition is
based), we also would like to thank April
Graham, Mica Haley, Melissa Walker, and
Greg Harris as well as Caroline Johnson and
Melinda Rankin for their almost inexhaust-
ible patience, kindness, and support; Donald
McLaren for helping us with the neuroimag-
ing chapter; and Qian Cheng for educational
advice.

Finally, we also—and in particular—
would like to thank our students and col-
leagues for feedback on the first edition.
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In a sense, experts are the last people
who should write a book like this. By their
very experthood, they are often incapable
of appreciating what would be helpful to
someone who is not an expert and is just
beginning to build cognitive structures in
this domain. Therefore, feedback is abso-
lutely crucial to give the experts information

on how to make these materials more
accessible to nonexperts. In a sense, writing a
book like this teaches the authors—through
feedback—how to write a book like this. And
thus, the circle is complete.

The authors



Preface to the First Edition

I hear and I forget.
I see and I remember.
I do and I understand.
Confucius’

The creation of this book stems from a set
of courses offered over the past several years
in quantitative neuroscience, particularly
within the graduate program in computa-
tional neuroscience at the University of
Chicago. This program started in 2001 and is
one of the few programs focused on compu-
tational neuroscience with a complete curric-
ulum including courses in cellular, systems,
behavioral, and cognitive neuroscience;
neuronal modeling; and mathematical foun-
dations in computational neuroscience. Many
of these courses include not only lectures
but also lab sessions in which students get
hands-on experience using the MATLAB®
software to solve various neuroscientific
problems.

The content of our book is oriented along
the philosophy of using MATLAB as a com-
prehensive platform that spans the entire
cycle of experimental neuroscience: stimulus
generation, data collection and experimental
control, data analysis, and finally data model-
ing. We realize that this approach is not
universally followed. Quite a number of labs

use different—and specialized—software for
stimulus generation, data collection, data
analysis, and data modeling, respectively.
Although this alternative is a feasible
strategy, it does introduce a number of
problems: namely, the need to convert data
between different platforms and formats
and to keep up with a wide range of soft-
ware packages as well as the need to learn
ever-new specialized home-cooked “local”
software when entering a new lab. As we
have realized in our own professional life
as scientists, these obstacles can be far
from trivial, constitute a significant detri-
ment to productivity and are the root cause
of many a conniption.

We also believe that our comprehensive
MATLAB “strategy” makes particular sense
for educational purposes, as it empowers
users to progressively solve a wide variety
of computational problems and challenges
within a single programming environment.
It has the added advantage of an elegant
progression within the problem space.
Our experience in teaching has led us to
this approach that focuses on the inherent
structure of MATLAB not as a computer
programming language, but rather as a tool
for solving problems within neuroscience.
In addition, it is well founded in our current

'In the West, this quote is commonly attributed to Confucius. However, in China itself, it is often pointed
out (and it has been brought to our attention by Qian Cheng) that a very similar saying goes back to the
Chinese philosopher Xunzi. While there is some controversy regarding whether similar sayings originated
multiple times, there is no question that Confucius is a quote magnet. In the case of Einstein, this has been
modeled. If current trends continue, it is not unlikely that over time, all quotes will be attributed to him.
Be that as it may, we find the saying to be truthful, regardless of its source. It is an attempt at attribution,

not an implicit argument from authority.
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understanding of the learning process.
Constant use of the information forces
the repeated retrieval of the introduced con-
cepts, which—in turn—facilitates learning
(Karpicke and Roediger, 2008).

The book is structured in four parts, each
with several chapters. The first part serves
as a brief introduction to some of the most
commonly used functions of the MATLAB
software, as well as to basic programming
in MATLAB. Users who are already familiar
with MATLAB may skip it. It serves the
important purpose of a friendly invitation to
the power of the MATLAB environment.
It is elementary insofar as it is necessary
to have mastered the content within before
progressing any further. Later parts focus
on the use of MATLAB to solve computa-
tional problems in neuroscience. The second
part focuses on MATLAB as a tool for the
collection of data. For the sake of generality,
we focus on the collection of data from
human subjects in these chapters, although
the user can easily adapt them for the col-
lection of animal data as well. The third
part focuses on MATLAB as a tool for data
analysis and graphing. This part forms the
core of the book, as this is also how
MATLAB is most commonly used. In par-
ticular, we explore the analysis of a variety
of datasets, including “real” data from
electrophysiology as well as neuroimaging.
The fourth part focuses on data modeling
with MATLAB, and appendices address
the philosophy of MATLAB as well as the
underlying mathematics. Each chapter
begins with the goals of the chapter and a
brief background of the problem of interest
(neuroscientific or psychological), followed
by an introduction to the MATLAB con-
cepts necessary to address the problem by
breaking it down into smaller parts and
providing sample code. You are invited to
modify, expand, and improvise on these
examples in a set of exercises. Finally, a

project is assigned at the end of the chapter
which requires integrating the parts into a
coherent whole. Based on our experience,
we believe that these chapters can serve
as self-contained “lab” components of a
course if this book is used in the context
of teaching.

In essence, we strived to write the book
that we wished to have had when first
learning MATLAB ourselves, as well as the
book that we would have liked to have had
when teaching MATLAB to our students in
the past. Our hope is that this is the very
book you are holding in your hands right
now.

We could have not written this book
without the continuous support of a large
number of friends. First and foremost,
we would like to thank our families for their
kind support, their endless patience, as well
as their untiring encouragement. We also
would like to extend thanks to our students
who provided the initial impetus for this
undertaking as well as for providing con-
stant feedback on previous versions of our
manuscript. Steve Shevell deserves thanks
for suggesting that the project is worth
pursuing in the first place. In addition, we
would like to thank everyone at Elsevier
who was involved in the production and
development of this book—in particular our
various editors, Johannes Menzel, Sarah
Hajduk, Clare Caruana, Christie Jozwiak,
Chuck Hutchinson, Megan Wickline, and
Meg Day—their resourcefulness, profession-
alism and patience really did make a big
difference. Curiously, there was another
Meg involved with this project, specifically
Meg Vulliez from The MathWorks™ book
program. In addition, we would like to
thank Kori Lusignan and Amber Martell for
help with illustrations, and Wim van
Drongelen for advice and guidance in the
early stages of this project. Moreover, we
thank Armen Kherlopian and Gopathy
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Purushothaman, who were kind enough to
provide us with valuable insights through-
out our undertaking. We also would like to
thank Kristine Mosier for providing the
finger-tapping functional magnetic imaging
data that we used in the fMRI lab, and
would like to thank Aaron Suminski for his
help in the post-processing of that data.
Importantly, we thank everyone whom

xiii

we neglected to name explicitly, but who
deserves our praise. Finally, we would
like to thank you, the reader, for your will-
ingness to join us on this exciting journey.
We sincerely hope that we can help you
reach your desired destination.

The authors
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How to Use this Book

A text of a technical nature tends to be
more readily understood if its design prin-
ciples are clear from the very outset. This
is also the case with this book. Hence, we
will use this space to briefly discuss what
we had in mind when writing the chapters.
Hopefully, this will improve usability and
allow you to get most out of the book.

STRUCTURAL AND
CONCEPTUAL
CONSIDERATIONS

A chapter typically begins with a concise
overview of what material will be covered.
Moreover, we usually put the chapter in
the broader context of practical applica-
tions. This brief introduction is followed
by a discussion of the conceptual and theo-
retical background of the topic in question.
The heart of each chapter is a larger section
in which we introduce relevant MATLAB®
functions that allow you to implement
methods or solve problems that tend to
come up in the context of the chapter topic.
This part of the chapter is enriched by
small exercises and suggestions for explora-
tion. We believe that doing the exercises
is imperative to attain a sufficiently deep
understanding of the function in question,
while the suggestions for exploration are
aimed at readers who are particularly inter-
ested in broadening their understanding of
a given function. In this spirit, the exercises

are usually rather specific, while the
suggestions for exploration tend to be of a
rather sweeping nature. This process of
successive introduction and reinforcement
of functions and concepts culminates in a
“project,” a large programming task that
ties all the material covered in the book
together. This will allow you to put the
learned materials to immediate use in a
larger goal, often utilizing “real” experi-
mental data. Finally, we list the MATLAB
functions introduced in the chapter at the
very end. It almost goes without saying
that you will get the most out of this book
if you have a version of MATLAB open and
running while going through the chapters.
That way, you can just try out the functions
we introduce, try out new code, etc.

Hence, we implicitly assumed this to be
the case when writing the book.

Moreover, we made sure that all the
code works when running the latest ver-
sion of MATLAB (currently 8.1). Don't
let this concern you too much, though. The
vast majority of code should work if you
use anything above version 7.7. We did
highlight some important changes where
appropriate.

LAYOUT AND STYLE

The reader can utilize not only the con-
ceptual structure of each chapter as outlined
above, but also profit from the fact that we

Xix



XX HOW TO USE THIS BOOK

systematically encoded information about
the function of different text parts in the
layout and style of the book.

The main text is set in 10/12 Palatino-
Roman. In contrast, executable code is bolded
and offset by >, such as this:

> figure
> subplot(2,2,1)
> image(test_disp)

The idea is to type this text (without the >)
directly into MATLAB. Moreover, func-
tions that are first introduced at this
point are bolded in the text. Exercises
and Suggestions for exploration are set in
italics and separated from the main text by
boxes. When referring to directories, we
alternate between the Mac (using a /
slash) and PC (using a \ backslash) format
of addressing. Please always use the

appropriate  format—slash or  back-

slash—for Mac or PC, respectively.
Equations are set in 10/12 Palatino-

Roman. Sample solutions are in 10/12

Palatino-Bold.

COMPANION WEB SITE

The successful completion of many
chapters of this book depends on addi-
tional material (experimental data, sample
solutions and other supplementary infor-
mation) which is accessible from the web
site that accompanies this book. For exam-
ple, a database of executable code will be
maintained as long as the book is in print.
For information on how to access this
online repository, please see page ii.



CHAPTER

1

Introduction

Neuroscience is at a critical juncture. In the past few decades, the essentially biological
nature of the field has been infused by the tools provided by mathematics. At first, the use
of mathematics was mostly methodological in nature—primarily aiding the analysis of
data. Soon, this influence turned conceptual, framing the very issues that characterize
modern neuroscience today. Naturally, this development has not remained uncontrover-
sial. Some neurobiologists of yore resent what they perceive to be a hostile takeover of the
field, as many quantitative methods applied to neurobiology were pioneered by nonbiolo-
gists with a background in physics, engineering, mathematics, statistics, and computer sci-
ence. Their concerns are not entirely without merit. For example, Hubel and Wiesel (2004)
warn of the faddish nature that the idol of “computation” has taken on, even likening it to
a dangerous disease that has befallen the field that we should overcome quickly in order
to restore its health.

While these concerns are valid to some degree, and while excesses do happen, we
strongly believe that—all in all—the effect of mathematics in the neurosciences has been
very positive. Moreover, we believe that our science is and will continue to be one that is
computational at its very core. The reason for this is that—as pointed out by Konrad Kérding
(http:/ /www.nature.com/news/neuroscience-solving-the-brain-1.13382)—the human brain
produces in 30 seconds as much data as the Hubble Space Telescope has produced in its life-
time. That is a staggering number, given that Hubble has been in operation for well over 23
years and generates more than 100 GB of data each week. Eventually, we will develop experi-
mental methods that will fully tap this wellspring of data. We expect that computational
methods to tackle this data will be developed in parallel. Put differently, not only is a compu-
tational perspective on neuroscience here to stay, we are likely only at the very beginning of
this process. Historically, this notion stems in part from the influence that cognitive psychol-
ogy has had in the study of the mind. Cognitive psychology and cognitive science—more
generally—posited that the mind and, by extension, the brain should be viewed as informa-
tion processing devices that receive inputs and transform these inputs into intermediate
representations that ultimately generate observable outputs. At the same time that cognitive
science was taking hold in psychology in the 1950s and 1960s, computer science was develop-
ing beyond mere number crunching and considering the possibility that intelligence could be

MATLAB® for Newroscientists. 3
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4 1. INTRODUCTION

modeled computationally, leading to the birth of artificial intelligence. The information pro-
cessing perspective, in turn, ultimately influenced the study of the brain, and is best exempli-
fied by an influential book by David Marr titled Vision, published in 1982. In that book, Marr
proposed that vision and, more generally, the brain should be studied at three levels of analy-
sis: the computational, algorithmic, and implementational levels. The challenge at the compu-
tational level is to determine what computational problem a neuron, neural circuit, or part of
the brain is solving. The algorithmic level identifies the inputs, the outputs, their representa-
tional format, and the algorithm that takes the input representation and transforms it into an
output representation. Finally, the implementational level identifies the neural “hardware”
and biophysical mechanisms underlying the algorithm that solves the problem. Today this
perspective has permeated not only cognitive neuroscience, but also systems, cellular, and
even molecular neuroscience.

Importantly, such a conceptualization of our field places chief importance on the issues
surrounding scientific computing. For someone to participate in or even appreciate state of
the art debates in modern neuroscience, that person has to be well-versed in the language
of computation. Of course, it is the task of education—if it is to be truly liberal—to enable
students to do so. Yet, this poses a quite formidable challenge. The point of a truly liberal

FIGURE 1.1 The prisoners in Plato’s cave.
Contemporary neuroscientists without pro-
found scientific computing skills are arguably
in a much more desperate situation, even if it
doesn’t feel like it.

I. FUNDAMENTALS
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education is to free the recipient from the most severe bondage—ignorance and accidents
of birth. The situation is akin to that of the prisoners in Plato’s cave (see Figure 1.1). Those
prisoners are chained to rocks in a cave (in actuality, probably a stone quarry in Syracuse)
and only see the shadows, never the forms. Of course, these prisoners are actually better
off than the ignorant. At least they know that they are prisoners. In contrast, the shackles
of ignorance often seem light, and even quite comfortable. Once freed, the recipient of a
liberal education can walk out of the cave and take part in the life of the mind.

For most students interested in neuroscience, mathematics amounts to what is essen-
tially a foreign language. Similarly, the language of scientific computing is typically as for-
eign to students as it is powerful. The prospects of learning both at the same time can be
daunting and—at times—overwhelming. So what is a student or educator to do? To quote
from Alfred North Whitehead’s Aims of Education essay:

There is only one subject-matter for education, and that is Life in all its manifestations. Instead of this
single unity, we offer children—Algebra, from which nothing follows; Geometry, from which nothing fol-
lows; Science, from which nothing follows; History, from which nothing follows; a Couple of Languages,
never mastered; and lastly, most dreary of all, Literature, represented by plays of Shakespeare, with philo-
logical notes and short analyses of plot and character to be in substance committed to memory.

p- 194

Whitehead makes two points. First, teaching should not be disjointed. It is crucial to
make connections between subjects. Second, teaching “inert ideas” is worse than useless; it
is paralyzing. The tonic is to provide actionable information that allows the pursuit of rele-
vant goals. This will tie the information together and make it come to life.

Immersion has been shown to be a powerful way to learn foreign languages (Genesee,
1985). Hence, it is imperative that students are using these languages as often as possible
when facing a problem in the field. For immersion to work, the learning experience has to
be positive, yielding useful results that solve some real or perceived problem.
Unfortunately, the inherent complexity as well as the seemingly arcane formalisms that
characterize both are usually very off-putting to students, requiring much effort with little
tangible yield and reducing the likelihood of further voluntary immersion.

To break this catch-22, the utility of learning these languages has to be drastically
increased while making the learning process more accessible and manageable at the same
time, even during the learning process itself. As we alluded to previously, this is a tall
order. Fortunately, there is a way out of this conundrum. Recent advances in software as
well as hardware have instantiated scientific computing within the framework of a uniﬁeé9
computational environment. One of these environments is provided by the MATLAB
software. For reasons that will become readily apparent in this book, MATLAB fulfills the
requirements that are necessary to meet and overcome the challenges outlined earlier. In
addition—and partly for these reasons—MATLAB has become the de facto standard of
scientific computing in our field. Stated more strongly, MATLAB really has become the
lingua franca that all serious students of neuroscience are expected to understand in the
very near future, if not already today.

This, in turn, introduces a new—albeit more tractable—problem. How does one teach
MATLAB to a useful level of proficiency without making the study of MATLAB itself an

I. FUNDAMENTALS



6 1. INTRODUCTION

additional problem and simply another chore for students? Overcoming this problem as a
key to reaching the deeper goals of fluency in mathematics and scientific computing is a
crucial goal of this book. We reason that a gentle introduction to MATLAB with a special
emphasis on immediate results will computationally empower you to such a degree that
the practice of MATLAB becomes self-sustaining by the end of the book. We carefully
picked the content such that the result constitutes a confluence of ease (gradually increas-
ing sophistication and complexity) and relevance. We are confident that at the end of the
book you will be at a level where you will be able to venture out on your own, convinced
of the utility of MATLAB as a tool and of your ability to harness this power henceforth.
We have tested the various parts of the contents of this book on our students, and believe
that our approach has been successful. It is our sincere wish and hope that the material
contained will be as beneficial to you as it was to those students.

With this in mind, we would like to outline two additional specific goals of this book.
First, the material covered in the chapters to follow gives a MATLAB perspective on many
topics within computational neuroscience across multiple levels of neuroscientific inquiry
from decision-making and attentional mechanisms to retinal circuits and ion channels. It is
well known that an active engagement with new material facilitates both understanding
and long-time retention of said material. The secondary aim of this book is to acquire pro-
ficiency in programming using MATLAB while going through the chapters. If you are
already proficient in MATLAB, you can go right to the chapters following the tutorial. For
the rest, the tutorial chapter will provide a gentle introduction to the empowering qualities
that the mastery of a language of scientific computing affords.

We take a project-based approach in each chapter so that you will be encouraged to
write a MATLAB program that implements the ideas introduced in the chapter. Each
chapter begins with background information related to a particular neuroscientific or psy-
chological problem, followed by an introduction to the MATLAB concepts necessary to
address that problem with sample code and output included in the text. You are invited to
modify, expand, and improvise on these examples in a set of exercises. Finally, the project
assignment introduced at the end of the chapter requires integrating the exercises. Most of
the projects will involve genuine experimental data that are either collected as part of the
project or were collected through experiments in research labs. In rare cases, we use pub-
lished data from classical papers to illustrate important concepts, giving you a computa-
tional understanding of critically important research.

In addition, solutions to exercises and executable code can be found in the online repos-
itory accompanying this book (booksite.elsevier.com/9780123838360).

Finally, we would like to point out that we are well aware that there is more than one
way to teach—and learn—MATLAB in a reasonably successful and efficient manner. This
book represents a manifestation of our approach; it is the path we chose, for the reasons
we outlined here.
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CHAPTER

2
MATLAB Tutorial

2.1 GOAL OF THIS CHAPTER

The primary goal of this chapter is to help you to become familiar with the MATLAB®
software, a powerful tool. It is particularly important to familiarize yourself with the user
interface and some basic functionality of MATLAB. To this end, it is worthwhile to at least
work through the examples in this chapter (actually type them in and see what happens).
Of course, it is even more useful to experiment with the principles discussed in this chap-
ter instead of just sticking to the examples. The chapter is set up in such a way that it
encourages you to do this.

If desired, you can work with a partner, although it is advisable to select a partner of
similar skill to avoid frustrations and maximize your learning. Advanced MATLAB users
can skip this tutorial altogether, while the rest are encouraged to start at a point where
they feel comfortable.

The basic structure of this tutorial is as follows: each new concept is introduced through
an example, an exercise, and some suggestions on how to explore the principles that guide
the implementation of the concept in MATLAB. While working through the examples and
exercises is indispensable, taking the suggestions for exploration seriously is also highly
recommended. It has been shown that negative examples are very conducive to learning;
in other words, it is very important to find out what does not work, in addition to what
does work (the examples and exercises will—we hope—work). Since there are infinite
ways in which something might not work, we can’t spell out exceptions explicitly here.
That’s why the suggestions are formulated very broadly.

2.2 PURPOSE AND PHILOSOPHY OF MATLAB

MATLAB is a high-performance programming environment for numerical and technical
applications. The first version was written at the University of New Mexico in the 1970s.
The “MATrix LABoratory” program was created by Cleve Moler to provide a simple and
interactive way to write programs using the Linpack and Eispack libraries of FORTRAN

MATLAB® for Newroscientists. 7
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subroutines for matrix manipulation. MATLAB has since evolved to become an effective
and powerful tool for programming, data visualization and analysis, education, engineer-
ing and research.

The strengths of MATLAB include extensive data handling and graphics capabilities,
powerful programming tools and highly advanced algorithms. Although it specializes
in numerical computation, MATLAB is also capable of performing symbolic computa-
tion by having an interface with Maple (a leading symbolic mathematics computing
environment). Besides fast numerics for linear algebra and the availability of a large
number of domain-specific built-in functions and libraries (e.g., for statistics, optimiza-
tion, image processing, neural networks), another useful feature of MATLAB is its capa-
bility to easily generate various kinds of visualizations of your data and/or simulation
results.

For every MATLAB feature in general, and for graphics in particular, the usefulness
of MATLAB is mainly due to the large number of built-in functions and libraries. The
intention of this tutorial is not to provide a comprehensive coverage of all MATLAB
features but rather to prepare you for your own exploration of its functionality. The
online help system is an immensely powerful tool in explaining the vast collection of
functions and libraries available to you, and should be the most frequently used tool
when programming in MATLAB. Note that this tutorial will not cover any of the func-
tions provided in any of the hundreds of toolboxes, since each toolbox is licensed sepa-
rately. If you have additional toolboxes available to you, we recommend using the
online help system to familiarize yourself with the additional functions provided.
Another tool for help is the Internet. A quick online search will usually bring up
numerous useful web pages designed by other MATLAB users trying to help each other
out. Including on the Mathworks website itself: www.mathworks.com/matlabcentral.

As stated previously, MATLAB is essentially a tool—a sophisticated one, but a tool nev-
ertheless. Used properly, it enables you to express and solve computational and analytic
problems in a wide variety of domains. The MATLAB environment combines computa-
tion, visualization, and programming around the central concept of the matrix. Almost
everything in MATLAB is represented in terms of matrices and matrix-manipulations. If
you would like a refresher on matrix-manipulations, a brief overview of the main linear
algebra concepts needed is given in the next chapter, Chapter 3, “Mathematics and
Statistics Tutorial.” We will start to explore this concept and its power later in this tutorial.
For now, it is important to note that, properly learned, MATLAB will help you get your
job done in a very efficient way. Giving it a serious shot is worth the effort.

2.2.1 Getting Started

You can start MATLAB by simply clicking on the MATLAB icon, the “L-shaped
Membrane” on your desktop or taskbar. The command window will pop up, awaiting
your commands and instructions.

In the context of this tutorial, all commands that are supposed to be typed into the
MATLAB command window, as well as expected MATLAB responses, are typeset in
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bold. The beginnings of these commands are indicated by the >> prompt. Press Enter at
the end of this line, after typing the instructions for MATLAB. All instructions discussed
in this tutorial will be in MATLAB notation, to enhance your familiarity with the
MATLAB environment.

Don’t be afraid as you delve into this new programming world. Help is readily at hand.
Using the command help followed by the name of the command (for example, help save)
in the command window gives you a brief overview on how to use the corresponding
command (i.e., the command/function save). You can also easily access these help files for
functions or commands by highlighting the command for which you need assistance in
either the command window or in an M-file and right-clicking to select the Help on
Selection option. Entering the commands helpwin, helpdesk, or helpbrowser will also
open the MATLAB help browser. Another way of accessing a specific function in the help
browser is to use doc save instead of help save. This accesses the entry of “save” in the
help browser, whereas help outputs the help into the command line.

2.2.2 MATLAB as a Calculator

MATLAB implements and affords all the functionality that you have come to expect
from a fine scientific calculator. While MATLAB can, of course, do much more than that,
this is probably a good place to start. This functionality also demonstrates the basic philos-
ophy behind this tutorial—discussing the principles behind MATLAB by showing how
MATLAB can make your life easier, in this case by replicating the functionality of a scien-
tific calculator.

Elementary mathematical operations: Addition, subtraction, multiplication, division.

These operations are straightforward:

Addition:

>>2+3
ans =
5

Subtraction:
>>7-5

ans =2
Multiplication:

>>17*4
ans =

68
Division:
>>24/7

ans =
3.4286
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Following are some points to note:

1. It doesn’t matter how many spaces are between the numbers and operators, if only
numbers and operators are involved (this does not hold for characters):
>>5+12
ans =
17
2. Of course, operators can be concatenated, making a statement arbitrarily complex:
>>2+3+4—-7*5+8/9+1—5%/3
ans =
—34.1111
3. Parentheses disambiguate statements in the usual way:
>>5+3*8
ans=1
29
>>(5+3)*8
ans=1
64
“Advanced” mathematical operators: Powers, log, exponentials, trigonometry.
Power: x"p is x to the power p:
>>2"3
ans =
8
Natural logarithm: log:
>> log (2.7183)
ans =
1.0000
>> log(1)
ans =
0
Exponential: exp(x) is e
>> exp(1)
ans =
2.7183
Trigonometric functions; for example, sine:
>> sin(0)
ans =
0
>> sin(pi/2)
ans =
1
>> sin(3/2*pi)
ans =
-1
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Note: Many of these operations are dependent on the desired accuracy. Internally,
MATLAB works with 16 significant decimal digits (for floating point numbers—see
Chapter 4, “Programming Tutorial”), but you can determine how many should be dis-
played. You do this by using the format command. The format short command displays 4
digits after the decimal point; format long displays 14 or 15 (depending on the version of

Matlab). Example:

>> log(2.7183)
ans =

1.0000
>> format long
>> log(2.7183)
ans =

1.000006684913988
>> format short
>> log(2.7183)
ans =

1.0000

As an exercise, try to “verify” numerically that x*y = exp(log(x) + log(y)). A possible exam-
ple follows:

>> 5*7
ans =
35
>> exp(log(5) +1og(7))
ans =
35.0000
Hint: Keep track of the number of your parentheses. This practice will come in handy later.
One of the reasons MATLAB is a good calculator is that—on modern machines—it is
very fast and has a remarkable numeric range.
For example:

>>2"500
ans =
3.2734e + 150

Note: e is scientific notation for the number of digits of a number.

x e +y means x*10 "y.
Example:

>> 2e3
ans =

2000
>> 2*10"3
ans =

2000
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Note that in the preceding exercises MATLAB has responded to a command entered by
defining a new variable ans and assigning to it the value of the result of the command.
The variable ans can then be used again:

>> ans + ans
ans =
4000
The variable ans has now been reassigned to the value 4000. We will explore this idea
of variable assignments in more detail in the next section.

EXERCISE 2.1

Try to find the numeric range of MATLAB.  does it return infinity or negative infinity, Inf
For which values of x in 2"x does MATLAB  or — Inf, respectively?
return a numeric value? For which values

2.2.3 Defining Matrices

Of course, MATLAB can do much more than described in the preceding section. A cen-
tral concept in this regard is that of vectors and matrices—arrays of vectors. Vectors and
matrices are designated by square brackets: [ ]. Everything between the brackets is part of
the vector or matrix.

A simple row vector can be defined as follows:

>>1[1 2 3]
ans =
1 2 3

It contains the elements 1, 2, and 3.
A simple matrix can be created as follows:

>>1[2 2 2, 3 3 3]

ans =
2 2 2
3 3 3

This matrix contains two rows and three columns. When you are entering the elements
of the matrix, a semicolon separates rows, whereas spaces separate the columns.
Make sure that all rows have the same number of column elements to avoid errors:

>>1[2 2 2;3 3]
??? Error using = > vertcat
CAT arguments dimensions are not consistent.

In MATLAB, the concept of a variable is closely associated with the concept of matri-
ces. MATLAB stores matrices in variables, and variables typically manifest themselves
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as matrices. Caution: This variable is not the same as a mathematical variable, just a place
in memory.

Assigning a particular matrix to a specific variable is straightforward. In practice, you
do this with the equal operator (=). Following are some examples:

>>a=[1 2 3 4 5]

a=
1 2 3 4 5
>>b=[6 7 8 9]
6 7 8 9

Once in memory, the matrix can be manipulated, recalled, or deleted.
The process of recalling and displaying the contents of the variable is simple. Just type
its name:

>> a
a=

1 2 3 4 5
>>Db
b=

6 7 8 9
Note:

1. Variable names are case-sensitive. Watch out what you assign and recall:
>> A
??? Undefined function or variable 'A'.
In this case, MATLAB—rightfully—complains that there is no such variable, since
you haven't assigned A yet.
2. Variable names can be of almost arbitrary length. Try to assign meaningful variable
names for matrices:
>>uno=[1 1 1,1 1 1,1 1 1]

uno =
111
111
111

>> thismatrixisreallyempty =[ ]
thismatrixisreallyempty =

[]

You can easily create some commonly used matrices by using the functions eye, ones,
zeros, rand, and randn. The function eye(n) will create an nxn identity matrix. The func-
tion ones(n,m) will generate an n by m matrix whose elements are all equal to 1, and the
function zeros(n,m) will generate an n by m matrix whose elements are all equal to 0.
When you leave out the second entry, m, in calling those functions, they will generate
square matrices of either zeros or ones. So, for example, the matrix uno could have been
more easily created using the command uno = ones(3).

I. FUNDAMENTALS



14 2. MATLAB TUTORIAL

In a similar way, MATLAB will generate matrices of random numbers pulled from a
uniform distribution between 0 and 1 through the rand function, and matrices of random
numbers pulled from a normal distribution with zero mean and a variance of one through
the randn function.

MATLAB uses so-called workspaces to store variables. The command who will allow
you to see which variables are in your workspace, and the command whos will return
additional information regarding the dimensions (“size”), size in memory (“bytes”), and
type (“class”) of the variables stored in the active workspace.

Now create two variables, x and y, and assign to them the values 23 and 57, respectively:

>> x=23;y=57;

Note that when you add a semicolon to the end of your statement, MATLAB sup-
presses the display of the result of that statement. Next, create a third variable, z, and
assign to it the value of x +y.

>>z=x+y
z=280

Let’s see what’s in the working memory, i.e., the workspace:
>> who

Your variables are:
a ans b thismatrixisreallyempty uno xy z

>> whos

Name Size  Bytes Class

a 1X5 40 double

ans 2X3 48 double

b 1X4 32 double

thismatrixisreallyempty 0X0 0 double

uno 3X3 72 double

X 1X1 8 double

y 1X1 8 double
1X1 8 double

When you use the command save, all the variables in your workspace can be saved
into a file. MATLAB data files have a .mat ending. The command save is followed by the
filename and a list of the variables to be saved in the file. If no variables are listed after the
filename, then the entire workspace is saved. For example,

save my_workspace X y z
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will create a file named my_workspace.mat that contains the variables x, y, and z. Now
rewrite that file with one that includes all the variables in the workspace. Again, you do

this by omitting a list of the variables to be saved:

>> save my_workspace
You can now clear the workspace using the command clear all:

>> clear all
>> who

>> X
??? Undefined function or variable 'x'.

Note that nothing is returned by the command who, as is expected because all the vari-
ables and their corresponding values have been removed from memory. For the same reason,
MATLAB complains that there is no variable named x because it has been cleared from the
workspace. You can now reload the workspace with the variables using the command load:

>> load my_workspace

>> who

Your variables are:

a ans b thismatrixisreallyempty uno x y z

If they are no longer needed, specific variables and their corresponding values can be
removed from memory. The command clear followed by specific variable names will

delete only those variables:

>> clearxyz

>> who

Your variables are:

a ans b thismatrixisreallyempty uno

Try using the command help (i.e., via help save, help load, and help clear) in the com-
mand window to learn about some of the additional options these functions provide.

The size of the matrix assigned to a given variable can be obtained by using the func-

tion size. The function length is also useful when only the size of the largest dimension of
a matrix is desired:

>> size(a)
ans =
15
>> length(a)
ans =
5
The content of matrices and variables in your workspace can be reassigned and

changed on the fly, as follows:

>> thismatrixisreallyempty = [5]
thismatrixisreallyempty =
5
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It is very common to have MATLAB create long vectors of incremental elements just by
specifying a start and end element:

>> thisiscool = 4:18
thisiscool =
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

The size of the increment of the vector can be changed by specifying the step size in
between the start and end element:

>> thisiscool = 4:2:18
thisiscool =
4 6 8 10 12 14 16 18

Two convenient functions that MATLAB has for creating vectors are linspace and log-
space. The command linspace(a,b,n) will create a vector of n evenly spaced elements
whose first value is a and whose last value is b. Similarly, logsllgace(a,b,n) will generate a
vector of n equally spaced elements between decades 10 and 10"

>> v =logspace(1,5,5)
V=
10 100 1000 10000 100000

Transposing a matrix or a vector is quite simple: It's done with the '(apostrophe) command:

>> a
a=
1 2 3 4 5
>> a'
ans =
1
2
3
4
5

Variables can be copied into each other, using the =command. In this case, the right
side is assigned to the left side. What was on the left side before is overwritten and lost, as
shown here:

>>b

b=

6 7 8 9
>>b=a

1 2 3 4 5
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Note: Don’t confuse the = (equal) sign with its mathematical meaning. In MATLAB,
this symbol does not denote the equality of terms, but is an assignment instruction.
Again, the right side of the=will be assigned to the left side, while the left side
will be lost. This is the source of many errors and misunderstandings which is why
this is emphasized again here. The conceptual difference is nowhere clearer than in the
case of “self-assignment”:

Y,
'y awswnm

U s WO N =

The assignment of the transpose eliminates the original row vector and renders a as a
column vector.
This reassignment also works for elements of matrices and vectors:

>> a(2,1)=9
a=

Ul = W O =

Generally, you can access a particular element of a two-dimensional matrix with the
indices i and j, where i denotes the row and j denotes the column. Specifying a single
index i accesses the i" element of the array counted column-wise:

>> a(2)
ans =
9

We will explore indexing further in Section 2.2.6.
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EXERCISE 2.2

Clear the workspace. Create a variable A
and assign to it the following matrix value:

7 5
A=12 3.
1 8

Access the element i=2, j=1, and
change it to a number twice its original
value. Create a variable B and assign to it
the transpose of A. Verify that the fifth ele-
ment of the matrix B counted column-wise
is the same as the i =1, j =3 element.

EXERCISE 2.3

Using the function linspace generates a
row vector vl with seven elements which
uniformly cover the interval between 0 and
1. Now generate a vector v2 which also
covers the interval between 0 and 1, but

with a fixed discretization of 0.1. Use either
the function length or size to determine
how many elements the vector v2 has.
What is the value of the third element of
the vector v2?

Solutions to exercises are available on the companion website.

2.2.4 Basic Matrix Algebra

Almost everything that you learned in the previous section on mathematical operators
in MATLAB can now be applied to what you just learned about matrices and variables. In

this section we explore how this synthesis is accomplished—with the necessary
modifications.

First, define a simple matrix and then add 2 to all elements of the matrix, like this:
>>p=[1 2; 3 4]

As a quick exercise, check whether this principle extends to the other basic arithmetic
operations such as subtraction, division, or multiplication.

What if you want to add a different number to each element in the matrix? It is not
inconceivable that this operation could be very useful in practice. Of course, you could do
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it element by element, as in the end of the preceding section. But doing this would be very
tedious and time-consuming. One of the strengths of MATLAB is its matrix operations,
allowing you to do many things at once.

Here, you will define a new matrix with the elements that will be added to the old
matrix and assign the result to a new matrix to preserve the original matrices:

>>q=[2 1;, 1 1]

q=

2 1

11
>>m=p+q
m=

5 5

6 7

Note: The number of elements has to be the same for this element-wise addition to
work. Specifically, the matrices that are added to each other must have the same number
of rows and columns. Otherwise, nothing is added, and the new matrix is not created.
Instead, MATLAB reports an error and gives a brief hint what went wrong:

>>r=[2 1,1 1,1 1]
r=
2 1
11
11
>>n=p+r
??? Error using = > plus
Matrix dimensions must agree.

As a quick exercise, see whether this method of simultaneous, element-wise addition
generalizes to other basic operations such as subtraction, multiplication, and division.

Note: It is advisable to assign a variable to the result of a computation, if the result is
needed later. If this is not done, the result will be assigned to the MATLAB default vari-
able ans, which is overwritten every time a new calculation without explicit assignment of
a variable is performed. Hence, ans is at best a temporary storage.

Note that in the preceding exercise, you get consistent results for addition and subtrac-
tion, but not for multiplication and division. The reason is that * and/really symbolize a
different level of operations than + or —. Specifically, they refer to matrix multiplication
and division, respectively, which can be used to calculate outer products, etc. Refer to the
next chapter for a refresher if necessary. If you want an analogous operation to +and —,
you have to preface the * or/with a dot (.). This is known as element-wise operations:

>>p
p=
3 4
5 6
>>q
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q =

2 1

11
>> p*q
ans =

10 7

16 11
>> p.fq
ans =

6 4

5 6

Due to the nature of outer products, this effect is even more dramatic if you want to
multiply or divide a vector by another vector:

>>a=[1 2 3 4 5]

a=

1 2 3 4 5
>>b=[5 4 5 4 5]
b=

5 4 5 4 5

> c=a.*b

5 8 15 16 25
>> c=a*b
??? Error using = > mtimes
Inner matrix dimensions must agree.

Raising a matrix to a power is similar to matrix multiplication; thus, if you wish to raise
each element of a matrix to a given power, the dot () must be included in the command.
Therefore, to generate a vector ¢ having the same length as the vector a, but for each ele-
ment i in ¢, it holds that c(i) = [a(i)] 2, you use the following command:

>> c=a."2
C=
1 4 9 16 25

As you might expect, there exists a function sqrt that will raise every element of its
input to the power 0.5. Note that the omission of the dot (.) to indicate element-wise opera-
tions when it is intended is one of the most common errors when beginning to program in
MATLAB. Keep this point in mind when troubleshooting your code.

Of course, you do not have to use matrix algebra to manipulate the content of a matrix.
Instead, you can “manually” manipulate individual elements of the matrix. For example,
if A is a matrix with four rows and three columns, you can permanently add 5 to the element
in the third row and second column of this matrix by using the following command:

>> AGB,2)=5+A3,2);
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We will explore indexing further in the next section.

Earlier, we rather casually introduced matrix operations like outer products versus
element-wise operations. Now, we will briefly take the liberty to rectify this state of affairs
in a systematic way. MATLAB is built around the concept of the matrix. As such, it is
ideally suited to implement mathematical operations from linear algebra. MATLAB distin-
guishes between matrix operations and array operations. Basically, the former are the subject
of linear algebra and denoted in MATLAB with symbols such as +, —, %, /, or ”. These
operators typically involve the entire matrix. Array operations, are indicated by the same
symbols prefaced by a dot, such as .*, ./, or .". Array operators operate element-wise, or one
by one. The rest of the sections will mostly deal with array operations. Hence, we will give
the more arcane matrix operations—and the linear algebra that is tied to it—a brief intro-
duction here. Linear algebra has many useful applications, most of which are beyond the
scope of this tutorial. One of its uses is the elegant and painless (particularly with
MATLAB) solution of systems of equations. Consider, for example, the system

x+y+2z=9
2x+4y—3z=1
3x+6y—52=10
You can solve this system with the operations you learned in middle school, or you can

represent the preceding system with a matrix and use a MATLAB function that produces
the reduced row echelon form of A to solve it, as follows:

>>A=[11 2 9 2 4 -3 1, 3 6 —5 0]

A=
11 29
2 4 -3 1
3 6 —5 0

>> rref(A)

ans =
10 0 1
01 0 2
00 1 3

From the preceding, it is now obvious that x=1, y=2, z=23. As you can see, tackling
algebraic problems with MATLAB is quick and painless—at least for you.

Similarly, matrix multiplication can be used for quick calculations. Suppose you sell five
items, with five different prices, and you sell them in five different quantities. This can be
represented in terms of matrices. The revenue can be calculated using a matrix operation:

>> Prices=[10 20 30 40 50];
>> Sales=[50; 30; 20; 10; 1];
>> Revenue = Prices*Sales
Revenue =

2150

Note: Due to the way in which matrix multiplication is defined, one of the vectors
(Prices) has to be a row vector, while the other (Sales) is a column vector.
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EXERCISE 2.4

Double-check whether the matrix multiplication accurately determined revenue.

EXERCISE 2.5

Which set of array operations achieves the same effect as this simple matrix multiplication?

Exploration: As opposed to array multiplication (.*), matrix multiplication is NOT com-
mutative. In other words, Prices * Sales#Sales * Prices. Try it by typing the latter. What
does the result represent?

EXERCISE 2.6

Create a variable C and assign to it a  matrix of ones using the function ones.
5 X 5 identity matrix using the function eye.  Create a third variable E and assign to it the
Create a variable D and assign to it a 5X5  square of the sum of C and D.

EXERCISE 2.7

Clear your workspace. Create the following variables and assign to them the given matrix
values (superscript T indicates transpose):

(a)x=(%) (b)y=xT-l7<(1) (1)) (c)A=(g Z)

d)b=yA (@) c=xTA 1T (f) E=cAT

EXERCISE 2.8

Create a time vector t that goes from 0  each element of g is equal to 2+5 times
to 100 in increments of 5. Now create a  the corresponding element of f raised to
vector g whose length is that of f and the power of 1.7.
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2.2.5 Indexing

Individual elements of a matrix can be identified and manipulated by the explicit use of
their index values. When indexing a matrix, A, you may identify an element with two
numbers using the format A(row, column). You could also identify an element with a single
number, A(num), where the elements of the matrix are counted columnwise. Let’s explore
this a bit through a series of exercises. First, remove all variables from the workspace (use
the command clear all) and create a variable A:

1 2 3 4

a_| 5 6 7 8
10 20 30 40

50 60 70 80

>> clear all
>>A=[1 2 3 4 5 6 7 8 10 20 30 40; 50 60 70 80I;

Now assign the value 23 to each entry in the first row:

>> A(,:) =23
A=
23 23 23 23
5 6 7 8
10 20 30 40
50 60 70 80

The colon () in the col position indicates all column values. Similarly, you can assign
the value 23 to each entry in the first column:

>> A(,1)=23
A=
23 23 23 23
23 6 7 8
23 20 30 40
23 60 70 80

Suppose you didn’t know the index values for the elements that you wanted to change.
For example, presume you wanted to assign the value 57 to each entry of A that is equal
or larger than 7 in the second row. What are the column indices for the elements of the
second row of the matrix A [i.e., A(2,:)] which satisfy the criteria to change? For this task,
the find function comes in handy:

>> find(AQ2,)) >=7)
ans =
1 3 4
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Thus, the following command will produce the desired result:

>> A(2,find(A(2,:) >=7)) =57

A=
23
57
23
23

23

6
20
60

23
57
30
70

23
57
40
80

To further illustrate the use of the function find and indexing, consider the following task.
Assign the value 7 to each entry in the fourth column of the matrix A that is equal or larger
than 40 and lower than 60. For this example, it is clearer to split this operation into two lines:

>> i=find((A(;,4) >= 40)&(A(:,4) <60))

i=

2
3
>> A4 =7
A=
23 23 23 23
57 6 57 7
23 20 30 7
23 60 70 80

Back to a nice and simple task, assign the value 15 to the entry in the third row, second
column:

>> AGB,2)=15

A=
23
57
23
23

23

6
15
60

23
57
30
70

23
7
7

80

Similarly, you could have used the command A(7) =15. If you try entering the com-
mand find(A =15), you will get the answer 7. The reason is that MATLAB stores the ele-
ments of a matrix column after column, so 15 is stored in the seventh element of the
matrix when counted this way. Had you entered the command [r,c] = find(A =15); you
would see that r is now assigned the row index value and ¢ the column index value of the
element whose value is 15; thatis, r =3, ¢ = 2.

>> [r,c] = find(A = 15)

r=

3
c=
2
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The find function is often used with relational and logical operators. We used a few of
these in the preceding examples and will summarize them all here. The relational opera-
tors are as follows:

= (equal to)

~= (not equal to)

< (less than)

> (greater than)

<= (less than or equal to)
>= (greater than or equal to)

MATLARB also uses the following syntax for logical operators:

& (AND)

| (OR)

~ (NOT)

xor (EXCLUSIVE OR)

any (true if any element is nonzero)
all (true if all elements are nonzero).

EXERCISE 2.9

Find the row and column indices of the equal to the value 17. Assign the value 2 to
matrix elements of A whose values are less  each of the last three entries in the second
than 20. Set all elements of the third row  column.

2.3 GRAPHICS AND VISUALIZATION

Whereas we re-created the functionality of a scientific calculator in the previous sec-
tions, here we will explore MATLAB as a graphing calculator. As you will see, visualiza-
tion of data and data structures is one of the great strengths of MATLAB.

2.3.1 Basic Visualization

In this section, it will be particularly valuable to experiment with possibilities other
than the ones suggested in the examples, since the examples can cover only a very small
number of possibilities that will have a profound impact on the graphs produced.

For aesthetic purposes, start with a trigonometric function, which was introduced
before—sine. First, generate a vector x, take the sine of that vector, and then plot the result:

>> x=0:10
X=

01 23 456 7 8 9 10
>> y=sin(x)
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y=
0 0.8415 0.9093 0.1411 —0.7568 —0.9589 —0.2794 0.6570 0.9894 0.4121 —0.5440
>> plot(x,y)

The result of this series of commands will look something like Figure 2.1.

A quick result was reached, but the graphic produced is admittedly rather crude, albeit
sinusoidal in nature. Note the values on the x-axis (0 to 10), as desired, and the values on
the y-axis, between —1 and 1, as it's supposed to be, for a sine function. The problem
seems to be with sampling. So let’s redraw the sine wave with a finer mesh.

Recall that a third parameter in the quick generation of vectors indicates the step size. If
nothing is indicated, MATLAB assumes 1 by default. This time, you will make the mesh
10 times finer, with a step size of 0.1.

EXERCISE 2.10

Use >>x=0:0.1:10 to create the finer mesh.

Notice that MATLAB displays a long series of incremental elements in a vector that
is 101 elements long. MATLAB did exactly what you told it to do, but you don’t necessar-
ily want to see all that. Recall that the ; (semicolon) command at the end of a command
suppresses the “echo,” the display of all elements of the vector, while the vector is still
created in memory. You can operate on it and display it later, like any other vector.

So try this:

>> x=0:0.1:10;
>> y=sin(x);
>> plot(x,y)

This yields something like that shown in Figure 2.2, which is arguably much smoother.

1 FIGURE 2.1 Crude sinusoid.
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FIGURE 2.2  Smooth sinusoid.
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EXERCISE 2.11

Plot the sine wave on the interval from 0 to 20, in 0.1 steps.

Upon completing Exercise 2.11, enter the following commands:

>> hold on
>> z = cos(x);
>> plot(x,z,'color','k")

The result should look something like that shown in Figure 2.3.

1 FIGURE 2.3  Sine vs. cosine.
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Now you have two plots on the canvas, the sine and cosine from 0 to 20, in different colors.
The command hold on is responsible for the fact that the drawing of the sine wave didn’t just
vanish when you drew the cosine function. If you want to erase your drawing board, type hold
off and start from scratch. Alternatively, you can draw to a new figure, by typing figure, but be
careful. Only a limited number of figures can be opened, since every single one will draw on
the memory the resources of your computer. Under normal circumstances, you should not
have more than about 30 figures open—if that. The command close all closes all the figures.

EXERCISE 2.12

Draw different functions with different eight of which are predefined: r for red,
colors into the same figure. Things will start ~ k for black, w for white, ¢ for green, b for
to look interesting very soon. MATLAB can  blue, y for yellow, ¢ for cyan, and m for
draw lines in a large number of colors, magenta.

Give your drawing an appropriate name. Type something like the following;:
>> title('My trigonometric functions')

Now watch the title appear in the top of the figure.

Of course, you don’t just want to draw lines. Say there is an election and you want to
quickly visualize the results. You could create a quick matrix with the hypothetical results
for the respective candidates and then make a bar graph, like this:

>> results=[55 30 10 5]
results =

55 30 10 5
>> bar(results)

The result should look something like that shown in Figure 2.4.

60 : : T T FIGURE 2.4 Lowering the bar.
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EXERCISE 2.13

To get control over the properties of
your graph, you will have to assign a han-
dle to the drawing object. This can be an
arbitrary variable, for example, h:

>> h = bar(results)
h =298.0027

>> set(h,'linewidth', 3)
>> set(h,'FaceColor', [1 1 1]

The result should be white bars with thick
lines. Try get(h) to see more properties of the
bar graph. Then try manipulating them with
set(h, 'Propertyname',Propertyvalue).

Finally, let’s consider histograms. Say you have a suspicion that the random number
generator of MATLAB is not working that well. You can test this hunch by visual

inspection.

First, you generate a large number of random numbers from a normal distribution, say
100,000. Don’t forget the ; (semicolon). Then you draw a histogram with 100 bins, and

you're done. Try this, for example:

>> suspicious = randn(100000,1);
>> figure
>> hist(suspicious, 100)

The result should look something like that shown in Figure 2.5. No systematic devia-
tions from the normal distribution are readily apparent. Of course, statistical tests could

yield a more conclusive evaluation of your hypothesis.
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FIGURE 2.5
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EXERCISE 2.14

You might want to run this test a couple  tions from a normal distribution are truly
of times to convince yourself that the devia- random and inconsistent from trial to trial.

A final remark on the display outputs: most of the commands that affect the display of
the output are permanent. In other words, the output stays like that until another com-
mand down the road changes it again. Examples are the hold command and format com-
mand. Typing hold will hold plot and allow something else to be plotted on it. Typing
hold again toggles hold and releases the plot. This is similarly true for the format com-
mands, which keep the format of the output in a certain way.

We have thus far introduced only a small number of the many visualization tools that
give MATLAB its strength. In addition to the functions plot, bar, and hist, you can explore
other plotting commands and get a feel for more display options by viewing the help files
for the following plotting commands that you might find useful: loglog, semilogx, semil-
ogy, stairs, and pie.

Want to know what your data sounds like? MATLAB can send your data to the compu-
ter’s speakers, allowing you to visually manipulate your data and listen to it at the same
time. To hear an example, load the built-in chirp.mat data file by typing load chirp. Use
plot(y) to see these data and sound(y) to listen to the data.

We will cover more advanced plotting methods in the following section as well as in
future chapters.

2.4 FUNCTION AND SCRIPTS

Until now, we have driven MATLAB by typing commands directly in the command
window. This is fine for simple tasks, but for more complex ones you can store the typed
input commands into a file and tell MATLAB to get its input commands from the file.
Such files must have the extension .m and are thus called M-files. If an M-file contains
statements just as you would type them into the MATLAB command window, they are
called scripts. If, however, they accept input arguments and produce output arguments,
they are called functions.

The primary goal of this section is to help you become familiar with M-files within
MATLAB. M-files are the primary vehicle to implement programming in MATLAB. So
while the previous sections showed how MATLAB can double as a scientific calculator
and as a calculator with graphing functions, this section will introduce you to a high-level
programming language that should be able to satisfy most of your programming needs if
you are a casual user. It will become apparent in this section of the tutorial how MATLAB
can aid the researcher in all stages of an experiment or study. By no means is this tutorial
the last word on M-files and programming. Later we will elaborate on all concepts
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introduced in this section—particularly in terms of improving efficiency and performance
of the programs you are writing. One final goal of this tutorial is to demonstrate the
remarkable versatility of MATLAB—and don’t worry, we’ll move on to neuroscience-
heavy topics soon enough.

2.4.1 Scripts

Scripts typically contain a sequence of commands to be executed by MATLAB when the
filename of the M-file is typed into the command window.

M-files are at the heart of programming in MATLAB. Hence, most of our future exam-
ples will take place in the context of M-files. You can work on M-files with the M-file edi-
tor, which comes with MATLAB. To go to the editor, open the File menu (top left), select
New, and then select M-File (see Figure 2.6). In recent versions of MATLAB, there is now
a distinction between “Script” and “Function.” Open a new “Script” here. The most recent
versions of MATLAB don’t even have a File menu any more, but rather a number of icons
in the home tab. They are still on the upper left. The functionality of the menu—and
more—has now been put into a toolbar. The layout of the user interface will likely con-
tinue to change in future versions of MATLAB, so do not get too attached to it. However,
the core functionality can be expected to say the same. Figure 2.6 shows a screenshot from
the distant past. That’s why it is in black and white.

The first thing to do after a new M-file is created is to name it. For this purpose, you
have to save it to the hard disk. There are several ways of doing this. The most common is
to click the editor’s File menu and then click Save As. Recent versions of Matlab feature a
toolbar that replaces the menu, see figure 2.7. To save, click on the floppy disk (never
mind that no one has used a floppy disk in over a decade and that the pictured 3.5” disk
wasn’t actually floppy). You can then save the file with a certain name. Using myfirstm-
file.m would probably be appropriate for the occasion.

As a script, an M-file is just a repository for a sequence of commands that you want to
execute repeatedly. Putting them in an M-file can save you the effort of typing the com-
mands anew every time. This is the first purpose for which you will use M-files.

FIGURE 2.6 Creating a new M-File.
4 MATLAB 8
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figure FIGURE 2.8 The editor.
x = 0:0.1:10;

¥ = 8in (x):

plot (x,9)

Type the commands into your M-file editor as they appear in Figure 2.8. Make sure to
save your work after you are done (by pressing Ctrl +S), if you already named it. If you
now type myfirstmfile into the MATLAB command window (not the editor), this
sequence will be executed by MATLAB. You can do this repeatedly, tweaking things as
you go along (don’t forget to save).

2.4.2 Functions

We have already been using many of the functions built into MATLAB, such as sin and
plot. You can extend the MATLAB language by writing your own functions. MATLAB
has a very specific syntax for declaring and defining a function. Function M-files must
start with the word function, followed by the output variable(s) within square brackets,
the equal sign, the name of the function, and the input variable(s) in parenthesis, in that
order. Functions do not have to have input or output arguments. The following is a valid
function definition line for a function named flower that has three inputs, 4, b, and ¢, and
two outputs, out_1 and out_2:

function [out_1, out_2] = flower(a,b,c)

To demonstrate this further, you will write a function named triple that computes and
returns three times the input, i.e., triple(2) =6, triple(3) =9, etc. First, type the following
two lines into an M-file and save it as triple.m:

function r = triple(i)
r=3%i;

If you want to avoid confusion, it is strongly advised to match the name of the M-file
with the name of the function. The input to the function is i and the output is r. You can
now test this function:

>> a=triple(7)

a =

21
>> b = triple([10 20 30])
b=

30 60 90

Note: This function is trivial. Here, however, you should learn to apply the syntax only
for defining and calling functions. Also note that function variables do not appear in the
main workspace; rather their scope is limited to themselves. For instance, you do not have
access to the variable “r” from the main workspace.
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2.4.3 Control Structures

Of course, what you just saw is only the most primitive way of using M-files. M-files
will allow you to harness the full power of MATLAB as a programming language. For this
to happen, you need to familiarize yourself with loops and conditionals—in other words,
with statements that allow you to control the flow of your program.

Loops: The two most common statements to implement loops in MATLAB are for and
while.

The structure of all loops is as follows (in terms of a while loop):

while certain-conditions-are-true
Statements

Statements
end

All statements between while and end are executed repeatedly until the conditions that
are checked in while are no longer the case. This is best demonstrated with a simple
example: open a new M-file in the editor and give it a name. Then type the following code
and save. Finally, type the name of the M-file in the command window (not the editor) to
execute the loop.

This is a good place to introduce comments. As your programs become more complex,
it is highly recommended that you add comments. After a week or two, you will not nec-
essarily remember what a particular variable represents or how a particular computation
was done. Comments can help, and MATLAB affords functionality for it. Specifically, it
ignores everything that is written after the percent sign (%) in a line. In the editor itself,
comments are represented in green. So here is the program that you should write now,
implementing a simple while loop. If you want to, you can save yourself the comments
(everything after % in each line). We placed them here to explain the program flow (what
the program will do) to you:

%A simple counter
ii=1 %Initializing our counter as 1
while ii < 6 %While ii is smaller than 6, statements are executed

ii=ii+1 %Incrementing the counter and displaying new value

end %Ending the loop, it contains only one statement

What happened after you executed the program? Did it count from 1 to 6?

Note that we use the variable ii, not i as a counter here. This has several major advan-
tages. The first one is that “i” and “j” are already predefined in MATLAB. They both rep-
resent the imaginary part of a complex number (1i). Try it. Clear the workspace if you
defined i and j before (we did above, in the indexing section), then type i and j, respec-
tively. It is generally a bad idea to overwrite something that is already predefined in
MATLAB and can lead to puzzling and counterintuitive error messages later on. We did it
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in the section on indexing for didactic purposes only (mathematicians like to use i and j as
indices). Another reason is that people tend to confuse i and 1 when coding. This is empir-
ically true. So a for loop that would be defined as for i =1:10 is often written as i =1:10. It
might sound preposterous, but happens surprisingly often. Good luck finding the error
later on. It is better to use for ii = 1:10 instead. One is much less likely to make this mis-
take. Programming is challenging work, as one has to constantly juggle objectives (what
the code is supposed to do) with implementation (how the code does it). Keeping all of
that in working memory is hard and the literature is full of examples of how quickly per-
formance can break down, particularly if there are added problems like sleep deprivation
or distractions. Better to play it safe and stay away from i and j altogether. This goes for
all functions. A prominent example is “size.” People often call the variable with which
they represent the size of something “size,” e.g. the size of the population under study. If
you do this, you basically broke your code if it invokes “size” to refer to the function at
some other point in the code. MATLAB will throw an error message at that point and it
will surprise you. So use more specific names, like pop_size for your variables instead. We
use ii instead i in the same spirit.

EXERCISE 2.15

Let your program count from 50 to
1050. Then redo this with a for loop for
practice.

If you execute this program on a slow
machine, chances are that this operation
will take a while.

EXERCISE 2.16

Let your program count from 1 to
1,000,000.

If you did everything right, you will be
sitting for at least a minute, watching the
numbers go by. While we set up this exer-
cise deliberately, chances are that you will
underestimate the time it takes to execute a
given loop sometime in the future. Instead

of just biding your time, you have several
options at your disposal to terminate run-
away computations. The most benign of
these options is pressing Ctrl+C in the
MATLAB command window. That shortcut
should stop a process that hasn't yet
completely taken over the resources of your
machine. Try it.

Note: The display of the numbers takes most of the time. The computation itself is rela-
tively quick. Make the following modifications to your program; then save and run it:

%A silent counter

ii=1 %Initializing our counter as 1
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while ii < 1000000
ii=ii+1; %Incrementing the counter without displaying new value
end %Ending the loop, it contains only one statement

ii %Displaying the final value of ii

Note: One of the most typical ways to get logical errors in complex programs is to forget
to initialize the counter (after doing something else with the variable). This is particularly
likely if you reuse the same few variable names (i, jj, etc.) throughout the program. In this
case, it would not execute the loop, since the conditions are not met. Hence, you should
make sure to always initialize the variables that you use in the loop *before* the loop. As a
cautionary exercise, reduce your program to the following:

%A simple counter, without initialisation
while ii < 1000000 %While ii is smaller than 1M, statements are executed
ii=ii+1 %Incrementing the counter and displaying new value

end %Ending the loop, it contains only one statement

Save and run this new program. If you ran one of the previous versions, nothing will
happen. The reason is that the loop won’t be entered because the condition is not met; i is
already larger than 1,000,000 before the first loop is executed.

Of course, the most common way to get runaway computations is to create infinite
loops—in other words, loops with conditions that are always true after they are entered. If
that is the case, they will never be exited. A simple case of such an infinite loop is a modi-
fied version of the initial loop program—one without an increment of the counter; hence,
ii will always be smaller than the conditional value and never exit.

Try this, save, and run:

% An infinite loop

ii=1 %Initializing our counter as 1

while ii < 6 %While ii is smaller than 6, statements are executed

ii=ii %NOT incrementing the counter, yet displaying its value

end %Ending the loop, it contains only one statement

If you're lucky, you can also exit this process by pressing Ctrl + C. If you're not quick
enough or if the process already consumed too many resources—this is particularly likely for
loops with many statements, not necessarily this one—your best bet is to summon the Task
Manager by pressing Ctrl + Alt + Delete simultaneously in Windows (for a Mac, the corre-
sponding key press is Command + Option + Escape to call the Force Quit menu). There, you

can kill your running version of MATLAB. The drawbacks of this method are that you have
to restart MATLAB and your unsaved work will be lost. So beware the infinite loop.
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If statements: In a way, if statements are pure conditionals. Statements within if state-
ments are either executed once (if the conditions are met) or not (if they are not met).
Their syntax is similar to loops:

if these-conditions-are-met
Execute-these-Statements
else
Execute-these-Statements
end

It is hard to create a good example consisting solely of if statements. They are typically
used in conjunction with loops: the program loops through several cases, and when it hits
a special case, the if statement kicks in and does something special. We will see instances
of this in later examples. For now, it is enough to note the syntax.

Fun with loops—How to make an American quilt

This is a rather baroque but nevertheless valid exercise on how to simply save time
writing all the statements explicitly by using nested loops. If you want to, you can try rep-
licating all the effects without the use of loops. It’s definitely possible—just very tedious.

Open a new window in the editor, name it, type the following statements (without com-
ments if you prefer), save it, and see what happens when you run it:

figure %Open a new figure

x = 0:0.1:20; %Have an x-vector with 201 elements

y = sin(x); %Take the sine of x, put itin y

k=1; %]Initialize our counter variable k with 1
while k < 3; %For k=1 and 2

QUILT1(1,) =x; %Put x into row 1 of the matrix QUILT1
QUILT2(1,:) =vy; %Put y into row 1 of the matrix QUILT2
QUILT1(2,:) =x; %Put x into row 2 of the matrix QUILT1
QUILT2(2,)) = —y; %Put —y into row 2 of the matrix QUILT2
QUILT1@3,:) = —x; %Put —x into row 3 of the matrix QUILT1
QUILT2(3,:) =y; %Put y into row 3 of the matrix QUILT2
QUILT1(4,:) = —x; %Put — x into row 4 of the matrix QUILT1
QUILT2(4,)) = —y; %Put —y into row 4 of the matrix QUILT2
hold on % Always plot into the same figure
forii=1:4 % A nested loop, with ii as counter, from 1 to 4

plot(QUILT1(i,)),QUILT2(i,:)) %Plot the iith row of QUILT1 vs. QUILT2
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pause %Waiting for user input (key press)
end %End of ii-loop
forii=1:4 % Another nested loop, with ii as counter, from 1 to 4

plot(QUILT2(ii,:),QUILT1(i,:)) %Plot the iith row of QUILT2 vs. QUILT1

pause %Waiting for user input (key press)
end %End of ii-loop
y=y+19; %Incrementing y by 19 (for every increment of k)
k=k+1; %Incrementing k by 1
end %End of k-loop

Note: This program is the first time we use the pause function. If the program pauses
after encountering a pause statement, press a key to continue until the program is done.
This is also the first time that we wrote a program that depends on user input—albeit in a
very small and limited form—to execute its flow. We will expand on this later.

Note: This program used both for and while loops. The for loops increment their counter
automatically, whereas the while loops must have their counter incremented explicitly.

Now that you know what the program does and how it operates, you might want to
take out the two pause functions to complete the following exercises more smoothly.

EXERCISE 2.17

What happens if you allow the conditional for k to assume values larger than 1 or 2?

EXERCISE 2.18

Do you know why the program incre- happens if you make that increment smaller
ments y by 19 at the end of the k loop? What  or larger than 19?

EXERCISE 2.19

Do you remember how to color your quilt? Try it.
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2.4.4 Advanced Plotting

We introduced basic plotting of two-dimensional figures previously. This time, our
plotting section will deal with subplots and three-dimensional figures. Subplots are an effi-
cient way to present data. You probably have seen the use of the subplot function in pub-
lished papers. The syntax of the subplot command is simply subplot(a,b,c), where a is the
number of rows the subplots are arranged in, b is the number of columns, and c is the par-
ticular subplot you are drawing to. It's probably best to illustrate this command in terms
of an example. This requires you to open a new program, name it, etc.

Then type the following:

figure %Open a new figure
for ii=1:9 %Start loop, have counter ii run from 1 to 9
subplot(3,3,ii) %Draw into the subplot ii, arranged in 3 rows, 3 columns
h=bar(1,1); %This is just going to fill the plot with a uniform color
set(h,'FaceColor',[0 0 ii/9]); %Draw each in a slightly different color
end %End loop
This program will draw nine colored squares in subplots in a single figure, specifically, dif-
ferent shades of blue (from dark blue to light blue) and should look something like Figure 2.9.
Note: The three numbers within the square brackets in the set(h,'FaceColor',[0 0 ii/9]);

statement represent the red, green, and blue color components of the bar that is plotted. Each
color component can take on a value between 0 and 1. A bar whose color components are

0.5

0.5

0

1
FIGURE 2.9  Color gradient subplots.
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[0 0 0] is displayed black and [1 1 1] is white. By setting the color components of the pixels of
your image to different combinations of values, you can create virtually any color you desire.

EXERCISE 2.20

Make the blocks go from black to red instead of black to blue.

EXERCISE 2.21

Make the blocks go from black to white (via gray). Try 49 shades.

SUGGESTION FOR EXPLORATION

Can you create more complex gradations? ~ your recently established knowledge about
It is possible, given this simple program and  RGB values in MATLAB as a basis.

Three-dimensional plotting is a simple extension of two-dimensional plotting. To appreci-
ate this, we will introduce a classic example: drawing a two-dimensional exponential func-
tion. The two most common three-dimensional plotting functions in MATLAB are probably
surf and mesh. They operate on a grid. Magnitudes of values are represented by different
heights and colors. These concepts are probably best understood through an example.

Open a new program in the MATLAB editor, name it, and type the following; then save
and run the program:

a=—20.2:2; % Creating a vector a with 21 elements
[x, y] = meshgrid(a, a); %Creating x and y as a meshgrid of a

z=exp (—x."2—y."2); %Take the 2-dimensional exponential of x and y

figure %Open a new figure

subplot(1,2,1) % Create a left subplot

mesh(z) %Draw a wire mesh plot of the data in z
subplot(1,2,2) % Create a right subplot

surf(z) %Draw a surface plot of the data in z
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After running this program, you probably need to maximize the figure to be able to see
it properly. To do this, click the maximize icon in the upper right of your figure (see
Figure 2.10; or if using a Mac, click on the green button in the upper left corner). Both the
left and right figures illustrate the same data, but in different manners. On the left is a
wire mesh; on the right, a surface plot.

If you did everything right, you should see something like that shown in Figure 2.11.

EXERCISE 2.22

Improve the resolution of the meshgrid. Then redraw.

m@ﬁ FIGURE 2.10 Maximizing a figure.
= (Maximiz:

=

FIGURE 2.11  Three-dimensional plotting of a Gaussian.
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EXERCISE 2.23

Can you improve the look of your fig-
ure? Try shading it in different ways by
using the following:

shading interp
Now try the following:
colormap hot

SUGGESTION FOR EXPLORATION

As you can see, meshgrid is extremely
powerful. With its help, you can visualize
any quantity as a function of several inde-
pendent variables. This capability is at the
very heart of what makes MATLAB so
powerful and appealing. Some say that one
is not using MATLAB unless one is using
meshgrid. While this statement is certainly
rather strong, it does capture the central

importance of the meshgrid function. We
recommend trying to visualize a large num-
ber of functions to try and get a good han-
dle on it. Start with something simple, such
as a variable that is the result of the addi-
tion of a sine wave and a quadratic func-
tion. Use meshgrid, then surf to visualize
it. This makes for a lot of very appealing
graphs.

2.4.5 Interactive Programs

Many programs that are actually useful crucially depend on user input. This input
comes mostly in one of two forms: from the mouse or from the keyboard. We will explore
both forms in this section.

First, create a program that allows you to draw lines. Open a new program in the edi-
tor, write the following code, then save and run the program:

figure

hold on;
xlim([0 1]
ylim([0 1])

forii =1:5

a = ginput(2);
plot(a(;,1),a(;,2));

end

%Opens a new figure

%Make sure to draw all lines in same figure

%Establish x-limits

%ZEstablish y-limits

%Start for-loop. Allow to draw 5 lines
% Get user input for 2 points

%Draw the line

%End the loop

The program will open a new figure and then allow you to draw five lines. When the
cross-hairs appear, click the start point of your line and then on the end point of your line.
Repeat until you're done. The result should look something like that shown in Figure 2.12.
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1r FIGURE 2.12 The luck of the draw.
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EXERCISE 2.24

Allow the program’s user to draw 10 lines, instead of five.

EXERCISE 2.25

Allow the user to draw “lines” that are defined by three points instead of two.

Remember to use close all if you opened too many figures.

Most user input will likely come from the keyboard, not the mouse. So let’s create a lit-
tle program that exemplifies user input very well. In effect, we are striving to re-create
the “sugar factory” experiment by Berry and Broadbent (1984). In this experiment,
research participant were told that they are the manager of a sugar factory and instructed
to keep sugar output at 12,000 tons per month. They were also told that their main
instrument of steering the output is to determine the number of workers per month. The
experiment showed that participants are particularly bad at controlling recursive sys-
tems. Try this exercise on a friend or classmate (after you're done programming it). Each
month, you ask the participant to indicate the number of workers, and each month, you
give feedback on the production so far.
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Here is the code:

P=[]; %Assigning an empty matrix. Making P empty.
a0 = 6000; %a0 is 6000;

m0 =0; %m0 is 0;

w0 = 300; %wO0 is 300;

P(1,:) =[mO0, wo0, a0]; %First production values
figure %Open a new figure

plot(0,a0,".", 'markersize', 24); %Plot the first value

hold on; %Make sure that the plot is held

xlim([0 25]) %Indicate the right x-limits

ii=1; %]Initialize our counter

while ii < 25 %The participant is in charge for 24 months =2 years.
P %Show the production values thus far

a = input('How many workers this month?') %Get the user input

b=20*a—a0 %This is the engine. Determines how much sugar is produced
a0 =b; % Assign a new a0

plot (ii,a0,'.!, 'markersize’, 24); %Plot it in the big figure

P@i+1,:) =Iii, a, b]; %Assign a new row in the P(roduction) matrix

plot (P(;,1),P(;,3),'color','’k"); % Connect the dots

ii=ii+1; %Increment counter

end %End loop

The result (of a successful participant) should look something like that shown in
Figure 2.13.

EXERCISE 2.26

Add more components to the production  production over time (efficiency) or decrease
term, like a trend that tends to increase  production over time (attrition).
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14000 FIGURE 2.13 Game over.
12000 |
10000 |

8000

EXERCISE 2.27

Add another plot (a subplot) that tracks  to the development of production; refer to
the development of the workforce (in addition ~ Figure 2.13).

2.5 DATA ANALYSIS

Section 2.4.5 described a good way to get data into MATLAB: via user input.
Conversely, this section is concerned with data analysis after you already have data. One
of the primary uses of MATLAB in experimental neuroscience is the analysis of data.

2.5.1 Importing and Storing Data

Of course, data analysis is fun only if you already have large amounts of data. Cases in
which you will have to manually enter the data before analyzing them will (we hope) be rare.
For this scenario, suppose that you are in the marketing department of a major motion picture
studio. You just produced a series of movies and asked people how they like these movies.

Specifically, the movies are Matrix I, Matrix II: Matrix Reloaded, and Matrix III: Matrix
Revolutions. You asked 1603 people how much they liked any of these movies. They were
instructed to use a nine-point scale (0 for awful, 4 for great and everything in between, in 0.5
steps). Also, they were instructed to abstain from giving a rating if they hadn’t seen the
movie. Now you will construct a program that analyzes these data, piece by piece. So open a
new program in the editor and then add commands as we add them in our discussion here.
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Data import: Download the data from the companion website to a suitable directory
in your hard disk. Try using a directory that MATLAB will read without additional speci-
fications of a path (file location) in the following code. First, import the data into
MATLAB. To do this, add the following pieces of code to your new analysis program:

%Data import
M1 = xlsread('Matrix1.xls') %Importing data for Matrix I
M2 = xlsread('Matrix2.xls') %Importing data for Matrix II

These commands will create two matrices, M1 and M2, containing the ratings of the
participants for the respective movies (contained in Excel files). Type M1 and M2 to
inspect the matrices. You can also click on them in the workspace to get a spreadsheet
view. One of the things that you will notice quickly is cells that contain “NaN.” These are
responders that didn’t see the movie or didn’t give a rating for this movie for other rea-
sons. In any case, you don’t have ratings for these and MATLAB indicates “NaN,” which
means “not a number”—or empty, in our case. The problem is that retaining this entry
will defeat all attempts at data analysis if you don’t get rid of these missing values. For
example, try a correlation:

>> corrcoef(M1,M2)

ans =
NaN NaN
NaN NaN

You want to know how much an average person likes Matrix II if he or she saw Matrix
I and vice versa. Correlating the two matrices is a good start to answering this question.
However, the correlation function (corrcoef) in MATLAB assumes two vectors that consist
only of numbers, not NaNs. A single NaN somewhere in the two vectors will render the
entire answer NaN. This result is not very useful. So the first thing you need to do is to
prune the data and retain only those people that gave ratings for both movies.

Data pruning: There are many ways of pruning data, and the way that we're suggesting
here is certainly not the most efficient one. It does, however, require the least amount of
introduction of new concepts and is based on what you already know, namely loops. As a
side note, loops are generally slow (compared to matrix operations); therefore, it is almost
always more efficient to substitute the loop with such an operation, particularly when calcu-
lating things that take too long with loops. We'll discuss this issue more later. For now, you
should be fine if you add the following code to the program you already started:

%Data pruning

Movies =1 ]; %New Movies variable. Initializing it as empty.
temp = [M1 M2]; % Create a joint temporary Matrix, consisting of two long vectors
k=1; %]Initializing index k as 1

for ii = 1:length(temp) % Could have said 1603, this is flexible. Start ii loop
if isnan(temp(ii,1)) = 0 & isnan(temp(ii,2)) =0 %]If both are numbers (=valid)
Movies(k,:) = temp(ii,:); %Fill with valid entries only
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k=k+1; %Update k index only in this case
end %End if clause
end %End for loop

The isnan function tests the elements of its input. It returns 1 if the element is not a
number and returns 0 if the element is a number. By inspecting M1, you can verify visu-
ally that M1(2,1) is a number but that M1(3,1) is not. So you can test the function by typing
the following in the command window:

>> isnan(M1(2,1))
ans =

0
>> jsnan(M1(3,1))
ans =

1

Recall that & is the MATLAB symbol for logical AND. The symbol for logical OR is |.
So you are effectively telling MATLAB in the if statement that you want to execute the
statements it contains only if both vectors contain numbers at that row using isnan in
combination with &.

EXERCISE 2.28

What would have happened if you had and independent index k? Would the
made everything contingent on the index  program have worked?
ii, instead of declaring another specialized

It's time to look at the result. In fact, it seems to have worked: There is a new matrix,
“Movies,” which is 805 entries long. In other words, about half the people in the survey

report to have seen both movies.
After these preliminaries (data import and data pruning), you're ready to move to data

analysis and the presentation of the results. The next step is to calculate the correlation
you were looking for before, so add that to the code:

corrcoef(Movies(:;,1),Movies(:,2)) % Correlation between Matrix I and Matrix II

The correlation is 0.503. That’s not substantial, but not bad, either. The good news is
that it’s positive (if you like one, you tend to like the other) and that it’s moderately large
(definitely not 0). To get a better idea of what the correlation means, use a scatterplot to
visualize it:

figure %Create a new figure
plot(Movies(:,1), Movies(:,2),".!, 'markersize’, 24) %Plot ratings vs. each other
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The result looks something like that shown in Figure 2.14.

The problem is that the space is very coarse. You have only nine steps per dimension—
or 81 cells overall. Since you have 805 ratings it is not surprising that almost every cell is
taken by at least one rating. This plot is clearly not satisfactory. We will improve on it
later. The white space on the top left of the figure is, however, significant. It means that
there was no one in the sample who disliked the first Matrix movie but liked the second
one. The opposite seems to be very common.

Let’s look at this in more detail and add the following line to the code:

averages = mean(Movies) %Take the average of the Movie matrix

mean is a MATLAB function that takes the average of a vector. It is not the opposite of
the “nice” function, which is undefined. The averages variable contains both means.

As it turns out, the average rating for Matrix I is 3.26 (out of 4), while the average rating
for Matrix II is only about 2.28. Figure 2.14 makes sense in light of these data. This can be
further impressively illustrated in a bar graph, as shown in Figure 2.15.

However, this graph doesn’t tell about the variance among the means. Let’s rectify this
in a quick histogram. Now add the following code:

figure %Open new figure
subplot(1,2,1) %Open new subplot
hold on; %Hold the plot
hist(Movies(:,1),9) %Matrix I data. 9 bins is enough, since we only have 9 ratings
histfit(Movies(:,1),9) %Let's fit a gaussian
xlim([0 4]); %Let's make sure that plotting range is fine
title('Matrix I') %Add a title
subplot(1,2,2) %Open new subplot

4 T T T @ T ® @ ® FIGURE 2.14 Low resolution.
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FIGURE 2.15 Means.

hold on; %Hold the plot

hist(Movies(:,2),9) %Matrix II data. 9 bins is enough, since we only have 9 ratings
histfit(Movies(:,2),9) %Let's fit a gaussian

xlim([0 4]); %Let's make sure that plotting range is fine

title('Matrix II: reloaded') %Add a title

As you can see in Figure 2.16, it looks as though almost everyone really liked the first
Matrix movie, but the second one was just okay (with a wide spread of opinion). Plus,
fewer people actually report having seen the second movie.

The last thing to do—for now—is to fix the scatterplot that you obtained in Figure 2.14.
You will do that by using what you learned about surface plots, keeping in mind that you
will have only a very coarse plot (9 X 9 cells).

Matrix | Matrix II: reloaded FIGURE 2.16 Variation.
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Nevertheless, add the following code to the program:

MT1 = (Movies(;,1)*2) + 1; % Assign a temporary matrix, multiplying ratings by 2 to get
MT2 = (Movies(;,2)*2) + 1; %integral steps and adding 1 matrix indices start w/1, not 0.
¢ = zeros(9,9); % Creates a matrix “c” filled with zeros with the indicated dimensions
ii=1; %Initialize index

for ii = 1:length(Movies) %Start ii loop. This loop fills ¢ matrix with movie rating counts
c(10-MT1(ii,1),MT2(ii,1)) = c(10-MT1(ii,1),MT2(ii,1)) + 1; % Adding one in the cell count
end %End loop

figure %New figure

surf(c) %Create a surface

shading interp %Interpolate the shading

xlabel('Ratings for matrix I') %Label for the x-axis

ylabel('Ratings for matrix II: reloaded') %Label for the y-axis

zlabel('Frequency') % Get in the habit of labeling your axes.

The result looks rather appealing—something like that shown in Figure 2.17. It gives
much more information than the simple scatterplot shown previously—namely, how often
a given cell was filled and how often a given combination of ratings was given.

FIGURE 2.17 The real deal.
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EXERCISE 2.29

Import the data for the third Matrix movie, and Matrix III and between Matrix II and
prune it, and include it in the analysis. In par- ~ Matrix III. The plots between Matrix II
ticular, explore the relations between Matrix I ~ and Matrix III are particularly nice.

Can you now predict how much someone will like Matrix 1I, given how much he or
she liked Matrix I? It looks as though you can. But the relationship is much stronger for
Matrix I-1I1.

2.6 AWORD ON FUNCTION HANDLES

Before we conclude, it is worthwhile to mention function handles, as you will likely
need them—either in your own code or when interpreting the code of others.

In this tutorial, we talked a lot about functions. Mostly, we did so in the context of the
arguments they take. Up to this point, the arguments have been numbers—sometimes
individual numbers, sometimes sequences of numbers—but they were always numbers.

However, there are quite a few functions in MATLAB that expect other *functions* as
part of their input arguments. This concept will take a while to get used to if it is unfamil-
iar from your previous programming experience, but once you have used it a couple of
times, the power and flexibility of this hierarchical nestedness will be obvious.

There are several ways to pass a function as an argument to another function. A
straightforward and commonly used approach is to declare a function handle. Let’s
explore this concept in the light of specific examples. Say you would like to evaluate the
sine function at different points. As you saw previously, you could do this by just typing

sin(x)

where x is the value of interest.
For example, type

sin([0 pi/2 pi 3/2*pi 2*pil)

to evaluate the sine function at some significant points of interest.
Predictably, the result is

ans =
0 1.0000 0.0000 —1.0000 —0.0000

Now, you can do this with function handles. To do so, type
h = @sin

You now have a function handle / in your workspace. It represents the sine function.
As you can see in your workspace, it takes memory and should be considered analogous
to other handles that you have already encountered, namely figure handles.
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The function feval evaluates a function at certain values. It expects a function as its first
input and the values to-be-evaluated as the second. For example, typing

feval(h,[0 pi/2 pi 3/2*pi 2*pil)
yields

ans =
0 1.0000 0.0000 —1.0000 —0.0000

Comparing this with the previous result illustrates that passing the function handle
worked as expected.

You might wonder what the big deal is. It is arguably as easy—if not easier—to just
type the values directly into the sin function than to formally declare a function handle.

Of course, you would be right to be skeptical. However—at the very least—you will save
time typing when you use the same function over and over again—given that you use func-
tion handles that are shorter than the function itself. Moreover, you can create more suc-
cinct code, which is always a concern as your programs get longer and more intricate.

More importantly, there are functions that actually do useful stuff with function han-
dles. For example, fplot plots a given function over a specified range. Typing

fplot(h,[0 2*pil)

should give you a result that looks something like that shown in Figure 2.18.

Now let’s consider another function that expects a function as input. The function quad
performs numeric integration of a given function over a certain interval. You need a way
to tell quad which function you want to integrate. This makes quad very powerful

1 T T T T T T FIGURE 2.18 fplot in action.
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because it can integrate any number of functions (as opposed to your writing a whole
library of specific integrated functions).

Now integrate the sine function numerically. Conveniently, you already have the func-
tion handle / in memory. Then type

>> quad(h,0,pi)
ans =

2.0000
>> quad(h,0,2*pi)
ans =

0
>> quad(h,0,pi/2)
ans =

1.0000

After visually inspecting the graph in Figure 2.18 and recalling high school calculus,
you can appreciate that the quad function works on the function handle as intended.

In addition, you can not only tag pre-existing MATLAB functions, but also declare your
own functions and tag them with a function handle, as follows:

>> q=@x) x."5—9.* x4+ 8 .* x"3 — 2.* x."2 + x + 500;

Now you have a rather imposing polynomial all wrapped up and neatly tucked away
in the function handle q. You can do whatever you want with it. For example, you could
plot it as follows:

>> fplot(q,[0 10])

The result is shown in Figure 2.19.

20000 : : : : : : : : : FIGURE 2.19 A polynomial in g,
plotted from 0-10.
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EXERCISE 2.30

Try integrating a value of the polynomial. Does the result make sense?

EXERCISE 2.31

Do everything you just did, but using  Try declaring your own functions and eval-
your own functions and function handles. uating them, e.g. “vice” or “virtue”.

SUGGESTION FOR EXPLORATION

Find another function that takes a  MATLAB help function. See what it
function handle as input by using the does.

Finally, you can save your function handles as a workspace. This way, you can build
your own library of functions for specific purposes.

As usual, there are many ways to do the same thing in MATLAB. As should be clear by
now, function handles are a convenient and robust way to pass functions to other func-
tions that expect functions as an input.

2.7 THE FUNCTION BROWSER

Since release 2008b (7.7), MATLAB contains a function browser. This helps the user to
quickly find—and appropriately use—MATLAB functions. The introduction of this feature
is timely. MATLAB now contains thousands of functions, most of which are rarely used.
Moreover, the number of functions is still growing at a rapid pace, particularly with the
introduction of new toolboxes. Finally, the syntax and usage of any given function may
change in subtle ways from one version to the next.

In other words—and to summarize—even experts can’t be expected to be aware of all
available MATLAB functions as well as their current usage and correct syntax. A crude
but workable solution up to this date has been to constantly keep the MATLAB “Help
Navigator” open at all times. This approach has several tangible drawbacks. First, it takes
up valuable screen real estate. Second, it necessitates switching back and forth between
what are essentially different programs, breaking up the workflow. Finally, the Help
Navigator window requires lots of clicking, copying and pasting and the like. It is not as
well integrated in the MATLAB software as one would otherwise like.
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The new “function browser” is designed to do away with these drawbacks. It is directly
integrated into MATLAB. You can now see this in the form of a little fx that is placed just to
the left of the command prompt, at the far left edge of the command window. Clicking on it
(or pressing Shift and F1 at the same time) opens up the browser. Importantly, the functions
are grouped in hierarchical categories, allowing you to find particular functions even if you
are not aware of their name (such as plotting functions). The hierarchical trees can be rather
deep, first distinguishing between MATLAB and its Toolboxes, then between different func-
tion types (e.g., Mathematics vs. Graphics) and then particular subfields thereof. Of course,
the function browser also allows to search for functions by name. Type something in the
search function field provides a quick list of functions that match the string that was input-
ted in the field. The list of functions also gives a very succinct but appropriate short descrip-
tion of what the function does. Hovering over a given entry with the cursor brings up a
popup window with a more elaborate description of the function and its usage.

Finally, the function browser allows to drag and drop a given function from the
browser into the command window.

Figure 2.20 illustrates the use of the function browser for a function introduced in this
chapter, isnan.

>>

E‘b

Cateqories
£ MATLAB
[ Desktop Tools and Development Environment
£ Mathematics
5 Arrays and Matrices
(£ Basic Information

fx disp
fx display
fx isempty
fx isequal
Jx isequalwithequalnans
Jx isfinite

isnan More Help...

Array elements that are NaN

TF = isnan(A) returns an array the same size as A containing
reating Mahis as equal logical 1 {true) where the elements of & are NaNs and logical 0
nite ( false) where they are not. For a complex number z,
Ji'-\' isfloat loating-point array isnaniz) returns 1if either the real or imaginary part of zis
.’T-’: isinf at are infinite NaN, and 0 if both the real and imaginary parts are finite or Inf.
Jx isinteger Determine whether input is integer array
7% islogical Determine whether input is logical array For any real &, exactly one of the three quantities
J7< isnan Array elements that are Nal isfinite(A), isinf(A), and isnan () is equal to one.
1% isnumeric
fx isscalar
fx issparse
fx isvector
7% length
fx max
F min
Fx ndims Mumber of arr.
7% numel Mumber of
fx size Array dimensions
() Elementary Matrices and Arrays
[ Array Operations
() Array Manipulation
3 Specialized Matrices
(3 Linear Algebra
() Elementary Math
(2 Polynomials
(£ Interpolation and Computational Geometry
All products

f% >> [7 < I

m

5

FIGURE 2.20 The function browser.

I. FUNDAMENTALS



MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER 55

2.8 SUMMARY

This tutorial introduced you to the functionality and power of MATLAB. MATLAB con-
tains a large number of diverse operators and functions, covering virtually all applied
mathematics, with particularly powerful functions in calculus and linear algebra. If you
would like to explore these functions, the MATLAB help function provides an excellent
starting point. You can summon the help with the help command. Of course, you will
encounter many useful functions in the sections to follow. Before we move on, a brief
word on errors. You have probably encountered your fair share of errors at this point. Try
to embrace them. Errors are not mistakes. Errors are just MATLAB’s way of saying that it
did not understand a particular input. It is doing you a favor by pointing out what is
wrong (even if some error messages can be quite cryptic). While this can be a trying expe-
rience, error messages help to improve the code. The same is not the case for mistakes. If
you make a mistake in the program (if there is logical problem), MATLAB won't say any-
thing, but the program won’t be doing what you think it is doing. This is a real problem.
To put this differently: Mistakes are errors that are not caught. Having MATLAB throw
errors is frustrating, but it is better than the alternative. Speaking of frustration. ..

Try not to get too frustrated with MATLAB while learning the program and working
on the exercises. If things get rough and the commands you entered don’t produce the
expected results, know that MATLAB is able to provide much needed humor and a suc-
cinct answer to why that is. Just type in the command why.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED
IN THIS CHAPTER

help load cos
helpwin clear close
helpdesk length title
helpbrowser size set

+ linspace FaceColor
- logspace linewidth
* ! rref

/ ./ loglog

0 ¥ semilogx
A N semilogy
log find stairs

exp == pie
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sin

pi

format

;

eye
ones
zeros
rand
randn
who
whos
save
ylim
ginput
markersize
corrcoef

xlsread

Xor
any
all
plot
bar
hist
figure
hold
isnan
histfit
xlabel
feval

fplot
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sound
function
for

while
end

Yo

if

else
pause
subplot
surf
mesh
meshgrid
shading
colormap
xlim

@

quad
why

doc
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CHAPTER

3

Mathematics and Statistics Tutorial

3.1 INTRODUCTION

Not everyone who intends to start practicing the neurosciences can be expected to do
so with a perfect knowledge of mathematics. As a matter of fact, due to the inherently
interdisciplinary nature of the field, it would be quite surprising if this were the case.
Educational backgrounds are diverse, and not everyone is privileged enough to hail from
a “math-heavy” one as afforded by physics, computer science, or engineering (to be sure,
plenty do, but they tend to be similarly challenged by a lack of prior exposure to biological
concepts). This state of affairs can usually be traced to the quality and style of the typical
high school and college education in mathematics, which tends to be heavy on proofs and
rote memorization of formulae, but falls short on good explanations that could foster con-
ceptual understanding, visualization, and establishing a working knowledge that allows
problem solving. In reality, the only thingk most people actually learn (in terms of long
term retention) from their high school education in mathematics is that the field is deeply
foreign and full of alien and intimidating topics that can trigger deep-seated insecurities.
But people do learn, so most usually stay clear of math-heavy fields after an initial nega-
tive exposure if they can help it, further solidifying the deficiency. Worse than just the
absence of knowledge, many people are actively avoiding math. In our information-based
society, few admissions of ignorance are received with such impunity and, indeed, acclaim
as that of “not getting math.” Math phobia has swept wide parts of the population and is
flaunted as a badge of honor. The biological sciences are not immune from this; citations
of a paper drop 35% for every additional equation per page (Fawcett et al., 2009). Yet a
solid and workable knowledge of some key mathematical concepts is absolutely indispens-
able if one is to follow and partake in contemporary neuroscience research. There is no
question that not overcoming the acquired fear of math will be severely limiting if not
debilitating to the budding researcher, a state of affairs that will only get more severe as
the mathematization of neuroscience progresses relentlessly. Such self-limitation is need-
less, and it is a shame that droves of budding researchers trying to uncover answers to
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questions they care about passionately find themselves in this situation without any fault
of their own.

Thus, the purpose of this tutorial is largely therapeutic in nature. We will focus on
introducing a few key concepts in linear algebra and statistics that are central to neurosci-
ence research. We will do so in the most gentle and affirming way possible. In the process,
the reader will (hopefully) realize how MATLAB® itself can be used to help overcome
math anxiety. One piece of advice upfront: If you know that looking at an equation raises
your blood pressure, there is a straightforward trick to calm the nerves. Simply translate
the equation into a series of MATLAB commands. Every equation ultimately corresponds
to a couple of lines of code. Once you get familiar with MATLAB, even the most intimidat-
ing looking equation will lose its sting.

In addition to this primary goal, we will also set up the mathematical groundwork for
the math that is used in the rest of the chapters, so that there are no bad surprises later on.

If you feel already sufficiently steeled in the art and practice of mathematics, you can
safely skip this tutorial. If you are on the fence, you probably need the reminder (in spite
of the central importance of explanations, math is effectively a motor skill; it benefits tre-
mendously from practice).

We explicitly focus on a gentle introduction here, as it serves our purposes. If you are in
need of a more rigorous or comprehensive treatment, we refer you to Mathematics for
Neuroscientists by Gabbiani and Cox. If you want to see what math education could be like,
centered on great explanations that build intuition, we recommend Math, Better Explained
by Kalid Azad.

3.2 LINEAR ALGEBRA

Linear algebra is as fitting a topic as any with which to start this tutorial. As it so hap-
pens, the central concept of linear algebra, the matrix, is also the principal data structure
underlying MATLAB itself. MATLAB is at its best when it comes to the manipulation of
matrices. Linear algebra is, broadly speaking, the study of matrix manipulations.

But what is a matrix and why is it so central? Didn’t we get in enough trouble when we
started to mix the alphabet into equations back in middle school? What does the concept
buy us? Why is it a suitable representation, and of what exactly?

We will discuss these issues in turn.

3.2.1 Matrices, Vectors, and Arrays

To avoid confusion, we need to clarify some concepts and the terms we use to reference
these concepts. In linear algebra, the term scalar refers to a nondimensional quantity,
whereas values commonly refers to vectors, matrices, or arrays. Informally, the terms
matrix, vector, and array are sometimes used interchangeably, but more formally, an array
is a set of numbers organized by a finite number of fixed sized dimensions. Within
MATLAB, the term array can also denote a data structure, a set of numeric values.
However, in this tutorial, we will use “array” in its mathematical sense.

A matrix is a two-dimensional array of numbers or variables. Matrices are usually
depicted as a rectangular group of numbers, with rows and columns corresponding to the
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two dimensions. If there are more than two dimensions, we would call it a “tensor,” but
let’s not get into that at this point. The sizes of the two dimensions of a matrix are often
written as m X n, where m indicates the number of rows and # indicates the number of col-
umns. Here is an example of a 2 X 3 matrix, A:

_ (2 4 8
A= (1 7 3)
In MATLAB, we use square brackets for defining a matrix. The following MATLAB
code defines a matrix A with the above values. The matrix name is usually capitalized.

>> A=[2 4 §1 7 3]
A =

2 4 8

17 3

The entire content of the matrix is contained by the square brackets, and a semicolon is
used to separate the rows.

In contrast to a matrix, a vector is a one-dimensional array of numbers or variables. An
individual row or column of a matrix can be identified as a row vector or a column vector.
Here is an example row vector B from matrix A, above:

B=(2 4 8)
Just like matrices, vectors are also entered into MATLAB with square brackets.
B=1[2 4 8]

Note that no semicolons appeared within the square brackets for the definition of B.
This was because B has only a single row.

You can refer to a particular element in a matrix by its row and column placement. So,
for the matrix A, the element in the first row and third column is the number 8. These two
values identifying an element within the matrix are called indices. Likewise, an element of
a vector can be identified with a single index.

In MATLAB, indices can be specified using parentheses to select elements from matri-
ces or vectors. For example,

A(1,3)
A vector would need only one index.
B(2)

Some matrices are special and can be categorized further. We will refer to these defini-
tions in the following sections.

Square matrices are those matrices where both dimensions are equal. Square matrices in
which only the values along the main diagonal are non-zero are called diagonal matrices.
Here is an example:

3 00
cC=10 7 0
0 01
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Finally, diagonal matrices where all the non-zero values are 1 are termed identity matri-
ces. The capital letter I is usually reserved in linear algebra for representing identity matri-
ces. Here is an example of a 4 X 4 identity matrix:

00

oo o
S O
— O O O

0
1
0

Often in linear algebra, an identity matrix is referred to as “the identity matrix,” with
dimension inferred from context, and subsequent sections will adhere to this convention.
MATLAB has a special function for creating an identity matrix of any desired size: eye(n),
where # is the dimension desired.

>> eye(3)

ans =
100
010
0 01

There is a reason MATLAB has its own function for the identity matrix. It plays a cen-
tral role in linear algebra, as will become clear in the rest of this tutorial.

3.2.2 Transposition

One common operation on matrices is transposition. Transposition flips rows and col-
umns; each row of the original matrix becomes the corresponding column of the new
matrix. In mathematical notation, transposition is usually indicated with the superscript ¢.
Here is how we would write the transposition of the matrix A defined in the previous
section.

1 2
Al=[7 4
3 8

You carry out this operation in MATLAB by using the punctuation ' after the matrix
name: In this case, A'.

>> A’

ans =
1 2
7 4
3 8

These preliminaries might seem excessive, but a precise nomenclature of operations
matters a lot in linear algebra. It will soon become obvious why.
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3.2.3 Addition

Addition is an operation that is defined for two matrices or two vectors of the same
dimensionality. Adding matrices algebraically is adding corresponding components to
form a new matrix. Thus, each of the two matrices or two vectors being added must con-
tain only elements that correspond with those in the other. Because addition is defined
only for cases where the two values being added have the same dimensionality, cases
where the dimensionality differ, such as adding A from the previous section with its trans-
pose, would be termed undefined or meaningless. But you don’t actually have to worry
about this. MATLAB will literally not let you add matrices with differing dimensionalities;
it will complain that there has been an error and that “Matrix dimensions must agree,” all
red and bothered (unless you changed the color preferences).

Here is an example of matrix addition. We define the matrix F as

F_ (10 20 30
5 10 15

_(2 4 8\, (10 20 30\ _ (12 24 38
A+F‘<1 7 3)+<5 10 15>_<6 17 18)

EXERCISE 3.1

Add A+ A in MATLAB.
Add A + F in MATLAB.
Add F + F in MATLAB.

3.2.4 Scalar Multiplication

If this is starting to look to you like we are retracing our steps from elementary school,
you would be right. All operations you learned in first grade for actual numbers have their
corresponding operation for arrays in linear algebra (except for transpose; that wouldn’t
make any sense for scalars, as each scalar is its own transpose, so we mercifully skipped
that in elementary school; now you know). Note that if you add A to itself, as in Exercise
3.1, the resulting matrix has values double to those of the corresponding values in A. This
suggests a simple definition for the scalar multiplication of a matrix. Indeed, when a
matrix is multiplied by a scalar value, each element of the matrix is simply multiplied by

that number.
5A-5 2 4 8\_(5-2 54 5-8\_(10 20 40
17 3 5.1 5.7 5-3 5 35 15
In MATLAB, a scalar multiplication is performed with an asterisk, if one of the multipli-
cants is a scalar number.
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>> 5*A
ans =
10 20 40
5 35 15

EXERCISE 3.2

Evaluate 7F in MATLAB, using the matrices A and F defined in the previous section.
Evaluate 2A + 3F in MATLAB.

3.2.5 Matrix Multiplication

So far, so simple. But this is the precise point where things get hairy and the majority of
students get lost with linear algebra. This is because matrix multiplication is the first point
where the analogy to elementary school math starts to break down. As you already learned
elementary school math, this highly practiced cognitive template will start to interfere with
learning this crucial step. We urge you to pay extreme attention to matrix multiplication and
practice it as much as you can to override your strong cognitive priors. As most of linear
algebra crucially hinges on matrix multiplication, this dire warning is not overstated. This is
the point where you most likely will get lost, if you get lost. So proceed with the utmost care.

Multiplication can also be defined for two matrices or for two vectors. When you multi-
ply two matrices together, AB, each element of the resulting matrix, C, is the sum of the
corresponding row elements of A times the corresponding column elements of B. In other
words, all elements of C may be obtained by using the following simple but perhaps coun-
terintuitive rule (we are not big fans of rote memorization, but it pays to memorize this
one by heart; otherwise, it will haunt you forever):

The element in row i and column j of the product matrix AB is equal to the row i of A
times the column j of B, added.

Here is an example with two square matrices C and D.
D= 1 2\/5 6\ [/1.-5+2.7 1-6+2-8
3 4)\7 8 3-5+4-7 3-6+4-8
19 22
CD=
43 50
This definition constrains the dimensionality of the two matrices or vectors in a matrix
multiplication. For two matrices A and B, the number of columns in A must match the
number of rows in B for the product AB to be defined. Also, the dimensions of the product
are m X n, where m is the number of rows in A and n is the number of columns in B.

If you try to multiply “incompatible” matrices (in terms of dimensionality), MATLAB
won't let you do it and will inform you of this fact.
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Matrix multiplication can occur between a vector and a matrix, provided that both meet
the dimensionality constraints.

e (2 4 8> >\ (2.5+4.6+8.3> _ (58)
17 3 3 1.5+76+33 56

Observe that AB is not the same as BA, throwing off elementary school intuitions.
Unlike scalar multiplication, matrix multiplication is not commutative; in general, matrices
do not commute under multiplication. In the mathematical sense, commuting has nothing
to do with traveling to your place of business. It simply means, as stated above, that AB is
not the same as BA. It is extremely important to keep this property in mind when manipu-
lating non-scalar values in algebraic equations.

In MATLAB, matrix multiplication also uses the asterisk like scalar multiplication, but
both multiplicants are now non-scalars:

>> B = [1;6;3];
>> A*B
ans =

58

56

EXERCISE 3.3

Verify the matrix product CD above in MATLAB.

Much like in non-matrix multiplication where every number N has a reciprocal such
that N- & =1, matrix multiplication defines the concept of an inverse. However, unlike
with scalar multiplication, only some matrices have inverses. We were not kidding when
we mentioned that matrix multiplication is where the vanilla world of elementary school
scalar multiplication is shattered.

The inverse of a matrix D, D™}, is the matrix that, when multiplied with the original
matrix, equals the identity matrix:

DD '=1]

Note that this definition requires that the matrix D be square. This falls out from
the constraints of matrix multiplication and the definition of the identity matrix as a
square matrix.

So, for example, if we define D as

then its inverse D! is
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pi_ (7 3
5 -2

EXERCISE 3.4

Use MATLAB to demonstrate in an example that the matrix product DD is indeed the
identity matrix.

For your convenience, MATLAB provides a function inv(A), which calculates the
inverse of a matrix.

>> inv(D)
ans =

-7 3

5 -2

As mentioned above, only square matrices have a defined inverse. Even among square
matrices, not all have inverses. The MATLAB function inv() returns Inf in such cases. For
instance, the matrix X below looks completely innocent, but alas, it does not have an inverse.

>>X=[2 313 1/2]

X =
2 3
0.3333 0.5
>> inv(X)
Warning: Matrix is singular to working precision.
ans =
Inf Inf
Inf Inf

As MATLAB’s warning implies, such square matrices without inverses are termed sin-
gular. We will discuss criteria for assessing when a matrix has a defined inverse when we
discuss determinants, in Section 3.2.6.

3.2.6 Geometrical Interpretation of Matrix Multiplication

In addition to linear algebra, there is also a corresponding geometrical interpretation of
matrix-vector multiplication that can be extremely useful. First, see what happens when a
vector is multiplied by a scalar. Suppose that

()

You can plot the vector B on the Cartesian plane if you assume that the x-component of
the vector is the element in the first row and the y-component of the vector is the element
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in the second row. In such cases, we can define unit vectors x = <(1)> and 7= <(1)>

Therefore, the vector B can be written in terms of simple and elementary unit-length com-

ponent vectors as B=3x + 47 =3 < é) +4 < 0 ) . This can be readily seen by substituting the

1

definitions for x and y into the equation for B:

4.5}

35+

25}

15}

05}

() ()
s=(2)+ (1)
()

This decomposition in terms can be demonstrated in MATLAB as well.
>> x = [1;0];

>> vy =1[0;1];
>> 3*x + 4%y
ans =

3

4

>> B = 3*x + 4%y
B =
3

=~

This results in the graph shown in Figure 3.1.

FIGURE 3.1 This figure shows the vector B plot-
ted in the x,y coordinate space.

0 05 1 156 2 25 3 35 4 45 5
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Next, you can multiply the vector B by a scalar, 2, to get:

>> 2*B
ans =

6

8

If you plot this new vector alongside B, then you get the graph shown in Figure 3.2.
Notice that multiplying a vector by a scalar changes only its length. It does not
change the direction of the vector. Now see what happens when a vector is multiplied by

a matrix.
|11
a=[4 1)

EXERCISE 3.5

What is the product A times B? Use MATLAB to calculate this product. Is it the same as
B times A?

Since the matrix A is square, the product of A and B has the same dimensions as the
vector B (in this case, both are 2 X 1). Therefore, you can plot the vectors A * B and B on
the same graph to obtain the result shown in Figure 3.3.

Here, you can see that multiplication of vector B by the matrix A has resulted in rotating B
counterclockwise and stretching it out. Now, try another example, where A is the same, but:

()

10 ' ' ' ' T T T T T FIGURE 3.2 This graph shows the result of multi-
9l plying the vector B by a scalar (the value 2).
8r 4
7t i
6 ]
5r 4
4t ]
3t ]
2t ]

11 ]
0 . . . . . . . . .
0 1 2 3 4 5 6 7 8 9 10
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16 " " " " " " FIGURE 3.3 Multiplying the vector B (blue) by the
14 matrix produces the rotated and rescaled vector in red.
121

10

o N~ O

6 FIGURE 3.4 Multiplying the matrix A by the vector
B=(1 2) (in blue) produces a vector with the same

51 direction but different magnitude (in red).

41

31t

2L

11

0 L

0 0.5 1 15 2 25 3

EXERCISE 3.6

What is the product A times B? Plot the  direction of the product, relative to the
product in MATLAB and B on the same  vector B? Can you express the product in
graph. What do you notice about the terms of B alone?

If you plot B and AB on the same graph, then you get the result shown in Figure 3.4.

In this case, multiplication of the vector B by the matrix A is equivalent to multiplica-
tion of B by a scalar—in this case 3. It turns out that this scenario is a general one. For
many square matrices A, there exist corresponding vectors B such that

I. FUNDAMENTALS



68 3. MATHEMATICS AND STATISTICS TUTORIAL
AB=)\B

where ) is a scalar constant. (So, in the previous example, A = 3.)

Geometrically, this means that for a given matrix A, there is a vector B that does not
rotate when multiplied by A. The scalar A is called an eigenvalue of the matrix A. The
invariant vector B is called an eigenvector of the matrix A, and each eigenvector B is associ-
ated with a particular eigenvalue .

While we mentioned this concept in passing, it pays to do a full stop and truly appreci-
ate the concept. It is even more fundamental to linear algebra than matrix multiplication
itself. There are quite a few people who spend their days calculating eigenvalues of sys-
tems (represented by matrices). Even worse, there are plenty of intellectual posers who fail
this basic academic shibboleth; they tellingly refer to them as “Igon values” instead
(Gladwell, 2009). You don’t want to be that guy. Seriously, throwing buzzwords around is
all fun and games, but we want you to actually understand them. Only if you understand
these concepts can you meaningfully work with them, and we assure you that you will be
dealing with eigenvalues and eigenvectors as long as you do linear algebra. And you will
probably be doing linear algebra as long as you are doing science. As for how long you
want to do science, that’s up to you.

Back to eigenvectors, there is actually a relatively simple visual interpretation. Imagine
rotating a globe around its axis (or imagine the actual planet earth spinning around its
axis on a daily basis). The values on this axis are rotation invariant: They do not change
when the system is rotated. You can imagine that these are special values and it is impor-
tant to know them, as they characterize in a way what the system as a whole (the spinning
earth) is doing. If the system was doing something else, the values would be different.

We do believe that in addition to this visual you get the best appreciation for eigenvec-
tors and eigenvalues not by reading or writing about them, but by working with them,
which is exactly what we will do in the next few sections, where we will discuss how to
determine eigenvectors/eigenvalue pairs for square matrices and their applications.
However, before we can cover eigenvectors and eigenvalues, we need to discuss the deter-
minants of matrices.

3.2.7 The Determinant

As discussed earlier, only some square matrices actually have defined inverses. The
determinant is a value (defined only for square matrices) that aids in determining whether
a matrix has a defined inverse or not. In addition, the determinant aids in identifying
whether a matrix has eigenvectors as well.

The definition of the determinant for larger matrices is complex, and, for completeness,
we refer the reader to a suitable reference. For 2 X 2 matrices, however, the determinant is
a relatively simple expression. Defining the matrix A as

(1}

the determinant is defined as ad — bc, multiplying then subtracting the values on the two
diagonals of the matrix. The determinant is written in linear algebra as det() around a
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matrix or as vertical bars. The following equation shows the two notations and the value
of the determinant for 2 X 2 square matrices.

a b\ _|a b
det(c d>_cd

MATLAB provides a function det() that calculates the determinant of a matrix for you.

’=ad—bc

EXERCISE 3.7

Use MATLAB to calculate the determinant of the matrix D = (é ;)

Now you know how to calculate it. But why would you want to? The value of the deter-
minant can be used to determine (hence the name: It actually determines a range of other
matrix properties as well) whether a square matrix has a defined inverse. A square matrix
has a defined inverse if and only if the determinant of that matrix is nonzero (As we saw
earlier that such matrices with zero valued determinants and no inverse are called singular.)
This can be seen by attempting to determine the value of a matrix inverse analytically.

Let the matrices A and A™' be defined as

() oG

For A™' to be the inverse of A, AA™" must equal the identity matrix. This generates a
set of equations in the elements of both matrices:

ae+bg=1
fa+bh=0
ce+gd=0
fe+hd=1

Ideally, we would want to represent the elements of A~ 1Vin terms of a,b,c,d; the elements
of A. Starting with ce + gd =0, the value of e is

cetgd=0

ce=—gd

4
Cg

Substituting this value for e into the equation ae + bg =1 results in an equation using
only one term from A™', ¢

ae+bg=1

d
u(—cg> +bg=1
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ad
Lad e\
c c 8=
bc —ad
(s

_
3 bc —ad

This yields an expression for the element g of A" solely in terms of elements of the
original matrix A, and this process can be repeated for the other three elements of A~
However, in rearranging terms, the equation was divided by the term bc —ad, implying
that this term must not be zero (as no one can divide by zero). You may recognize this
term as the negative of the 2 X 2 determinant defined above, bc —ad. Thus, if the determi-
nant is zero, the system of equations identified by the inverse has no solution. QED.

3.2.8 Eigenvalues and Eigenvectors

Recall that finding the eigenvalues and corresponding eigenvectors of a square matrix
A is equivalent to solving for scalar A and vector B such that

AB=)B

One valid but obviously degenerate solution to this equation is the zero vector,

- (2).

regardless of the matrix A, as long as A is a 2 X 2 matrix. The zero-vector solution is called
the trivial solution and will not be of interest here (it is rather of interest to philosophical
discussions of mathematical conceptualizations of death). Thus, to limit solutions to the
non-trivial solutions, we will require that any solutions for B not be zero vectors.

The eigenvector equation is AB = AIB, where [ is the identity matrix. This can be rear-
ranged as:

AB = \IB
AB—AB=0
(A—AD)B=0

If the matrix (A — Al) has an inverse, then multiplying through this equation by the
inverse gives:

(A=X)"Y A= ADB=0
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Because a matrix multiplied by its inverse is the identity, this would imply that

(A—X)"' (A= A)B=0

IB=0

IB=0
which is exactly the trivial solution that you do NOT want, which means that (A — Al)
must not have an inverse if nontrivial solutions for B exist. Recall from the previous sec-
tion that a matrix has no inverse if its determinant equals zero. So, for (A — AI), nontrivial
solutions for B exist only if det(A — M) =0. QED, yet again. This equation is called the
characteristic equation of the matrix A. It is the only equation you need to calculate the
eigenvalues and eigenvectors of a matrix.

Through the characteristic equation, we can solve for the eigenvalues of A, ), and then

we can use the values of A to determine the corresponding eigenvectors of A.
We use this now in an example calculation of eigenvectors and eigenvalues for the matrix

11
A=

41

11 10
A=\ = -2

41 0 1

1-A 1
A==

4 1-2

1-Xx 1
1-2

det(A — \I) = =0

(1-)*—4=0

You can solve the quadratic equation for A to get A ={ —1,3}. These are the eigenvalues
of the matrix A! You can solve for the corresponding eigenvectors as follows. For A =3,
the equation becomes

AB=3B

Substitute A into the preceding equation and let:

]/

G D)E)=0)-G 7 9)-()
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Solving the system of equations gives y = 2x. Thus, any B such that

= (5)

is an eigenvector of the matrix A corresponding to the eigenvalue A =3. Note that this
demonstrates that any vector with the same orientation will be invariant to changes in ori-
entation imposed by multiplication by A (recall the spinning globe).

EXERCISE 3.8

Find the eigenvector of A corresponding to the other eigenvalue, A= — 1.

In MATLAB, the command [V,D] = eig(A) will return two matrices: D and V. The ele-
ments of the diagonal matrix D are the eigenvalues of the square matrix A. The columns
of the matrix V are the corresponding eigenvectors.

EXERCISE 3.9

Use the MATLAB function eig() to calcu-  returned by eig(B). Demonstrate that this is
late the eigenvalues and eigenvectors of  the case for the matrix A defined earlier. This
matrix A. Provided that eigenvectors and relationship will be explored in depth in the
eigenvalues exist for some matrix B, the rela-  next section.
tionship BV =VD holds for the matrices

3.2.9 Applications of Eigenvectors: Eigendecomposition

Here we will describe a powerful theorem called the eigendecomposition theorem. This
theorem states:

For any n X n matrix A with distinct eigenvalues you can write:

A=VDV™!

where V is the square matrix whose columns are the eigenvectors of A, and D is the square diagonal
matrix formed by placing the eigenvalues of A along the primary diagonal of D.

Powerful stuff indeed. Note that the matrices V and D are exactly those matrices
returned by the MATLAB function eig()!
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This theorem allows any matrix A with distinct eigenvalues to be decomposed into a
diagonal matrix. This decomposition is especially useful in cases where a matrix needs to
be raised to a power:

AN =DV HN
AN =DV YWDV ) VDVY..(VDV )
AN =vDVv'vDV 'vDV ... VDV!

Note here that each pair VV ™' between diagonal matrices D is equivalent to the identity
matrix and thus drops out of the equation.

AN =vDDD.. DV!
AN =ypNy~1

Only the diagonal matrix D is raised to the power N. Recall that a diagonal matrix
raised to a power N is exceptionally easily calculated (raise each element of the diagonal
to the power N). Thus, raising a matrix with distinct eigenvalues to a large power becomes
a far simpler calculation.

EXERCISE 3.10

Use the eigendecomposition theorem to  the previous section. Verify that this is equal
calculate A*, where A is the matrix defined in  to A* by calculating the value in MATLAB.

3.2.10 Applications of Eigenvectors: PCA

The eigendecomposition theorem can be used in many remarkable ways. In this section,
we will explore one application, principal component analysis (which we will revisit with
practical examples in Chapter 17 of this book). Principal component analysis provides a
means of identifying the independent axes responsible for major sources of variability in a
multivariate sample. Once these axes are identified, the axes can be used for classification
and simplification of the data. For instance, if two dimensions capture all the variability
inherent in 200 dimensions, the data can be simplified to the “loading” of the data on
those two dimensions. This will become clearer later on.

Let X be a set of data represented as an m X n matrix X, where m is the number of data
points and n is the number of dimensions in the data set. For this data, we can calculate
an n X n covariance matrix Y. According to the eigendecomposition theorem, we can rep-
resent ¥ as ¥ = VDV ~!. Under this reformulation, the eigenvectors form a new set of axes
that indicate independent directions of variance. One can see this by a rearrangement of
the equation:

Y =vDVv!
YV =vVDV'lv
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YV =VD
Vv =v"lvD
VXV =D

Thus, through the rotation and scaling of the eigenvector matrix, the original covariance
matrix can be transformed into a diagonal covariance matrix, eliminating covariance
altogether.

Equally significantly, if the eigenvectors are normalized, then the eigenvalues indicate
the relative contribution of each of the eigenvectors to the covariance matrix. For large
datasets, the relative weights provided by the eigenvalues can be used to reduce the
dimensions of the data.

We will use an example.

Load the data file data.mat.

You'll notice that the included matrix is a 50 X 3 matrix of data, corresponding to 50
samples of a three-valued vector quantity. Because this data has more than two dimen-
sions, visualizing this data is fairly difficult. We will use PCA to remap the data to new
axes that better represent the variance of the data.

First, we can use the MATLAB cov() function to generate the covariance matrix:

>> cov(M)

C =
0.8874 1.772 0.054
1.772 3.544 0.114
0.0542 0.114 0.676

Next, we will calculate the eigenvectors of C:

>> [V, D] = eig(C);

>>D
D =
4.435 0 0
0 1.601e—03 0
0 0 6.720e — 01

The value of D shows the three eigenvalues. Note that one of the eigenvalues is far
smaller than the other two (1.601e — 03). This indicates that the corresponding eigenvector
(column 2 of V) only weakly contributes to the covariance matrix. As a demonstration of
this, we will apply the eigenvector matrix V to the original data and examine the data:

>> V_inv = inv(V);
>> m_rot = V_inv * m;
>> var(m_rot(:, 1))
ans =

4.346
>> var(m_rot(:, 2))
ans =

0.00157
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>> var(m_rot(:, 3))
ans =
0.659

Note that these variances of the modified data set match the eigenvalues of the original
covariance matrix. Just as important, the variance corresponding to the second axis is sub-
stantially smaller than the other two. Because of this discrepancy, we can omit this axis in
the rotated data set while still preserving the variance of the original data.

3.3 PROBABILITY AND STATISTICS

3.3.1 Introduction

The intent of this section is a brief, rapid introduction to probability and statistics and
their use in MATLAB. This primer cannot hope to replace a good elementary statistics
sequence. That said, those readers with a less extensive background in statistics may find
this section useful. This primer expects a basic understanding of calculus and a passing
familiarity with MATLAB, such as what might be expected by having gone through the
introductory chapters of this very book.

3.3.2 Random Variables

Much of probability is built upon the concept of a random variable. A random variable
is a variable that can take any one of a number of defined values and whose actual value
is determined solely by chance. As a simple example, we will define a random variable X
to represent the outcome of a flip of a coin, where the value 1 denotes an outcome of
“heads” and a value of 0 signifies the outcome “tails.” With a fair coin, the probability of
heads or tails is equal.

Usually, we will represent the probability of an outcome as a rational number, often a frac-
tion. As a fraction, the numerator represents the number of outcomes that yield the event,
and the denominator represents the total number of outcomes in the system. So, in the case of
random variable X, the probability of a tails event is 1/2. There are two possible outcomes,
and the event of getting “tails” is the result of only one. Similarly, the probability of a heads
event is also 1/2. Together, the probability of a heads event or a tails event occurring is 2/2 or
1. This should make sense, as flipping an idealized coin should yield one or the other.

This property of probabilities, summing to one, is a general one, and in a formal treat-
ment of probability is usually defined axiomatically. This usually includes three axioms:

1. Probability is always nonnegative.

2. The probabilities of all possible events sum to one.

3. The probability of any of multiple mutually exclusive (nonoverlapping) events is the
sum of the individual event probabilities.

These three are also known as the “Kolmogorov axioms” and form the traditional axi-
omatic foundation of probability theory.
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EXERCISE 3.11

Let Y be a random variable Y whose 5? What is the probability of an even num-
result is the roll of a six-sided die. What are  ber? What is the probability of rolling a
the outcomes? What is the probability of a  number from 1 to 6?

We can generalize the coin flip example by allowing the probabilities of the two out-
comes to differ from 1/2. Under such a generalization, a random variable having two pos-
sible outcomes is called a Bernoulli random variable. Unlike the case of X, where we
modeled a coin flip, a Bernoulli random variable does not necessarily have equal probabil-
ities for the two outcomes. The probabilities for both must, however, sum to one.

Given a Bernoulli random variable Y, with probability p of outcome 1 and probability
(1 —p) of outcome 0, we denote the probability of an outcome 1 of Y as Pr(Y =1). Here,
Pr(Y =1) would be equal to p. We can define a function f(y) = Pr(Y = y) such that the value
of f(y) is the probability of value y of random value Y. In other words,

p, 1
fp=q d=p) 0
0, y¢1{1,0}

This function is termed the probability mass function (PMF) of random variable Y. It liter-
ally outlines where the mass of the probability of the variable lies.

Thus far, our example has focused on a single Bernoulli variable representing a single
binary outcome. As a more complex example, we can flip a coin multiple times and count
the number of heads. This can be represented as a sum of Bernoulli random variables. We
can also define a new type of random variable, a binomial random variable, to represent
this scenario.

Formally, given a series of n Bernoulli random variables X, Xj ... X, all with equal prob-
ability p of outcome 1 (Pr(Xp =1) =Pr(X; =1)= ... Pr(X, = 1) = p), a binomial random vari-
able Y represents the total number of positive (i.e., 1 valued) outcomes. We say here that n
represents the number of frials. Since each trial must have either a positive or negative (i.e.,
zero-valued) outcome, the total number of positive and negative outcomes must equal the
number of trials, and the number of negative (i.e., zero-valued) outcomes is n — Y.

Much like with Bernoulli random variables, we can define a probability mass function.
However, because a binomial random variable has more outcomes, this case is more com-
plex. Take a series of three coin tosses and a random variable Y representing the total
number of heads the series of flips (see Table 3.1).

There are now eight possible outcomes. This can be calculated quickly from 2° = 8. (Each
flip occurs independently of the others and doubles the number of outcomes in the series.
Thus, with 3 flips in the series, the total number of outcomes is 2 X2 X2 =8.) Of these 8§,
only one outcome involves 0 or 3 heads. 1 or 2 heads both involve 3 outcomes. With this
information and from this table, we can construct a probability mass function for Y.
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TABLE 3.1 This table shows the possible outcomes in a three coin flip
experiment and the total number of heads in each outcome.

Flips Number of Heads
TTT 0
TTH 1
THT 1
THH 2
HTT 1
HTH 2
HHT 2
HHH 3
1/8, y=0
3/8 =1
=138 v
1/8, y=3

Values below 0 or above 3 were omitted as they are necessarily 0 (these already sum up

to 1). In general, the probability mass function for a binomial random variable can be cal-
culated from the formula

flhkn, p) = (Z )pka -y

Here, n is the number of trials, p is the probability of a positive outcome on any one

trial, and k is the number of successes or nonzero-valued results. The notation ( might

k

look scary due to its unfamiliarity, but it is simply the number of combinations, also called

the binomial coefficient, and it can be calculated from (Z) = k,(n”—lk), The MATLAB func-

tion C = nchoosek(n, k) will calculate the number of combinations automatically for you:
>> C = nchoosek(3, 1)

C =
3

EXERCISE 3.12

Use MATLAB and the formula above to  coin toss example. Verify these values by
find a probability mass function for a four = enumerating the possible outcomes.

I. FUNDAMENTALS



78 3. MATHEMATICS AND STATISTICS TUTORIAL

For more complex distributions, a bar graph provides an excellent tool for visualizing a prob-
ability mass function. Figure 3.5 depicts the probability mass function for the probability of the
total number of heads for eight coin flips. With the probabilities in the vector p, the command

>> bar(0:8, p)

produced the plot shown in Figure 3.5. (The expression 0:8 generated the markers for each
bar at the bottom of the plot, denoting the number of successes.)

As n increases, you may notice that the probability mass function acquires a bulging
shape, where success counts near the middle of the possible range have much higher prob-
abilities relative to the probabilities of all heads or all tails. Descriptive statistics provides a
number of standard terms that we can use to characterize the distribution.

We can describe the central tendency of the distribution. We will discuss three common
ways of describing the central tendency of a distribution. The first is the mode. The mode is
defined as the most probable outcome in the distribution. From a bar graph depicting a
probability mass function, the mode is the outcome with the highest probability. The second
central tendency is the median. The median is defined as the outcome corresponding to the
point where the probability masses above or below the outcome are equal. This can also be
stated as the outcome for which the cumulative probability is equal to or exceeds 0.5.

The final central tendency that we will discuss is the mean. Occasionally, the term
expected value is also used to indicate the mean expected value. This term suggests an inter-
pretation for the mean, given a binomial random variable Y drawn from a known distribu-
tion, what value should you expect? We can define the expected value of a function f(x)
relative to a distribution for a random variable X as

Ex[f(0] = Y Pr(X =x)f(x)
xeX
or, the expected value of a function f(x) is the value of the function at x multiplied by the
probability of x, summed over all values x for the random variable X. The mean is defined
as the expected value of the function f(x) = x. So, the mean of the three coin toss example
discussed previously is

0.35 w T T T T T T T T FIGURE 3.5 Bar graph
0.3f
0.25¢
0.2t
0.15¢
0.1

0.05¢
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Ex[x]= > xPr(X=2x)

xeX
Ex[x]=0-1/8+1-1/8+1-3/8+2-3/8+3-1/8
Ex[x]=3/2

Clearly, the mean is not a valid number of successes (we cannot have a fraction of a coin
flip). The mean is not guaranteed to be a valid count for the variable in question.
Nonetheless, the empirical average of many trials or random variables will grow ever closer
to the true mean of distribution, assuming that all trials originate from the same underlying
distribution and are statistically independent. This property, that the empirical average
over many trials will approach the expected value, is called the Central Limit Theorem.

We can easily demonstrate that the mean for any Bernoulli random variable with proba-
bility p of outcome 1 is p:

Ex[x]= > xPr(X=1x)

xeX
Ex[x]=(1), + (01 —p)=p

As mentioned earlier, the mean provides a measure of the central tendency. What the mean
doesn’t provide is a measure of the dispersion of the data. One group of data may be widely
dispersed, and another may be tightly clustered, but both may have very similar means.

Unfortunately, we cannot simply use the sum of the differences between the random
variable and the mean as a measure of dispersion, as the positive and negative deflections
around the mean tend to cancel each other out, tending toward an expected value of zero:

Ex[(x=9)] = )_(x —DPr(X =1x)

Ex[(x —x)] = g(xPr(X =x) = xPr(X = x))
Ex[(x —%)] = f WPr(X =x)— > XPr(X =x)
Ex[(x — %) = x—X D xPr(X = x;EX

Ex[(x —®)]=%— xi Pr(X = x)

xeX
Ex[(x —%)]=%—-%1)=0

Instead, we can calculate the expected value of square of this difference (as they don’t can-
cel out), called the variance:

Var(x) = Ex[(x—%)°] = Y (x—%’Pr(X = x)

xeX
Var(x)= > (x> = 2x% + ¥)Pr(X = x)
xeX
Var(x) = Z ¥*Pr(X =x) — Z 2xxXPr(X = x) + Z ¥Pr(X = x)
xeX xeX xeX
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Var(x) = Z ¥?Pr(X =x) — 2% Z xPr(X = x) + x° Z Pr(X =x)

xeX xeX xeX
Var(x)= > ¥*Pr(X = x) — 2x(x) + ¥(1)
xeX

Var(x) = Ex[x*] — ¥*

Thus, the variance is the difference between the expected value of the random variable
squared and the square of the mean. Unlike the expectation of the difference between the
random variable and the mean, the variance is rarely zero. Because the variance is in units
equivalent to the square of the random variable, we will often use the standard deviation
instead, which is defined as the square root of the variance. The Greek letter sigma is often
used to represent standard deviation:

ox =/ Var(x)

By definition, sigma squared represents the variance of the random variable.

3.3.2.1 Sample Estimates of Population Parameters

Often when dealing with real data the actual distribution of values will not be known.
After collecting a set of data, one can look at the empirical distribution of the collected data. Is
that distribution necessarily an instantiation of the exact distribution of the population from
which the data was collected? Since each data point is a random variable in a sample that is
often considerably smaller than the population it was drawn from, the empirical distribution
of data will never match exactly, but (for most distributions) increasing numbers of samples
will allow a better approximation of the distribution of the (usually much larger) population.

When we discuss sample estimates of a distribution, we use a slightly different notation
from the notation we are used to for the actual distribution itself. The sample mean of a
set of random variables is denoted as ¥ rather than x. This mean of the sample forms an
estimate of the mean of the actual distribution and is calculated from a sample by

1
xX= Nzn:xn

or the sum of the values divided by the number of values. The estimate of the standard
deviation is written as s instead of o and is calculated as

The estimated variance is the square of this quantity, and is written as s°. You may note
the factor of N — 1 rather than N as with the mean. This results from the use of the empiri-
cally calculated mean in the estimate for the standard deviation. Because of this factor, this
value is often called the unbiased estimate of the standard deviation, as one degree of free-
dom is lost. Note that in practice you will almost always deal with sample estimates of
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these parameters, as you have access to a sample of data (sampled from the population at
large, but not equal to that population).

MATLAB provides the functions mean(), var(), and std() to estimate the mean, variance,
and standard deviation of a sample.

>>x=[2 3 5 9 5 6 7]
>> mean(x)
ans =
5.2857
>> var(x)
ans =
5.5714

EXERCISE 3.12

The MATLAB function normrnd(mu, exercise, generate a good number of random
sigma) generates random values that vary  values with normrnd(30, 10), and calculate
according to a normal distribution with  empirical estimates of the mean and standard
mean mu and standard deviation sigma. We  deviation. How do they compare to the
will discuss the properties of the normal dis-  known values (mean = 30, sigma = 10)?
tribution later on. For the purposes of this

3.3.2.2 Joint and Conditional Probabilities

At this point, we've explored single variable distributions fairly extensively. While
many phenomena can be modeled quite effectively with just a single independent vari-
able, this is not always the case.

Take for example the following scenario: Instead of one, you are now rolling two ordi-
nary six-sided dice on each trial. The total can be modeled as a single independent vari-
able, but it may be simpler in certain cases to treat the dice as two separate random
variables X and Y. Both variables would be from the same uniform discrete distribution,
so we say these are identically distributed.

With two random variables, we can discuss the probabilities of outcomes across both of
them at the same time. For example, P(x<2, y<3) is the probability that the result of the
first die is less than 2 and the result of the second is less than 3. This can be computed by
enumerating all the possibilities and determining the fraction that complies. In this case,
the outcomes are (1, 1) and (1, 2), so there are two possible outcomes that meet the criteria.
There are 36 possible outcomes, so the probability is 2/36. This probability over multiple
variables is called the joint probability over X and Y.

You may have noticed a relationship between the probabilities of each individual case
and the overall probability. In the context of multiple random variables, probabilities of
individual random variables are termed marginal, for historical reasons (there is nothing
inherently marginal about it; they were computed—manually—by writing probability
sums in the margins of a probability table). Thus, the probability P(x<2) in this context is

I. FUNDAMENTALS



82 3. MATHEMATICS AND STATISTICS TUTORIAL

a marginal probability. For P(x<2), there is one outcome out of six (for X alone, only
the first die is considered). Likewise, there are two outcomes where the die roll is less
than 3, so P(y<<3) is 2/6. The product of these two probabilities is equivalent to the joint:
P(X, Y) = P(X)P(Y). This general relationship, where the joint probability is the product of
the marginal probabilities, defines statistical independence. In other words, the outcome of X
and Y do not depend on one another. As we’ve defined our problem, we can say that X
and Y are independent and identically distributed (very frequently abbreviated as i.i.d.).

Many systems of variables will not be independent. If we take for example the previous
system in the context of a random variable Z representing the total of X and Y, the joint
probability is clearly not just the product of the individual probabilities. For example, take
the events of rolling a 12 total, and rolling a 6 on the first die (before looking at the out-
come of the second). In this case, P(x =6, z=12) is 1/36. However, the probability of roll-
ing a 6 is 1/6 and the probability of rolling a 12 on the two dice is 1/36. Thus, the
variables Z and X are not independent: the overall outcome rather strongly depends on
what was rolled on the first die.

Given the relationship between X and Z, we may want to express probabilities of cer-
tain events conditioned on other events having occurred. For example, if the first die
comes up 6, what is the probability that the total will be 12? (Hopefully, it is clear that the
probability of that total is 1/6, the probability of rolling a 6 with the remaining die. This
holds because the two die themselves are independent. This might seem confusing, but it
is important to keep in mind separately.) We can use a conditional probability to express
such cases. A conditional probability takes the form P(A|B), which is the probability of out-
come A, given that B has occurred. So, the previous example of rolling a 12 given one die
is already 6 can be written as P(z = 12|x = 6).

The joint, conditional, and marginal probabilities have the relationship

P(A|B)P(B) = P(A,B)

Thus, the joint probability of events A and B happening is equal to the conditional prob-
ability of A occurring if B occurs multiplied by the probability of B occurring. We can ver-
ify this in the case of the two-die scenario.

Pz=12|x=6) P(x=6)=P(z=12, x =6)

We know that the probability of P(z =12, x = 6) is 1/36, from the above. P(x =6) is 1/6
(remember, this is the probability of the first die coming up 6 considered entirely on its
own). As discussed above, P(z=12|x = 6) is also 1/6. Thus, the relationship holds true. It
is important to remember that this relationship holds even when the random variables are
not independent.

EXERCISE 3.13

Calculate the conditional probabilities: P(z <6|x=2)

P(z=10|x > 4) P(z=12|x=5)
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A serious drawback of using dice examples in most introductory treatments of probability
is questionable relevance. It is understandable why these examples are used so often; a tightly
constrained problem allows for establishing the concepts with great mathematical precision.
However, most of us are hopefully not spending the majority of our days throwing dice.
Introducing real world examples is dicey, as most real world examples map onto such funda-
mental concepts in multiple ways. No matter which topic you pick, this holds; you will imply
a relationship (sometimes a causal relationship) between variables that can a priori be con-
ceptualized as independent. But that is what science is all about: finding these relationships.

Ultimately, a conditional probability indicates that additional information is known about
the problem space. Science establishes this information; society uses it beneficially. For
instance, an insurance company might assess your risk of dying within the next 10 years dif-
ferently if they knew that you are overweight, smoke, and don’t exercise. In a way, all of life
is about harvesting the information expressed in conditional probabilities, and optimizing
one’s outcomes in the face of uncertainty. It is now cliché that half of marriages end in
divorce. It is less well-known that there are pretty solid conditional probabilities involved; the
outcome strongly depends on educational and financial status as well as number of previous
sexual partners. Put differently, while the probability of divorce for any couple selected ran-
domly is around 0.5, the conditional probability can be far from 0.5 under certain conditions.

Another common situation arises in a medical context. For instance, the probability of a
baby to have Down’s syndrome is about 1/700. However, the conditional probability is as
high as 1/20, given that the mother is over 45 years old. Similarly, the conditional proba-
bility that a child will develop autism is four times higher than the unconditional probabil-
ity if it is known that the child is male.

We can also expand our understanding of expectation and variance to account for multiple
random variables. Conditional expectation follows in a straightforward way from conditional
probabilities. So, to use the previous two-die example, the expectation of the sum Z is 7:

Elz]= ) zPz=2)=7
zeZ

We can calculate the conditional expectation of the sum Z given that the first die roll is
a 6 in a similar manner:

Egx-elz]l= ) 2Pz =Z|X =6)
zeZ

Ezix=6lz] =2 P(Z=2|X=6) + 3 P(Z=3|X=6) + 12 P(Z =12|X = 6)

For any values of Z less than 7, the conditional probability is zero, and the correspond-
ing terms drop out, leaving
Ezix=6[z]=7P(Z=7|X=6)+8P(Z=8|X=6)+12 P(Z=12|X =6)
With one die known, only one outcome of the six possible can produce each sum, so
1 57
E(Zleé)[Z] =[7+8+9+10+ 11+ 12]6 = 3 =95

For systems with multiple random variables, a single variance does not sufficiently
describe dispersion. The term covariance describes variance that occurs together between ran-
dom variables, due to statistical dependence. Covariance between two variables is defined as
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cov(x,y) = Ecn [(x — Ex[¥)(y — EvIy))]

over the two variable expectation. Covariance is often written as o,,. When calculated
between a variable and itself, the covariance is equivalent to the standard variance, some-
times written as o,. A nonzero covariance indicates some interdependence between the
two variables. Two entirely independent variables should have a covariance of zero.

3.3.3 The Poisson Distribution

The Poisson distribution is used to describe phenomena that are comparatively rare. In
other words, a Poisson random variable will relatively accurately describe a phenomenon
if there are few “successes” (positive outcomes) over many trials.

The Poisson distribution has a single parameter, A. For a Poisson distribution modeling
a binomial phenomenon, A can be taken as an approximation of np.

EXERCISE 3.14

Write a MATLAB function to calculate the ~ binomial distribution with parameters n =10
probability of k successes for a Poisson distri- and p=0.01 with the equivalent Poisson
bution with parameter lambda. Compare a  distribution.

Aside from use as an approximation for the binomial distribution, the Poisson distribu-
tion has another common interpretation. For an infrequently occurring event, the parame-
ter lambda can be viewed as the mean rate, or A =nT, where n is the mean events per unit
time, and T is the number of time units. In such a case, a Poisson distribution with the
appropriate parameter A will approximate the distribution of events over time or the num-
ber of events in an interval.

Events whose occurrence follows a Poisson distribution have another interesting prop-
erty. Given a series of Poisson distributed independent random variables X, X5, X3, ...X,
and their corresponding arrival times T1,T5,Ts,...T,, we can calculate the distribution of
the corresponding inter-event intervals.

Let N(t) equal the number of events at some time ¢, where P(k = N(t)) follows a Poisson
process with parameter \. Then, the probability of the nth event occurring at

P(T, > #) = PIN(H) < k)
P(T; > t) = PIN(H) < 1)
P(Ty > ) = P(N(t) = 0)
e M Y

PN(H =0) = —;

Likewise, we can calculate a distribution for the inter-event intervals. Here, the proba-
bility of an interval between two successive events T and Ty_; being larger than some
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time ¢ is the same as the probability of exactly k — 1 events occurring within the interval 0
to Tx—1 + t. This can be expressed as follows:

P(Ty — Tx-1 >t)=P(N(Tx—1 +t)=k—1)

The probability of k — 1 events during the interval Ty, + ¢ is equivalent to the probabil-
ity of no events during the interval O to .

P(N(Ty_1 + ) =k — 1) = P(N(Tx_;) = k — )P(N(t) = 0)
P(N(Tj_1 + t) =k — 1) = P(N(t) = 0)

By definition, k — 1 events occurred during the interval 0 to Ty—;. Thus, if any events
occur during the interval Ty—; to Ty—; +¢, this would mean that the number of events in
the interval Ty—; +t would not be k — 1 but greater than k — 1.

This implies that the intervals are distributed in a “memoryless” fashion. In other words,
for an ongoing process following a Poisson distribution of events, the distribution of wait-
ing time to the next event does not change over time. Put differently, knowing when the
last event occurred does not give you any information about when to expect the next one.

The distribution of intervals that we have derived here is called the exponential distribu-
tion. This is our first example of a continuous distribution. Unlike with discrete distributions,
calculating the exact probability of a single value in a continuous distribution is not feasible,
as it is always zero. To understand why, one can use the previous example of the exponential
distribution of time intervals for a Poisson process. The probability of a specific value, say 3
seconds, would correspond to the probability of the time interval being exactly equal to 3 sec-
onds. Since this would exclude any interval even infinitesimally close to 3, this will be vanish-
ingly small regardless of the number chosen. Therefore, when working with continuous
probabilities, we compute the probability of a variable falling within a range of values.

Because of this fundamental difference, continuous distributions do not have a proba-
bility mass function like discrete distribution. Continuous distributions are defined in
terms of cumulative distribution functions. The derivation of the exponential distribution
above provides an excellent example. Above, the probability of an inter-event interval T
being greater than some value t was found to be equal to P(T; > t) =¢ . Usually, the
cumulative distribution function F is defined as the probability of a random variable being
less than a given value. Following those conventions, the cumulative distribution function
F for the exponential distribution can be defined as

PT<t)=1—e M
(This falls out of the requirement that the sum of probability be equal to one. If
P(T<t)+P(T>t)=1, then P(T <t)=1-P(T >1t).)
To determine the probability of a random variable falling within a specific range, we

can subtract ranges. For example, the probability of a random variable T falling between t;
and t, can be expressed in terms of each value alone:

Pty <T <t)=P(T <t)—P(T <H)

This holds true because the probability of the random variable T being less than t;,
includes all cases where the random variable is less than t;. So, the probability mass corre-
sponding to P(T < t;) must be subtracted out.
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This can be more clearly understood by introducing the probability density function, a

function f(x) such that the cumulative distribution function F(x) =

ity expression with a density function f(x),
the range P(a < X <b) = f: f(x)dx.

| f(x)dx. For a probabil-
the probability P(X < x) = [; f(x)dx. Likewise,

EXERCISE 3.15

Demonstrate through derivation that the
probability density function f(x) for the
exponential ~distribution is  f(x) = Ae™ M.
Remember that the cumulative density func-
tion is defined in terms of the probability
density function as F(x) = ffoo f(H)dt and the

cumulative density function for the expo-
nential function as given above. (Note:
Because the exponential distribution is only
defined for non-negative numbers, the lower
bound of the integral can be set at 0.)

Continuous distributions also have expectations like discrete distributions. Instead of
summing over all probabilities, the expectation is defined in terms of an integral over the
probability density function. For a probability density function f(x), the expectation of the

function g(x) is defined as

Eg(0)] =

fl)g(x)dx

|

With this, we can calculate the mean and variance for the exponential distribution:

E[x] = J xf(x)dx

E[x]= Jx(/\ef’\x)dx
0
E[x]= )\Jxewdx
0
1 . 1 o
E[x]=)\[—x)\e A ;e A
0
1
E[x]= |—xe ™ Xef”‘
0
1 1
E[x]=0+0+0~ = —
[x]=0+0 0)\ 3
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Var(x) = | (x—p)*f(x)dx

— 0

8

Var(x)= | (x—p)*Xe Mdx

Var(x)= | ¥®*Xe ™ + p2he™™ — 2 pue Mdx

— o0
[e¢] o0 0
Var(x) = )\szef’\" + uz)\Jeﬂ"dx - Zu)\Jxeﬂxdx
0 0 0
2 1 1 1
Var(x):A F +;_2X:?

3.3.4 Normal Distribution

The last classical distribution that we will discuss here is the normal distribution. There
are many more, some of which will be visited in later chapters for more specialized pur-
poses. Because its cumulative distribution function is not solvable analytically, the normal
distribution is usually defined in terms of its probability density function,

1 _Gp?
e 272

e p,0) =
oV2m
Here, the parameters p and o define the mean and standard deviation of the distribu-
tion. A normal distribution with p=0 and o =1 is called a standard distribution.
The cumulative distribution function of the normal distribution is the integral over all
values x:

X
1 _ew
F(x; p,0) = J . e o da
o0

The cumulative distribution function of the standard distribution is often denoted as
®(x). This cumulative distribution function is often defined in terms of another special func-
tion whose form is very similar to the integral over the probability density. This function is

commonly called the error function erf(x) = %fg e dt. So, in terms of the error function,

the cumulative distribution function of the standard distribution is ®(x) = 1 + lerf (%)

MATLAB defines both a cumulative distribution function, normedf(x, mu, sigma), and
the error function, erf(x), for the normal distribution.
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>> normcdf(0.6, 0, 1)
ans =
0.7257
>> 0.5 + 0.5%erf(0.6/2°0.5)
ans =
0.7257

The normal distribution approximates how many phenomena vary. In particular, the
normal distribution is useful in understanding error.

3.3.5 Confidence Values

The normal distribution is particularly useful because of the central limit theorem.
Given N independent, identically distributed random variables with mean x and variance
02, the central limit theorem asserts that the distribution of the mean of the random vari-
ables will converge to a normal distribution with mean x and variance ”WZ The dependency
of the variance on the number of variables (in this case, samples) is particularly important.
As we will see, this result is especially relevant to estimating distributions from samples.

EXERCISE 3.16

Here we will explore how the precision You should see a figure like
of a mean estimate varies with the sample 07
count.
>> figure 06r .
>> samples = []; 05
>> N = [1:15];
>> forn = 1:15 0.4
samples(n) = var(mean(randn(2~N(n),
100))); 0.3
end .
>> scatter(N, samples) 0.2 .
The use of randn(2AN(n), 100) here 01 .
selects 2N X 100 samples from a standard 0 L )
normal distribution. The intent is to simu- 0 5 10 15

late picking 2"N samples 100 times in order =~ FIGURE 3.6
to estimate the variance of the distribution
of the means. mean() calculates the sample
means, returning a vector of length 100, and
var() estimates the variance of the distribu-
tion of means.

How does variance vary with sample
count? How many more samples are
required to halve the variance in the esti-
mate of the mean?
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The term standard error of the mean (or just standard error) is defined as

s
N
where s is the estimate of the standard deviation and 7 is the number of samples in the
estimate.

Often, the error will be expressed as confidence intervals around the mean. A confi-
dence interval is expressed as the interval surrounding the mean within which an estimate
of the mean should fall with a certain probability (often 90% or 95%). For a 95% confidence
interval, this is approximately 1.96 times the standard error on either side of the mean
estimate.

For example, let’s assume we have a normally distributed population whose actual
mean is 25 and whose variance is 5. We can collect a sample of 10 as follows.

SE} =

>> sample = normrnd(25, sqrt(5), [1 10]);
>> mean(sample)
ans =
25.5606
>> se = std(sample)/sqrt(10);
>> se *1.96
ans =
1.4133

In this case, the 95% confidence interval around the mean estimate 25.5606 would be
24.1473 to 26.9739.

For values other than 95%, we can calculate the factor of the standard error directly
using the MATLAB function erfinv(). erfinv() calculates the inverse of the error function
discussed earlier. To determine the factor to replace the 1.96, you will need to calculate
V2erf !(p), where p is the confidence interval probability. It is important to note that this
assumes normally distributed values.

>> 2/0.5 * erfinv(0.95)
ans =

1.9600
>> 270.5 * erfinv(0.90)
ans =

1.6449

3.3.6 Significance Testing

Hand in hand with the idea of a confidence interval is significance testing. Take a known
distribution: a normal distribution with a mean of 15 and a standard deviation of 3. A sam-
ple of five values has a mean of 11. Is this sample likely to be drawn from the same popula-
tion? How about a sample of 100 values with the same mean? There is always a chance that
the sample was drawn from the distribution. The question is, with which probability?
Significance testing provides systematic methods for answering such questions.
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Returning to the original question posed about the estimated sample mean of 11, we
can describe this in a probabilistic way; in fact, we can rephrase this probabilistically in at
least two ways. First, we can ask how probable a mean of 11 or lower might be, or

P(x <11)
Secondly, we can ask how probable a mean at least as extreme as 6 might be, or
P(x — il > (15 — 11))

Classical statistics distinguishes these two refinements of our original questions as a
hypothesis test: we use the properties of the distribution to test a null hypothesis (often
written as Hp) that the five item sample is drawn from the known distribution. An
extremely low probability of such an extreme result would argue against the null hypothe-
sis or, alternatively, for rejecting the null hypothesis.

Typically, a maximum threshold for the probability is chosen, called the significance
level. Common values are 1%, 5%, and occasionally 10%. Outcomes with probabilities
below the significance level are termed statistically significant at the corresponding level,
and usually strongly argue for rejecting the null hypothesis. It is important to keep in mind
that hypothesis testing is only evidence for or against rejecting the null hypothesis. For
example, a significance level of 5% indicates that only one out of every twenty repetitions
would produce a result as extreme. If an experiment is repeated 20 times, on average, the
outcome would be statistically significant once. All that the p value gives you is the proba-
bility that such data so extreme (or more extreme) could happen by chance, assuming that
the null hypothesis is true. By this logic, if the significance level is not met, it does not mean
that the null hypothesis is true, just that we failed to reject it at this significance level.

Often, a significance level is selected prior to analysis or even the collection of data, and
a significance of 5% is especially common. The selection of a significance level requires a
tradeoff between two types of error. Choosing a less stringent significance level increases
the risk of interpreting a result as indicating that the null hypothesis should be rejected
when it’s not actually false (this is classically called a Type I error and refers to spurious
findings). Alternatively, a more stringent significance level enforces a more severe thresh-
old for the rejection of the null hypothesis, but setting too low a significance level can miss
rejection when the null hypothesis is actually false (a classical Type II error: missing differ-
ences that are really there). How one should pick the significance level depends on the rel-
ative value of the outcomes in a given practical case: how serious is it to miss real effects
versus how serious it is to claim the existence of effects that are not really there. More
than the brief treatment of Type I/II errors here is beyond the scope of this primer, and
the reader is referred to a more detailed reference for an in-depth discussion.

Significance tests can be classified as one-tailed or two-tailed hypothesis tests. The origin
of these names can be easily understood from an illustration of the expected distribution
of sample means. From the central limit theorem, as discussed in the last section, we
know that sample means from the known distribution should vary with a normal distri-
bution whose mean matches that of the underlying distribution and whose standard
deviation is o/+/N.

Figure 3.7 shows the expected PDF (remember, probability distribution function) for
sample means for samples with five elements. Shaded is the probability of the sample mean
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having a value at least as extreme as the collection value. Figure 3.8 shows the shaded por-
tion of the PDF in greater detail. (Noting that P(|x — p| > (15— 11)) = P(x > 19) + P(x < 11)
may help in understanding Figure 3.8.)

Figure 3.9 shows the same PDF with the probability of the sample mean being less than
11 shaded. In this case, the shaded probability covers only one of the two ends of the PDF.
This is a one-tailed test. Likewise, the previous case covering both tails of the PDF is called
a two-tailed test.

Using significance testing correctly requires determining whether the question at hand
involves a one-tailed or two-tailed test. Here we are interested in ascertaining whether
the measured sample comes from the known distribution. Understanding the extreme
nature of the sample mean is what we're interested in, so a two-tailed test is most
appropriate.

Since the sample mean should be distributed according to a known normal distribution,
we can calculate the two-tailed probability using the MATLAB function normcdf. Recall

I. FUNDAMENTALS



92 3. MATHEMATICS AND STATISTICS TUTORIAL
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that normedf(x, mu, sigma) returns the cumulative distribution function at x for a normal
distribution with ¢ = mu and o = sigma.
First, P(x = 11),

>> mu = 15;
>> sigma = 3;
>> N=5
>> s = sigma/sqrt(N);
>> p_tail_one = normcdf(11, mu, s)
p_tail_one =
0.0014

Next, we can calculate P(x > 19). normcdf() can be used for this as well, but if the same
procedure is followed with 19 substituted for 11, we will calculate P(x = 19):

>> p = normcdf(19, mu, s)
p ]
0.9986

Note that the value here is substantially larger than the probability of the first tail. To
calculate P(x > 19), we can use the equality P(x > 19) + P(x=19)=1:
>> p_tail_ two=1-p
p_tail_two =
0.00143

This matches the probability mass of the first tail, as one might expect from Figure 3.9.
The sum of the two is the probability that the sample mean is at least as extreme as the
estimated mean here:

>> p = p_tail_one + p_tail_two

P —
0.0029
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So, roughly 3% of the time, the empirical mean of five samples from the known distri-
bution would be at least as extreme as 11. At the 1% significance level, this would not pro-
vide sufficient support for rejecting the null hypothesis, but it would at the 5% level.

EXERCISE 3.17

Does the same conclusion hold for a larger ~ with the same mean of 11)? Determine the
sample (the second example of 100 samples  probability using normedf().

3.3.6.1 Student’s t Distribution

Imagine an electrophysiology experiment attempting to determine whether a single
neuron responds to a stimulus. In trials without the stimulus, you see firing rates as in the
second column of Table 3.2. The third column of the table shows the firing rates in trials
with the stimulus. Obviously, we're interested in whether the stimulus alters the firing
rate. This question can be rephrased as a statistical test: what is the probability that the
two distributions are the same or, rather, that two these samples were drawn from the
same distribution?

TABLE 3.2

Trial Rate without stimulus Rate with stimulus
1 54.5 67.1
2 43.5 63.8
3 36.5 73.5
4 48.7 57.2
5 41.8 31.0
6 52.6 54.2
7 28.7 33.1
8 57.1 117.0
9 40.5 714
10 48.2 133.8
11 57.3 60.0
12 50.8 411
13 62.5 93.0
14 30.8 33.5
15 28.9 52.0
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Unfortunately, since we don’t know either of the distributions from which the firing
counts are sampled, we can’t use the procedure we used in the previous section. This will
often be the case in real scenarios. Fortunately, a wide variety of tests for general purpose
significance testing have been defined. For example, Student’s ¢ test is appropriate here.

Student’s (actually William S. Gosset, but being in the employ of Guinness, he had to
publish under a pseudonym) ¢ test (Student, 1908) is useful in a number of statistical sce-
narios. Here, we will use a paired ¢ test. In this experimental paradigm, the measurements
of firing rate with and without the stimulus are not independent (the experiment measures
the same cell under two different conditions). We can pair the measurements before and
during stimulus presentation, and use the ¢ test to determine whether the data is signifi-
cantly different.

Under the paired ¢ test, we need to calculate a ¢ statistic from

= XD
SD/\/N

where Xp is the mean of the difference between elements of each pair, Sp is the estimated
standard deviation of the differences between elements of each pair, and N is the number
of pairs. Then, we need to use a Student’s t distribution in much the same way we used a
normal distribution in the prior section. It is worth nothing that the t distribution is very
similar to the normal distribution anyway, just with heavier tails to account for unknown
population variance with small sample sizes.

MATLAB offers a number of functions to simplify this process. The function ttest() has
two forms that are particularly used. ttest(x,y) performs a paired ¢ test. This would be easi-
est if we have vectors x and y for the two samples.

>> x = [54.5 43.5 36.5 48.7 41.8 52 6 28.7 57.1 40.5 48.2 57.3 50.8 62.5 30.8 28.9];
>>y=1[67.1 63.8 73.5 57.2 31.0 54.2 33.1 117.0 71.4 133.8 60.0 41.1 93.0 33.5 52.0];
>> ttest(x, y)
ans =

1

t

Without specifying return parameters, ttest() performs a test and returns whether the
null hypothesis should be rejected at the default significance level (5%). Thus, the data
supports rejecting the null hypothesis that the stimulus has no effect on the firing rate.
(In other words, the data suggests that the stimulus has an effect on the firing rate at the
5% significance level.) We can supply a different significance level as a final parameter to
ttest():

>> ttest(x, y, 0.01)
ans =
0

This implies that the data does not support rejection of the null hypothesis at the 1%
level of significance. Depending on the criteria of the experiment, significance at the 5%
level may be sufficient, or a lack of significance at the 1% level may suggest that the exper-
iment had insufficient “power” to detect an effect at this level, and more data should be
collected to yield this power.
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We can obtain the exact probability of the result or one more extreme by supplying a
second return parameter:

>> [h, p] = ttest(x, y)
h =
1
p =
0.0106
If we have the differences between the sample pairs already calculated, we could also
use another form of the ttest function. With a single vector, ttest(x) tests against a mean
of 0. This is appropriate when we just have the differences between the pairs, not the
actual values.

>>d=x-vy;
>> ttest(d)
ans =

1

3.3.6.2 ANOVA Testing

Student’s t test covers a number of hypothesis scenarios for testing the results of a sin-
gle factor (one independent variable) and between pairs of samples. Multiple samples or
multiple experimental factors create a scenario that is difficult for a single ¢ test to handle.
To use a t test under such circumstances, we would need a separate ¢ test for each distinct
pair in the experiment. For a five factor experiment, this would require 2° =32 separate
tests! Note that on a significance level of 5%, we would expect 1 in 20 differences to test
positively just by chance, even in the absence of any real experimental effects, so we
would also have to adjust our significance level for multiple comparisons. If this sounds
like a recipe for disaster, it is. An alternative approach for the statistical treatment of
experimental data from experiments with more than one independent variable is the so-
called “analysis of variance.”

An analysis of variance (ANOVA) allows us to ask the probability that a group
of samples all originate from the same larger population without the inflated risk of
a Type I error as with multiple ¢ tests. As an example, we’ll expand our hypothetical
experiment to three different stimuli. For simplicity, we will call them A, B, and C (see
Table 3.3).

First, we need to calculate the variance across groups.

>> stim_a = [39.2 45.7 459 428 60.2 50.7 39.9 50.8 43.0 55.9];
>> stim_b = [43.2 56.7 32.8 612 54.6 44.6 53.2 433 351 53.7];
>> stim_c = [66.5 54.5 62.6 45.6 46.8 34.9 53.3 60.1 69.7 61.0];

This requires calculating the mean for each stimulus

>> mean_a = mean(stim_a);
>> mean_b = mean(stim_b);
>> mean_c = mean(stim_c);
>> means = [mean_a mean_b mean_c];
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TABLE 3.3

Trial Stimulus A Stimulus B Stimulus C
1 39.2 43.2 66.5
2 45.7 56.7 54.5
3 459 32.8 62.6
4 42.8 61.2 45.6
5 60.2 54.6 46.8
6 50.7 44.6 349
7 39.9 53.2 53.3
8 50.8 43.3 60.1
9 43.0 35.1 69.7
10 55.9 53.7 61.0

the overall mean
>> mean_overall = mean([mean_a mean_b mean_c]);

and the weighted sum of the squares of differences between the overall group mean and
the mean of each group

>> sum_between = sum(10*(means - mean_overall).A2);
>> between_mean = sum_between/2;

Next, we need to calculate the variance within each group. We sum the squares of the
differences between each measurement and its difference from the mean of its correspond-

ing group:
>> sum_within = sum((stim_a - mean_a).*2 + (stim_b - mean_b).A2 + (stim_c -
mean_c)."2);
>> within_mean = sum_within/(3*9);

We use these two values, the mean square difference between groups and the mean
square difference within groups, to calculate the test statistic, f:

>> f value = between_mean/within_mean
f _value = 2.483

What does this tell us? If all three sets of data follow the same distribution, the distribu-
tion of f should follow an F distribution, which has two parameters. A discussion of the
analytic form of the F distribution is beyond the scope of this text. For the purposes of our
use of the F distribution, the two parameters are equivalent to the degrees of freedom in
our data set: the number of stimuli minus one (3—1=2) and the total count of data
points, minus the number of stimuli (30 — 3 = 27).
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In this case, we need to determine the cumulative probability function for the F distri-
bution given our f value and the two parameters. The fedf() function will calculate this
value.

>> p = fcdf(f_value, 2, 27)
p = 0.651

This p value, 0.651, indicates a little over 65% of the time samples consistent with the
null hypothesis (i.e., all distributed similarly) would yield an f value at least this extreme.
Thus, we cannot discount the null hypothesis here.

3.3.7 Linear Regression

Assume two variables x and y, with an expected linear relationship between them such
that y = o + Bx. Under this relationship, we will call the y the dependent variable and x
the independent variable. Let’s say that we have collected sample pairs (X,, Y,,) and want
to estimate the parameters a (constant offset) and 3 (slope) so that we can express y as a
function of x.

This estimation procedure is called linear regression (think “prediction”). Here, we are
regressing x onto y. Under traditional terminology, as the independent variable, x is the
regressor (plural: regressors). We can approach the estimation problem as a search for
values of a, 3 (we will call these estimates &,3) that minimize the distance between the
predicted value §j, =d +3X, and the actual measured value Y,,. The distance for each mea-
sured pair can be represented as

—(a+px)y’

—a— ﬁx,

-3
S

Then, the estimates &, can be calculated from the partial derivatives of S:

N
& > 2=y —a—fx) =0

N N N_ .
Da=D yi—> B
i=1 i=1 i=1

N N
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The estimate B can be calculated in the same manner:
5 X A
— =) 2= x)yi— &—px)=0
B &

N ~
Z(xiyi —xj& —3x3) =0
P

N N N
A 2 _
62 xl—E XiYi E Xt
i=1 i=1 i=1
N N
E XiYi — & E Xi
g =i i=1
N

This has yielded a pair of equations in &, @ The equation for the estimate of & can be
substituted in and a closed form solution for § obtained:

N 1 N N N
R RO Do
i=1 i=1 i=1 i=1

B= ¥

A

pl1-

i=1  i=1

N N
2 2

2 2

i=1 i=1

N 2 N 1.
(Zx,-) D XY= gD _Yi) i
i=1 _ =1 i

N 1 XN
in]/i N Z]/izxi
i =1 i=1

B: i=1

N N \?
2
=D
=1 i=1

This method of linear regression is called least squares optimization, because the esti-
mates originate from optimizing (here, minimizing) the sum of the squared distance.
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EXERCISE 3.18

Write a MATLAB function that calcu- x = [ —0.454, 4.68, 6.93, 7.43, 4.58, 6.40,
lates estimates for &, B, given two vectors of 6.04, 0.846, 3.49, 4.53]
data: [a,b] = least_squares(x, y). Test against y = [—4.10, 46.8, 69.0, 74.7, 47.5, 63.8,
the following observations, where x is the 61.6, 7.76, 0.739, 45.3]

independent variable, and y is dependent.

Once an estimate is calculated, one should look at the residuals, the difference between
the values predicted by the estimated parameters in the regression equation and the mea-
sured values. Assuming that the estimates for &, are stored within MATLAB variables a
and b respectively, the residuals for a single variable can be calculated with

>>r=y—-b*x—a;

After any linear regression, it is important to review the residuals. In a perfectly linear
relationship between dependent variables and regressors, the residuals will be randomly
distributed (and ideally small). This implies that the difference between the prediction and
measured value is primarily the result of error and not an additional nonlinear relationship.

After fitting, we can also look at the coefficient of determination, .

P=1- w

iy
Here the numerator is the sum of the squares of the residuals, and the denominator is
the sum of the squares of the difference between the dependent variable and its mean,

essentially N times the var(y). Thus, given estimated parameters in MATLAB variables a, b,
we can calculate 7* with

>>r2=1- (sum((y — b * x —a).*2) / sum((y — mean(y))."2));

The coefficient of determination ranges from 0 to 1, with values near 1 indicating a better
fit to the data. One interpretation of +* is the proportion of variance explained by the model.
Thus, a value closer to 1 indicates that most of the variance in the dependent variables origi-
nate in the variation of the regressors, as propagated through the model. A lower 1 implies
that the dependent variables have some variance unaccounted for by the model.

Instead of calculating the estimates and coefficient of determination by hand, we can
use the MATLAB function regress() in the Statistics Toolbox.

[b,bint] = regress(y, x)

regress can perform multivariate linear regression, so for a single variable, x should be
an N X 2 matrix, where N is the number of observations. The first column data are the sin-
gle variate observations, and the second column data consists of ones to indicate the
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constant offset. regress() returns a vector b with the estimates for the coefficients, &, 3.
regress() also returns 95% confidence intervals for the coefficients in bint. regress() will
also return the residuals if a third return parameter, r, is included.

3.3.8 Introduction to Bayesian Reasoning

Briefly put, Bayes’ theorem allows you to invert conditional probabilities if the base
rates (or priors) are known. Illustrating the perils of eponyms, Thomas Bayes, a
Presbyterian minister who first worked out the basic idea (but never published it), would
probably be surprised by the attribution, in light of his other work.

When would one want to invert conditional probabilities? Surprisingly often. As a mat-
ter of fact, an awareness of Bayes’ theorem is likely much more useful in contributing to
everyday wisdom in decision making than, say, calculus (which doesn’t stop the profes-
sionals from making up contrived examples anyway). This is due to the fact that it is often
much easier to measure the conditional probability of one, but not another (yet related)
event. If this appears too abstract, it is. A plastic example might help.

A country that shall remain unnamed has suffered a recent spate of vicious and unpro-
voked terrorist attacks on civilians. You have been hired by the government of this coun-
try to advise on a rational response to this unacceptable barbarism. Specifically, the
question is whether the government should implement profiling measures against the
known characteristics of the perpetrators, and if so, to what degree.

Here are the known facts:

All terrorists have been bearded. This translates to p (Bearded|Terrorist) = 1.
One in a million people is a terrorist. This translates to p (Terrorist) = 0.000001.
One in 5 people is bearded. This translates to p (Bearded) = 0.2.

And that’s all she wrote. In reality, having solid numbers on this is probably a better
position than most governments can manage, so you are in a strong position.

What you really would like to know is the probability that someone is a terrorist given
that he is bearded, but you only have the probability that someone is bearded if you
already know he is a terrorist. This doesn’t help. If you already know someone is a terror-
ist, they might either already have committed their heinous act, or are in hiding. Language
can be misleading here. Even though the probability that someone is bearded is 1, given
that they are a terrorist, being bearded and being a terrorist are not synonymous in this
case. Intuitively, if they were, there would have to be many more terrorists around (more
than 1 in a million), given that 1 in 5 people is bearded. But how much is the risk of being
a terrorist increased, given that someone is bearded?

Here, Bayes comes to the rescue.

p (Terrorist|Bearded) = p (Bearded|Terrorist) * p (Terrorist)/p (Bearded)
p (Terrorist|Bearded) =1 * 1e — 6/0.2 = 5e — 6.

In other words, the probability is 5 millionth. To put this in perspective, the absolute
probability that someone is a terrorist if he is bearded is extremely low, while the relative
probability is 5 times higher. This makes sense, as we use strong diagnostic information to
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link the two (as p (Bearded|Terrorist) is 1) and the base rate of bearded people in the coun-
tryis 1in 5.

You can now either advise the government that each bearded person should be scruti-
nized 5 times as much as a non-bearded person (to match the increased risk), or forgo pro-
filing altogether, as the absolute risk is still so negligibly small. Both responses are
rational.

What if the probability of being bearded given that someone is a terrorist was only half
as strong—0.5? In other words, there are other kinds of terrorists around, they are not all
bearded.

Plugging in the numbers yields

p (Terrorist|Bearded) = 0.5 * 1e — 6/0.2 = 2.5e — 6.

This makes sense. As the strength of the diagnostic information declined, the value of
the criterion of beardedness to indicate terroristic tendencies declined in kind.

What if beardedness was much rarer; say only one in a hundred thousand people is
bearded (and the strength of the link was back to 1)?

p (Terrorist|Bearded) =1 * le —6/1e —5=0.1

Now there is a 10% absolute chance that the person is a terrorist, just by virtue of being
bearded, and the a priori chance is increased a hundred thousand-fold. Now, this seems
like a rational case for strong profiling measures.

EXERCISE 3.19

Write a program that plots the probabil-  terrorists) and from 1 in 2 to 1 in a million
ity of being a terrorist given that someone  people being bearded. Should the amount
is bearded for a range of values of p  of resources allocated to monitor bearded
(Bearded|Terrorist) from 0 to 1 (in steps of  people follow this distribution, on a per
0.01), as well as variable base rates (from 1 unit basis?
in a thousand to 1 in a million people being

This admittedly somewhat contrived example was used to provide an intuitive feel for
Bayesian statistics, using a striking and emotional case study.

While it is unlikely that you will be hired by a government in this position, it is far
from unlikely that you will encounter Bayesian reasoning in your study of the neural and
cognitive sciences. As a matter of fact, it has been suggested that the entire sensory appa-
ratus of the brain works as one giant Bayesian machine. It would make sense that it might,
as Bayes’ theorem allows making use of previous experience (establishing base rates) in a
rational fashion. It has been shown that people do use prior experience to gauge what to
expect from future interactions with members of a given class.

Moreover, the value of Bayesian reasoning is obvious in everyday life. It helps to know
it. “Experts” might give misleading answers. For instance, if you go to the doctor for an
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AIDS test or a mammogram, you are not interested in the probability that the test is posi-
tive if you have the disease. You are interested in the probability that you have the disease
if the test is positive! It has been conclusively shown that doctors frequently confuse these
two probabilities, and give you wildly inaccurate odds (Gigerenzer and Hoffrage, 1995;
Hoffrage and Gigerenzer, 1998). This concludes our introduction to Bayesian Reasoning—
as well as our Mathematics and Statistics Tutorial for the purposes of this book. If you are
interested in specific applications of Bayesian Reasoning in neuroscience, see chapter 22.
For a more extensive treatment of Bayes’ theorem and Bayesian inference, see MacKay
(2003).

3.3.9 Outlook

There is an almost infinite number of concepts we could add at this point. We could
discuss other distributions, such as the Chi-squared distribution. We could take Bayes one
step further and talk about likelihood modeling. However, this will suffice as a conceptual
introduction to mathematical and statistical fundamentals. Some of these issues, e.g., maxi-
mum likelihood estimations, will be revisited in later chapters where appropriate. For
now, we feel that enough groundwork has been laid, and that—if you have been working
with us through this material—it is solid enough to carry you through the next chapters,
which is really all anyone can ask for.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

eye

inv

det

eig

cov
nchoosek
mean
var

std
normrnd
normcdf
erf
scatter
erfinv
fedf
regress
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CHAPTER

4

Programming Tutorial: Principles
and Best Practices

4.1 GOALS OF THIS CHAPTER

Unlike most other sections in MATLAB® for Neuroscientists, the focus here is not on
learning new techniques in MATLAB, but on how to use those techniques better. The sec-
tions that follow introduce guidelines for code organization in small and large projects,
defect (bug) control, and testing strategies in an attempt to communicate strategies for
managing the complexity that comes with larger programming efforts.

In order to benefit maximally, basic proficiency with MATLAB coding is necessary.
Working through the MATLAB tutorial should be adequate preparation; however, pro-
gressing through a few sections beyond the tutorial is an even better preparation. The
additional experience with MATLAB will provide a stronger foundation for understand-
ing the rationale for the suggestions that follow.

4.2 ORGANIZING CODE

4.2.1 A Few Words about Maintenance

Code should be written with the expectation that the author will not be maintaining the
code. This is especially true in many laboratories, where code is passed down from stu-
dent to student, sometimes with very little direct communication. It can be very tempting
to whip out a few lines of code to solve a simple problem, and think that the code might
be a throwaway solution or only used by the code’s author. As with other technical solu-
tions to scientific challenges, solutions to computational problems are rarely entirely
unique. A part of yesterday’s throwaway code might be the kernel of someone else’s the-
sis. Maintainability should be as important as functionality in writing new code. It is in this spirit
that the following sections offer suggestions for writing more maintainable code.

MATLAB® for Newroscientists. 1 03
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4.2.2 Variables and How to Name Them

Simply put, a variable denotes a storage location. That location can hold a number, a
function, a matrix, or even more complex entities, such as cell arrays or MATLAB objects.
In the context of MATLAB code, a variable is referenced by name and scope. This section
will discuss variable naming strategies. Variable scope is equally important, but it will be

discussed in the next section.

Variable names can be any contiguous set of alphanumeric (i.e., 0—9 and a—z) charac-
ters plus the underline character, and they begin with a nonnumeric character. For exam-
ple, this_is_a_variable and thls_1s_41s0_4_v4r14bl3. With such flexibility in name choice,

it is surprising how often poor names are chosen.

Here is a simple function written twice to demonstrate the impact of good variable

name choices. First, a version of the function with poorly chosen variable names.

function out = align_waveforms(x)

end

% Determines alignments for a set of waves relative
% to the initial waveform using

% cross correlation.

% Input parameters

% X: MxN matrix of waveforms, where x(m,:) is the nth waveform
% Output parameters

% out: vector of length M, where out(m) is the offset relative

% to the first wave

n = size(x);

n = n(2);

out = [J;

forw = 1I:n
¢ = xcorr(x(;, 1), x(:, w));
s = find(c == max(c));
d = s - length(c)/2;
out = [out dJ;

end

The same function with better variable names follows.

function offsets = align_waveforms(waves)

% Determines alignments for a set of waves relative

% to the initial waveform using

% cross correlation.

% Input parameters

% waves:  MxN matrix of waveforms, where x(m,:) is the nth waveform
% Output parameters
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% offsets: vector of length M, where out(m) is the offset relative
% to the first wave

wave_count = size(waves);

wave_count = wave_count(2);

offsets = [];

for wave = 1:wave_count
¢ = xcorr(waves(:, 1), waves(;, wave));
max_c_index = find(c == max(c));
offset = max_c_index - length(c)/2;
offsets = [offsets offset];

end

end

Clearly, variable name choice has impact on readability, even in short functions. Here
are a few simple guidelines for naming variables that promote readability and
maintainability.

Avoid the names of global functions. When MATLAB encounters a sequence of char-
acters that forms a valid name, the variables in the current workspace are checked first for
possible matches. MATLAB searches for functions, scripts, or classes only if an identifier
fails to match any existing variable names. Choosing a name synonymous with a
MATLAB function, or even a user-defined function, hides that function in the current
scope. In the example code ahead, assigning the value 5 to a variable named “factorial”
causes the subsequent attempt to call the factorial function to fail. Because MATLAB
recognizes factorial as a variable, the interpreter attempts to resolve (4) an index into a
vector. Since the variable factorial is a scalar, the index request fails and yields the error.

>> factorial(4)
ans =

24
>> factorial = 5;

>> factorial(4)
??? Index exceeds matrix dimensions

Especially inappropriate choices can even cause difficult to identify errors. Another
example ahead shows how setting gamma to a vector creates a situation in which an inte-
ger argument to the gamma function is misinterpreted as an index into the vector and
yields the wrong value.

>> gamma(4) % the correct value for gamma(4) is 6
ans =

6

>>gamma=1[0 1 2 3 4 5];
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>> gammal(4)

ans =
3

While the MATLAB interpreter is able to evaluate the request for element 4 of the vec-
tor gamma without an explicit error, this is highly confusing to anyone familiar to the
gamma function. If the intent of gamma(4) was actually to invoke the gamma function, the
expression returns the wrong result silently. Such code needlessly complicates later main-
tenance and readability.

The which command is especially useful for determining if a variable might override
an existing command. Typing which followed by a potential name for a variable displays
information about the identity of that name. The clear command will remove a variable
from the current workspace, which is quite useful when inadvertently overriding an
important command. Note how clear alters how MATLAB resolves the identity of gamma
in the following example.

>>gamma=1[0 1 2 3 4 5];
>> gammal(4)

ans =
3

>> which gamma
gamma is a variable.
>> clear gamma
>> gamma(4)

ans =
6

>> which gamma
built-in (/sw/matlab-7.11/toolbox/matlab/specfun/@double/gamma) % double method

Pick a mnemonic name. A name that reflects the purpose of a variable improves read-
ability significantly. Although it's quite tempting to choose short, one-character variable
names such as n or x, variable names should reflect the variable’s use or contents when-
ever possible. A common MATLAB task involves writing mathematical formulae as
executable MATLAB code. When writing such code, the use of exceptionally short variable
names is especially tempting, since variables used in mathematical notation are quite often
single letters. In the simplest of functions, this is reasonable, especially if the function oper-
ates uniformly on all inputs, i.e., there is no specific meaning ascribable to the variable.
This is fairly rare, however. Aside from simple mathematical functions or variables used
as indices in for loops, single-letter variables should be avoided.

A mnemonic name is not an invitation to a stream of consciousness description of the
code, however. An excessively long name might be a subtle clue of an overly broad or
imprecise use. For example, a variable named indicates_yes_response_or_viable_value
should probably be broken into two separate variables for simplicity. This guideline is
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particularly true for any variable expected to be used interactively. No one wants to type
indicates_yes_response_or_viable_value over and over in an interactive session unless

absolutely necessary.

Retire variables after their specific purpose. Repurposing variables can make code dif-
ficult to follow and maintain, particularly in a long or complicated sequence of code.

Usually choosing mnemonic variable names automatically avoids this problem.

EXERCISE 4.1

Review the following code and rename variables that could be better named. Use the
comments as a guide to the intended functionality.

function psth,bins = bin_for_psth(xd, ...
sampling_rate_in_samples_per_second, ...
t ..
q -
q2, ...
size_of_each_psth_bin_in_seconds)
% Locates events above threshold in raw data and generates PSTH

from

% multi-trial recording. Trials should be contiguous.

%

% Input parameters

% rd: raw input data

% sampling_rate_in_samples_per_second: sampling rate in Hz

% t: threshold for events, in same units as raw data

% q: number of contiguous trials

% q2: length of each trial, in seconds

% size_of_each_psth_bin_in_seconds: size of each PSTH bin, in
seconds

%

% Output parameters

% psth: count in each bin

% bins: center position of each bin, in seconds relative
to

% trial start

% first, threshold signal

vnts = rd > t;

% only positive threshold crossings (not sustained activity above
threshold)

vnts = diff(events) == 1;

vnts = [0 events];

% now, split into trials
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vnts = reshape(vnts, q, ...
q2 * sampling_rate_in_samples_per_second);
% vnts should be MxN, where M = trial and N = sample
sum = sum(vnts);
% sum should be the sum of events at each sample relative to
% the start of the trial
max_vnt_count = max(sum);
for count = 0:max_event_count-1
above_count = find(sum > count);
vnt_offsets = [vnt_offsets above_count];
end
% vnt_offsets should be the offset in sample counts where events
occur
vnt_ts = vnt_offsets / sampling_rate_in_samples_per_second;
q [psth, bins] = hist(vnt_ts, q2/size_of_each_psth_bin_in_seconds);
en

4.2.3 Understanding Scope

Scope refers to the extent of a variable within the code. During execution, variables
move in and out of scope. For example, under normal circumstances, a variable created
within a MATLAB function ceases to exist once the function ends. One of the most
important aspects of scope is that scope together with name uniquely denotes a vari-
able. Two or more variables with identical names can coexist separately in different
scopes.

Related to the idea of scope is the MATLAB workspace, which acts as a container for
variables within a specific scope. In a sense, workspaces implement scope. Unlike the
abstract concept of scope, workspaces in MATLAB are entities that can be viewed and
interacted with. The most visible workspace is the workspace associated with the com-
mand line, which is visible in the workspace window during interactive sessions, but other
workspaces are created, suspended, and destroyed as necessary to implement other scopes
during execution.

MATLAB recognizes three basic scopes: the command-line scope, global scope, and
function-level scope. Each of these has one or more corresponding workspaces during exe-
cution. With a few exceptions, when the MATLAB interpreter encounters a legal variable
name, the current workspace is checked for a match. Which workspace is current changes
throughout execution. If a match is located, the identifier is treated as the corresponding
variable. We will now discuss each of these types of scope (command line, global, and
function level) and their corresponding workspaces.

The command-line scope consists of all variables created interactively at the command
line or in a script file. Unlike functions, scripts operate under the command-line scope.
Thus, scripts have access to all variables present in the command-line scope and their
values. This makes scripts especially useful for executing sets of commands that one
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would normally type at the command line, such as commands to set up an environment
for a specific type of analysis or visualization. It also means that scripts can easily over-
write variables in the command line scope.

Function-level scope occurs at the entry of a function (i.e., the beginning of execution, at
a function call) and continues until the function ends, usually at the return. Variables
within the function-level scope do not persist after the execution of a function call. Cases
such as the code ahead may appear to counter this assertion, but a careful analysis demon-
strates that this is not the case.

function x = square(x)
X =x%*2;

>> x = 6;
>> x = square(x);
>> X

X =
12

At the command line, it may appear that the value of x persists beyond the call to square
() or within the call to square(). However, this is not the case. Initially, there is a variable x
declared at the command line. This variable contains the value 6. Then, the assignment
statement x = square(x) is executed, and the function square() is called, with the parameter
x. During the execution of the call to square, all the expressions in the parameter list are
evaluated prior to the call. In this case, the variable x is evaluated, and it refers to the vari-
able x at command line scope. So the value is 6, and square() is called.

When square() is called with the parameter 6, the value 6 is bound to the function-level
scope variable x during the execution of square(). It is crucial to note that this x at the
function-level scope has no relationship with the variable of the same name at the com-
mand line scope aside from the confusing nature of their identical names. During the exe-
cution of square(), the function-level variable x is set to 2 times itself, or 12, and the
function returns. At the return of the function, the value of function-level x is obtained as
the return value of the function (this return value is 12) and bound to the command-line
scope variable x as the final part of the assignment statement. Thus, the command-line
scope variable x will then contain the value 12.

As demonstrated above, when examining functions and function calls, it is important to
remember that all parameters in a function call are evaluated before the call and then
bound to variables in the function-level scope. In other words, variable names in a func-
tion call have no direct relationship with variable names in the function’s code. So, in the
previous example, the command-line variables could have been named x2, y, or even
not_the_x_in_square, and the example would have produced the same result. Formally,
parameters in the function’s code are termed formal parameters to distinguish them from
parameters in the calling of a function, which are called actual parameters.

Function-level scope can become especially complex with recursive functions. Recursive
functions invoke themselves, albeit (usually) with different parameters each time. Here is
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an example function that implements a factorial, N!. The function is called factorial2 to
avoid conflict with the MATLAB built-in function factorial.
function f = factorial2(g)
ifg ==
f=1;
return
end
f = g * factorial2(g-1);
end

So, calling factorial2 with a value of 3 causes it to call factorial2 with a value 2, which
calls factorial2 with a value of 1. The innermost factorial2 call which was passed a value 1
terminates, returning 1. Then, the factorial2(2) call resumes, calculating 2*1 and returning
the result 2. Finally, the original call factorial2(3) resumes, calculating 3*2 (2 being the
result from factorial2(2)) and returning 6. This sequence of calls and the associated crea-
tion, suspension, and deletion of scopes is illustrated in Figure 4.1.

function f = factorial2(g)
ifg==
f=1;
return
end
f = g * factorial2(g-1);

factorial2{} is called
with g~ {which is 2}

function f = factorial2(g)
if g==
Calling factorial2{} creates a f=1;
new scope in which g is 2} return
end
f = g * factorial2(g-1);

A4

factorial2{} is called
with g~ ' {which is 1}

function f = factorial2(g)
if g==
f=1; Since g is 1, this factorial2{} terminates
and returns a value of 1

»

Calling factorial2{} creates a
new scope, in which g is 1 return
end

Once the invocation of factorial2{} with

input 1 terminates, the previous invocation of

factorial2{} resumes including the previous scope,

end evaluates g* factorial2{1}, and itself terminates with the value 2.

end

Once the invocation of factorial2{} with

input 2 terminates, the previous invocation of
factorial2{} with input value 3 resumes, evaluates
g* factorial2(2) using the g variable in the restored
scope, and itself terminates with the value 2.

FIGURE 4.1 Sequence of scopes during a recursive call
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It is important to note that each invocation of factorial2 creates its own scope.
Consequently, each variable g in an invocation is different from the variables named g in
other invocations. As each execution of factorial2 invokes factorial2 with a slightly smaller
input parameter, the existing scope is suspended for the execution of the inner call and
resumed when the call returns.

In the context of execution, each scope created by the invocation of a function call is
sometimes called a stack frame. The collection of all the frames existing at any point in the
execution, suspended or live, is sometimes called the execution stack or call stack. facto-
rial2() can be modified to make the stack frame a little more visible during execution by
displaying input parameter g and the current stack using dbstack:

function f = factorial2(g)

g
dbstack
ifg==1
f=1;
return
end
f = g * factorial2(g-1);
end

Invoking factorial2() on the input 3 at the command line involves 3 calls to factorial2.

>> factorial2(3)

g ]

3
In factorial2 at 3
g ]

2

In factorial2 at 3
In factorial2 at 8
g i

1
In factorial2 at 3

In factorial2 at 8
In factorial2 at 8

ans =
6

Global scope has characteristics of both command-line and function-level scopes. Like
command-line scope, variables in global scope persist for the lifetime of the MATLAB
interpreter. Like function-level scope, variables in global scope are accessible during func-
tion execution. One substantial difference between global scope and either of the two other
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scopes is the necessity of explicitly specifying global scope for those variables which need
it. This is done with the global keyword. Here is an example showing two functions
referencing the same variable in global scope.

function x = increment()
global increment_value
x = increment_value + x

end

function set_increment(y)
global increment_value
increment_value = y

end

Without the statement global increment_value in either one of the functions,
subsequent statements would attempt to reference a variable of the same name
(increment_value) with function-level scope. As one might expect from the scope of global
variables (i.e., available wherever global appears), all global variables share a workspace
separate from command-line and function-level workspaces.

4.2.4 Script or Function?

Script files and function files in MATLAB have distinct purposes, tightly related to both
files” respective use of scope. Because script files operate in the workspace used at the com-
mand line, script files act much like commands typed into the interactive prompt. This
means that all variables accessible from the command line are visible and can be modified.
This workspace sharing can be spectacularly useful for tasks like automating a set of com-
mands that one would normally type into the command line without modification.

Functions, on the other hand, create their own workspaces upon execution. Function
parameters are the primary means of moving data from an external workspace into the
function’s workspace. As such, any local variables used in the function are isolated from
variables of the same name outside the function.

When beginning to code in MATLAB, putting all code in script files may feel most natu-
ral, since script file execution operates so similarly to commands executed at the command
line. However, over time, this becomes problematic. Using scripts as functional units
requires designating a specific set of variables to be used to move data between scripts. If
those variables are inadvertently used in scripts for other purposes, certain scripts may
become unusable. By operating in isolated workspaces, functions avoid this problem. Thus,
scripts are best for sequences of commands that require no parameterization.

4.2.5 The Art of Commenting

Nothing guarantees the obsolescence of code like the absence of comments. Even the
clearest code will have areas whose details or larger goals are not self-evident. While too
many obvious comments can obfuscate the code, it is better to err on the side of too much
rather than too few.
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In MATLAB, comments immediately following the declaration of functions or objects
are particularly useful, since the help command will display these comments. Such usage
comments should include the name, a brief summary of purpose, input and output para-
meters, and any data structures or nonobvious steps preliminary to usage required.
Especially important to note in comments are nonobvious side effects (see side effects,
ahead), such as modifying a global variable or altering a file.

4.3 ORGANIZING MORE CODE: BIGGER PROJECTS

4.3.1 Why Reuse Code?

As a project grows in scope, the amount of code becomes difficult to manage. Every
line of code is a site for an unforeseen error. Minimizing code is an effective strategy for
simplifying maintenance. One of the most significant ways of minimizing code is the reuse
of existing code.

Very frequently, sections of code are very similar, save a few parameters. Placing these
functional units within a separate function file has many advantages. In addition to reduc-
ing the amount of code, such an approach allows for testing the functionality indepen-
dently. When a project is constructed from such independently testable, reusable parts
there are fewer errors, and those errors that do occur are typically simpler to eradicate
than in code which lacks this organization. Such projects also often require substantially
less new code and are faster to implement.

This section focuses on guidelines which foster reuse and maintainability. Low coupling
isolates unrelated areas from future changes in a logical unit. High cohesion and separation
of concerns push related units together so that maintenance to a given logical unit requires
modifying as little code as possible. Side effects often limit reuse. Finally, object oriented
design provides one means of reducing coupling and improving cohesion.

4.3.2 Coupling and Cohesion

Coupling describes the flow of information to and, to some degree, the degree of depen-
dency between two or more logical units. Functions requiring a greater quantity of struc-
tured information for use, such as parameters or global variables, are described as having
high or strong coupling. Functions requiring minimal amounts of parameters or global
variables are likewise described as having low or weak coupling.

function s = square(m)
s = m . 2
end

function s = square_field(m)
s = m.matrix_data.A2
global global_sum
global_sum = global_sum + sum(s)

end

I. FUNDAMENTALS



114 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

In the function square, there is a small degree of coupling between square and a calling
function. The function square expects a single input parameter and returns a single output
parameter. The function square field is far more coupled to its caller. Like square,
square_field expects a single input parameter and returns a single output parameter.
However, square_field expects the input parameter to be a MATLAB object with a field
named matrix_data. Moreover, square_field uses a global variable to track the global sum
of squares. These two aspects of square_field’s functionality must be understood and man-
aged by any function invoking square_field.

High coupling marks a more complex relationship between two or more functions.
Usually, a more complex relationship is more difficult to manage in the event of modifica-
tion. In the example above, if the name of the field matrix_data needed to be changed,
every caller of square_field would need to be changed in addition to square_field itself.

Low coupling has a number of advantages for reuse. With fewer parameters to con-
struct and provide, simpler interfaces are easier to integrate into existing code. The simpler
relationships of weaker coupling also mean less to understand when reading or maintain-
ing the code in the future.

Cohesion describes the degree to which a unit’s functionality achieves a single purpose.
Functions in which the functionality of each constituent part implements some necessary
aspect of a clear purpose have high cohesion. The example functions above differ in cohe-
sion as well as coupling. The function square has high cohesion. Its single statement
implements the clear functionality of the unit, which is an element-wise squaring of the
input. The function square_field, on the other hand, could be described as less cohesive.
The rationale for tracking the global sum of elements is not clear from the function’s name
or other code. As such, one could argue that the statements dealing with the global vari-
able global_sum are not aligned with the primary purpose of the unit, which is to calculate
the square of the input variable’s field matrix_data.

Functions with lower cohesion are often more difficult to reuse. Such functions
often have additional input/output variables or even global variables that must be
accounted for in the calling code. Accounting for unnecessary aspects of the function
takes additional time and effort that, themselves, should not be necessary. Code
focused on a single purpose is usually simpler, which is often easier to read, maintain,
and debug.

4.3.3 Separation of Concerns

Separation of concerns is a useful guiding principle in organizing a larger project.
Under separation of concerns, all code related to providing a distinct feature is grouped
together in a separate logical unit. This logical unit could be a single-named function for
simpler features or a set of functions or objects for more complex features. Thus, if systems
have overlapping common features (i.e., concerns), then separation argues for separating
out those common concerns into a new logical unit.

This is quite similar to, but distinct from, high cohesion. High cohesion demands con-
formity of purpose within a logical unit. Separation of concerns seeks to collect similar
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functionality across a system within a single logical unit. Often, maintaining high cohesion
will result in a very natural separation of concerns among logical units.

Separation of concerns provides the substantial benefit that different areas of the proj-
ect can be tested and modified independently of other functional units. Let’s take a
hypothetical example of an application that presents auditory stimuli and records EEG
data during the stimulus presentation. In such an application, there are many concerns,
including randomization of stimuli, playback of stimuli through the speakers, display-
ing EEG data in realtime, collecting EEG data through hardware, and storing the EEG
data. This list is only an example. Different scenarios might lend themselves to a differ-
ent set of concerns. Under a separation of concerns model, all the code dealing with one
of these concerns, for example, realtime display, would be confined to one or more
functions that would be limited as much as possible to realizing realtime display
functionality.

4.3.4 Limiting Side Effects, or the Perils of Global State

Using nonlocal variables, either through script files or through variables declared as
global, strongly limits reuse. Imagine a function that counts spikes in a recording and
uses a global variable to track the total number of spikes over all recordings:

function interval_count = count_spikes(r, threshold)
global global_count;
% above_threshold will be for every sample above threshold
above_threshold = r > threshold;
% counting only points where diff(above_threshold) > 0
% counts the number of contiguous blocks of samples above threshold
interval_count = diff(above_threshold) > 0;

global_count = global_count + interval_count;
end

This may be a convenient way of tracking the overall count, but this mechanism
imposes significant constraints on how count_spikes could be used. Now imagine a set of
extracellular recordings over time intervals for multiple sites, made simultaneously, stored
in an interleaved fashion (i.e., site 1 for interval 1, site 2 for interval 1, site 3 for interval 1,
site 1 for interval 2, site 2 for interval 2, site 3 for interval 2, etc.). If the intervals are pro-
cessed in order, the global count will include spikes above thresholds at all three sites
instead of counting the total spikes at each site separately.

Outside of limitations imposed by complex usage patterns, the use of global variable
global_count could also limit how other functions are used in the same project. Since all
global variables share a workspace, any other function that uses a global variable
named global_count could disrupt the accumulation of results in global_count.

Modifying global variables in a function is a specific case of what is termed a side effect.
A side effect is any change in the run time state outside the scope of a function.
Sometimes, side effects are absolutely necessary. For example, printing text to the screen
and writing to a file would both be considered side effects; such actions change the
console (printing) or file system (writing to a file). Often, side effects are unnecessary, as
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in the previous example. Tracking all spikes at a given site is best left to the caller of
count_spikes, as no information about the site context is provided to count_spikes.

4.3.5 Objects

Object-oriented programming (OOP) has been a popular programming paradigm for
more than a decade. The fundamental kernel of object-oriented programming is the capa-
bility to package together cohesive units of code and data as “objects,” entities that can be
manipulated programmatically. Objects can refer to physical real world objects or can be
highly abstract concepts. Most programming languages in common use support some
mechanism for object-oriented programming, and MATLAB is no exception.

Object-oriented programming provides a mechanism for separating concerns, reducing
coupling, and increasing cohesion. First, the object-oriented paradigm allows otherwise
difficult to extract bits of code from multiple routines to be grouped together logically.
Secondly, large, relatively inflexible function parameter sequences can be replaced by one
or more flexible objects. In this case, the same data is passed between functions, but the
semantics of objects allow many types of changes to objects without requiring alterations
to those objects’ users, which reduces coupling. Thirdly, by grouping related bits of code
from throughout the system into logical units, the cohesion of the routines from where the
bits of code originated improves.

Beyond the capacity to create and manipulate objects, there is no strict set of features
that compose the object-oriented programming paradigm. Programming languages differ
significantly on the functionality that their respective object models provide. Even
MATLAB supports two different object models, with varying functionality. Within that
variety of models, the following features are strongly associated with the object-oriented
programming paradigm, and many object models support a majority if not all of them:

Encapsulation: the grouping together of data and relevant code in cohesive units

Data hiding: limiting access to data or executable routines related to functionality
internal to the object

Inheritance: allowing “descent of objects”; objects can be defined as descendants of
other objects, gaining their data and executable code

Subtype polymorphism: functioning as objects of a parent type in places where an
object of the parent type are expected

Dynamic dispatch: the capability to differentiate among multiple implementations of a
routine at runtime depending on the identity of an object

As mentioned earlier, MATLAB has supported two separate object models. The more
recently introduced object model, available in MATLAB R2008a and later, provides for all
the features listed above. Only this object model will be discussed here.

4.3.5.1 Creating Objects

Under the MATLAB object model, one specifies the data held by an object and associ-
ated routines in a class definition. These data are called member variables or properties,
and the executable routines are called methods. This terminology is fairly standard among
object models. Once a class is defined, any number of objects (Ilimited by memory, of
course) can be created from that class through a process called instantiation. Each object
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can hold its own copy of the member variables and operate on them independently of
objects of the same class.

To illustrate the benefits of object-oriented programming, we will create a set of objects
that will present a unified model for locating auditory recordings, regardless of the under-
lying format representation. At this time, we anticipate that other code that analyzes the
auditory recordings will require a sampling rate and a time stamp for the start of the file
in addition to the raw data of the recording.

The initial class we define will provide a basic interface for all recordings for obtaining
raw data, sampling rate, and time of recording. Here is code for this initial class.

classdef recording
properties
filename
end
methods
function obj = recording(filename)
obj.filename = filename;
end
function t = timestamp(obj)
% get the time stamp by getting the date from dir
d = dir(obj.filename);
t = d.date;
end
function r = sample_rate(obj)
r=-1,
end
function d = raw_data(obj)
d=1[J
end

end
end

The class definition begins with the reserved word classdef. Like most statements that
introduce blocks in MATLAB, classdef has a matching end. Within classdef, there are
properties and methods sections. We'll discuss the methods section in a moment. Names
for data managed by the class are specified in the properties section. In this case, a prop-
erty called “filename” is defined.

The methods section contains the executable routines specific to the class. Object-
oriented programming has a number of terms to describe the subtly different invocation
of functions in the context of objects. Functions bound to objects and operating on them
are called methods. Outside of MATLAB, data held by objects are often called members or
member fields (MATLAB calls them properties).

Examining the methods, one will quickly discover that all but the first method have an
initial parameter, obj. This initial parameter is the object being referenced. This should be
fairly clear in the implementation of timestamp(). The code in timestamp() obtains the
name of the file through the filename property of the referenced object, which is then used
to locate the date through the dir() function. With the exception of this initial parameter,
methods operate similarly to normal functions.
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Now we look at the first method. This method has the same name as the class as speci-
fied after the classdef statement. That marks this method as a special method, called a
constructor. A constructor is eponymous with the class and includes initialization code to
be executed when the object is constructed. The parameter list of the constructor lists all the
parameters required to create an instance object of the class. Unlike the other methods,
there no is referenced object as a first parameter, since the object has not been created yet.
Instead, the constructor has the output parameter that appears to go unassigned. It is this
variable that holds the newly created object during the invocation of the constructor. To
initialize our recording object, the value of the filename variable passed into the con-
structor must be copied into the property of the same name in obj. This may seem unnec-
essary, but the two variables named filename are entirely distinct and live in entirely
different scopes, one within the class recording, and one as a local variable in the con-
structor for recording.

To create a recording object, type the following:

>> r = recording('test.wav');

Look at the time stamp:

>> r.timestamp()

Note that the methods to load the data and return the sample rate are unimplemented:

>> r.sample_rate()
>> r.raw_data()

Creating implementations for these methods are the focus of the next section.

4.3.5.2 Inheritance

At this stage, it would be helpful to be able to load a sound file. The example below
shows code for a wav_recording class, which loads WAV files. The code for the
wav_recording class is fairly similar to the recording class, with a few differences.

classdef wav_recording < recording
methods
function obj = wav_recording(filename)
obj = obj@recording(filename);
end
function r = sample_rate(obj)
[data, r] = wavread(obj.filename);
end
function data = raw_data(obj)
[data, r] = wavread(obj.filename);
end

end
end
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The most noticeable difference is the less than sign and “recording” at the beginning of
the class definition, immediately after the class name. These denote that the wav_recording
class should inherit from recording. This inheritance means that objects of the
wav_recording class have their own copies of the properties and methods in recording.
Through inheritance, all objects of wav_recording are also objects of recording. Note the
constructor. The unusual function call in the constructor references the constructor of the
parent class, recording. Calling the constructor in recording ensures that the filename input
parameter in the wav_recording constructor will be copied to the filename property during
the execution of the constructor of recording. Also, note the absence of the timestamp
method here in wav_recording. Since the functionality provided in the parent class is suffi-
cient, there is no need to override it here.

>> r = wav_recording('test.wav')
>> r.timestamp()

The inheritance is also clear in the implementations of sample_rate() and raw_data(). In
these methods, the filename property of the object is referenced, and this relies upon the
definition of the parent class recording.

Try obtaining the sample rate:

>> r.sample_rate()
>> plot(r.raw_data())

The previous functionality is still available, simply by instantiating a recording object:

>> r = recording('test.wav')
>> r.sample_rate()
>> plot(r.raw_data())

The capability of the MATLAB interpreter to choose the proper method based on the
class identity of the object is called dynamic dispatch. For dynamic dispatch to work prop-
erly, the method name and input parameter lists must be the same throughout the class
hierarchy.

Now, we will add support for PCM audio files. PCM (pulse code modulation) is a sim-
ple file format that stores digitized samples as 16 bit integers. Unlike WAV files, PCM files
include only data, and the sample rate must be stored elsewhere (e.g., in experimental
notes or in a separate file). Because of this, we will include the sample rate as a parameter
on the constructor. Our PCM reading—recording class will also require PCM-specific
implementations of sample_rate() and raw_data(), as did the WAV reading class. Here is
code for a PCM reading class:

classdef pcm_recording < recording
methods

function obj = pcm_recording(filename, sample_rate)
obj = obj@recording(filename);
obj.sample_rate = sample_rate;

end

function r = sample_rate(obj)
return obj.sample_rate;
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end
function data = raw_data(obj)
fid = fopen(obj.filename, 'r');
if fid == -
error('Unable to open file' + obj.filename);
data = [];
return
else
data = fread(fid, inf, 'uintl6 = > double', 0, '1');
fclose(fid);
end
end

end

Note that the sample_rate() method does nothing with the file, but it returns the sample
rate specified through the constructor.
Try the following:

>> r = pcm_recording('test.pcm', 20000)
>> r.sample_rate()

>> r = pcm_recording('test.pcm', 40000)
>> r.sample_rate() % note 40 kHz rate now

One of the major benefits of working under an object-oriented paradigm is the ability to
write code that works under a variety of cases and that, at the same time, isolates those cases
in separate pieces of code. This strongly promotes both high cohesion and lower coupling.
The example ahead shows a set of functions that scan for events above a threshold and
report on their threshold crossing times.

function dates = threshold_crossings(wav_filename, start_time)

end

% Input parameters
% wav_filename : filename for WAV file
% start_time : start time of the WAV recording
raw_data, sampling_rate = wavread(wav_filename);
above = raw_data > threshold;
threshold_crossings = diff(above) == 1;
threshold_times = find(threshold_crossings);
% threshold_times is the sample count since start_time
% for each threshold crossing
threshold_sec = threshold_times / sampling_rate;
dates = zeros((length(threshold_sec), 1));
for ii = 1:length(threshold_sec)

dates[ii] = addtodate(datenum(start_time, threshold_sec, 'second"));
end

At the moment, this function works only for WAV files. We can change threshold_
crossings() to work with our wav_recording objects with a small amount of work. The
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next example shows threshold_crossings() modified to use recording objects. In making
the change, we reduce coupling somewhat, as threshold_crossings now only requires a
single input parameter, even though new constraints are placed on that parameter (it must
support raw_data, sampling_rate, and start_time methods). Cohesion is improved as well,
as the WAV loading code is no longer in threshold_crossings().

function dates = threshold_crossings(rec)
% Input parameters
% rec : audio recording object

raw_data = rec.raw_data();

sampling_rate = rec.sampling_rate();
start_time = rec.start_time();

above = raw_data > threshold;
threshold_crossings = diff(above) == 1;
threshold_times = find(threshold_crossings);

% threshold_times is the sample count since start_time
% for each threshold crossing
threshold_sec = threshold_times / sampling_rate;
dates = zeros((length(threshold_sec), 1));
for ii = L:length(threshold_sec)
dates[ii] = addtodate(datenum(start_time, threshold_sec, 'second"));

end
end

One substantial benefit in making the change is near effortless support of PCM files
obtained through data hiding and encapsulation. Since all the code specific to PCM loading
is isolated in the PCM class, we can safely make changes in threshold_crossings() to support
generic recordings without worrying about PCM support within threshold_crossings().

EXERCISE 4.2

Write a simple function play_recording function with raw data and sampling rate
that uses sampling rate appropriately to  to produce correctly timed sound.
play an audio recording. Use the sound()

EXERCISE 4.3

Write play_recording from Exercise 4.2 as a method on the recording class.
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EXERCISE 4.4

File test audio.hdf5 contains an audio
recording within an HDEF5 file. HDF5 is a
high performance hierarchical data format
used to create structured files (i.e., files
containing many types of data in an orga-
nized, labeled manner). MATLAB has
substantial support for HDF5 files. The
function h5disp() displays the content of an
HDF?5 file:

h5disp(‘test_audio.hdf5’)

There are also functions to read datasets
(h5read) and attributes on datasets (h5read-
att). Within the file test audio.hdf5 at loca-
tion “/audio/recordingl” is audio data.
Attached to that dataset as an attribute “sam-
pling_rate” should be a sampling rate, in Hz.

Write another child class of recording that
provides an implementation of this structure
within an HDF5 file. You can test your code
on test_audio2.hdf5, which should conform
to the same format.

EXERCISE 4.5

Generalize the class written for Exercise 4.4
to work with any HDF5 file in which a dataset
containing a vector of values and an associ-
ated attribute with sampling rate will work,
regardless of the dataset location within the
HDF5 file or the name of the sampling rate

attribute. (Hint: The names of these two keys
will need to be specified at object instantia-
tion, in the constructor!) Try your solution on
test_audio3.hdf5, which has audio data at
/audio/recording2 and sampling information
at “samples_per_sec” on /audio/recording?.

4.3.5.3 Passing Objects Around: The Handle Class

Much like other types of variables, MATLAB objects are copied in and copied out dur-
ing function calls. Here is an example that demonstrates this phenomenon for a vector:

function x = no_change(in_vector, index, new_value)

in_vector(index) = new_value;
end

Type the following:

>> x = 1:5
>> no_change(x, 4, 2)
>> x
x —3
1 2 3 4 5
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For the change to be permanent, the input parameter must be moved to the output
parameter, as in the following;:

function x = change(in_vector, index, new_value)
in_vector(index) = new_value;
X = in_vector;

end
>> x = 1.5
>> y = changel(x, 4, 2);
>> X
X=
1 2 3 4 5
>>y
y=
1 2 3 2 5

While the original input x is still unchanged, the modification does leave the function
as an output, which is copied into the variable y. Objects operate much the same. This is
even the case for methods that modify properties. To preserve the change, the modified
object must be copied out:

classdef example
properties
name
end
methods
function change_namel(obj, new_name)
obj.name = new_name
end
function change_name2(obj, new_name)
obj.name = new_name;
end

end
end

>> r = example;
>> r.change_namel('new name');
>>r

r =

example

Properties:
name: []

Methods

>> r.change_name2('new name');
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>>r

r =

example

Properties:
name: []

Methods

>> r = r.change_name2('new name');
>>r

r =
example

Properties:
name: 'new name'

Methods
>>rr2=r

12 =
example

Properties:
name: 'new name'

Methods

>> r2.name = 'testing’;
>> r2

12 =
example

Properties:
name: 'testing'

Methods
>>r

example

Properties:
name: 'new name'

Methods
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Only passing the modified object out and storing the result in allows for the method to
change the property value. Also note that assigning r to a new variable r2 causes the object
held by r to be copied. The result is a new object in r2 distinct from that held by r.

The situation may arise where this copying of objects is undesirable. This often is the
case when objects are used to manipulate the state of a non-duplicating resource, such as a
file reference or a graphical object. Another case in which these semantics are undesirable
occurs when creating objects where the internal state of the object could change without
the awareness of the invoking code. The WAV reading class written earlier illustrates an
example of this later use.

Because the MATLAB function wavread() always reads the whole WAV file, even if
only the sampling rate is needed, invoking wav_recording.sample_rate() will still read the
entire WAV file into memory. Moreover, invoking wav_recording.raw_data() immediately
afterwards reads the WAV file into memory again. Ideally, the contents of a file could be
stored away as a property when read. Whenever the data was requested through the
raw_data() method, the previously read contents of the file could be returned if available,
saving the overhead of an extra read. Unfortunately, this would require the parent class’
raw_data() to return the current object as a parameter in addition to the read data. This
also makes for a messier call, since the call would be something like

[data, r] = r.raw_data()

Fortunately, MATLAB provides an alternate method of passing objects. Under this
alternate object passing mechanism, variables refer not to objects directly, but to handles
of objects. With this paradigm, multiple variables can “point” to the same object, and the
normal copying of variables during function calling only copies a handle. To specify that a
class use this alternate passing mechanism, classes must inherit from handle. Open up the

example class above, and add “< handle” to the end of the first line. Change the class
name to example2, and save as example2. The first two lines of example2 should be:

classdef example2 < handle
properties

Then, type

>> r = example2;

>> r.change_namel('new name');
>>r

r —

example2 handle

Properties:
name: 'new name'

Methods, Events, Superclasses
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>>r2=r
r2 =
example2 handle

Properties:
name: 'new name'

Methods, Events, Superclasses

>> r2.name = 'testing'

22 =

example2 handle

Properties:
name: 'testing'

Methods, Events, Superclasses

>>r
r =
example2 handle

Properties:
name: 'testing'

Methods, Events, Superclasses

Invoking change_namel on r modified r itself. Likewise, r and 12 refer to the same
object, so changes made using r are visible when examining the object through r2.

For completeness, here is a class wav_recording2 that implements the caching
discussed earlier. A given file is only read once, regardless of how many times
sample_rate() or raw_data() is invoked. The parent class is recording2, which is identi-
cal to recording except that it inherits from handle. A listing of the first few lines fol-
lows the listing for wav_recording?2. If a class inherits from handle, then all parent
classes must as well.

classdef wav_recording2 < recording2
properties
stored_data = [];
stored_rate = -1;

end
methods
function obj = wav_recording2(filename)
obj = obj@recording2(filename);
end

function r = sample_rate(obj)
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if obj.stored_rate > = 0
r = obj.stored_rate;

else
[data, r] = wavread(obj.filename);
obj.stored_data = data;
obj.stored_rate = r;

end

end

function data = raw_data(obj)
if ~isempty(obj.stored_data)
data = obj.stored_data;

else
[data, r] = wavread(obj.filename);
obj.stored_data = data;
obj.stored_rate = r;
end
end
end
end
classdef recording2 < handle
properties
filename
end

One last note about objects descending from handle: Creating objects derived from han-
dle causes allocation of memory that is not automatically cleaned up when the variable is
cleared or goes out of scope. Clearing a variable holding an object derived from handle
only removes the reference to the object. To remove the object itself, delete must be used.
Since delete removes the object itself from memory, other references to the same object
automatically become invalid after deletion.

>> r = recording2('test.wav');
>>r2=r

>> delete(r)

>> r.filename

??? Invalid or deleted object.

>> r2.filename
??? Invalid or deleted object.
>>r2

r2 =
deleted recording2 handle

Methods, Events, Superclasses
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Unfortunately, in addition to deleting handle-derived objects, delete can also be used to
remove files when used as a command. To avoid inadvertently deleting files, always be
sure to use the functional form of delete (i.e., with parentheses).

4.3.5.4 Summary

MATLAB’s object model supports much, much more than what is touched on here,
including access control, events, and complex inheritance patterns. For simple data analy-
sis, simple representation of data as matrices is suitable. Object-oriented programming
provides a tool for organizing larger efforts that promotes maintainability and minimizes
code duplication. Object-oriented programming is particularly suited to GUI program-
ming, where the programmatic objects are a natural analog of the controls and other visual
entities on the screen such as the mouse cursor or menus.

4.4 TAMING ERRORS

4.4.1 An Introduction to the Debugger

At some point, despite great care in design and implementation, errors will rear their
ugly heads. One of the greatest tools for eradicating errors is a debugger.

A debugger allows for running MATLAB code in an environment where the program
state (e.g., variable value, interpreter location, etc.) can be explicitly controlled. The follow-
ing code shows a naive implementation of a factorial function.

function f = factorial2(g)
ifg ==

f=1;

return
end
f = g * factorial2(g-1);
end

Typing factorial2(5) yields the expected 120. Try typing factorial2(5.1). Clearly, this
behavior is not desirable. In this simple example, finding the error by inspecting the code
alone is entirely plausible. That same simplicity also argues for this as a good example for
demonstrating the debugger.

The easiest way to invoke the debugger on a function like factorial2 is to open the function
in the editor and add a breakpoint in the editor. A breakpoint denotes a location in the code
where the MATLAB interpreter will always stop. Not all lines can support a breakpoint. In
the editor, lines where a breakpoint can be placed will have a horizontal line to the left of the
code. Clicking on that horizontal line to the left of the text places a breakpoint at that line.
Clicking again removes the breakpoint. For this example, place a breakpoint on the line “if
g ==1." Figure 4.2 illustrates the editor/debugger window with a breakpoint set.

With breakpoint in place, type factorial2(5.1) again. MATLAB should reposition the edi-
tor/debugger window to the front and place an arrow at the breakpoint. The command
line prompt should also change. The MATLAB interpreter is now inside the function.
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FIGURE 4.3 Editor/debugger window showing the stack list and an active debugger (green arrow)

The current workspace is not the command line (Base), but the current factorial scope.
Because the interpreter is in the scope of the current invocation of the function, variable values
can be inspected. Typing “g” shows the value of g in the current scope (5.1). One can also
observe the value of g in the workspace window. In addition to the g in the current scope, the
workspace window allows viewing variables in other scopes as well. Selecting a different
scope in the scope dropdown will cause all the variables in that scope to be displayed.

Selecting “Continue” from the Debug menu in the editor/debugger window will
resume execution until encountering the next breakpoint. Note the contents of the stack
list box after continuing. The stack dropdown allows selecting a specific scope (i.e., stack
frame) in which to operate (see Figure 4.3). In the command window, type

>>¢g

After observing the value of g, select a different frame from the dropdown and inspect
the value of that frame’s g value by typing

>>g

Are they the same?
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“u

After continuing four more times (a total of five), inspect the value of “g.

The variable “g” should be 0.1. Continuing again and inspecting ¢ will reveal the error;
g becomes negative. From this, it should be clear that the termination condition for the fac-
torial2 function in the if statement is not specific enough. Checking whether the input is
exactly 1 will miss any non-integer argument. At this point, the error could be addressed
in a number of fashions, depending on the desired functionality when non-integers are
specified as the initial argument.

" 1

Change the value of “g” to 1 from —0.9. This can be done by typing g =1 at the com-
mand line or by clicking on “g” in the workspace window. After setting ¢ to 1, continue
executing the function by selecting “Continue” from the debug menu in the editor/
debugger window. From this point forward in the execution, the value of g at that scope
will be 1. Since the next line after the breakpoint is the if statement comparing the value of
g to 1, the invocation of factorial2 at the level where ¢ was modified quickly terminates
and returns a value of 1 to the previous calling level.

Again, type factorial2(5.1), and continue until g is negative. Before continuing again, set
the value of g to 1. Before continuing, place a breakpoint on the last end of the function.
Now, the MATLAB interpreter will stop after calculating each part of the factorial. After
continuing, examine the value of g. Is it what you expect? It is important to remember that
the variable “g” at each scope is a distinct and separate variable.

In addition to continuing after a breakpoint, the debugger allows stepping through
code line by line. Type factorial2(3). When the interpreter reaches the first breakpoint, step
one line by selecting “step” from the debug menu. Continue stepping through the function
until the final answer is calculated. Stepping through line by line demonstrates how the
calculation invokes a series of calls that only end once termination condition is reached.
Normally, step does not enter called functions. To enter a called function, step in can be
used instead of step. Likewise, when inside a called function, step out will return to the
calling function.

Finally, when finished, clear the breakpoints, either by clicking on the breakpoints in
the editor or by selecting “clear all” from the debug menu in the editor window.

4.4.2 Logging

In larger programs, running under the debugger may not be feasible. Larger programs
have more complex states, and it may not be possible to duplicate the bug within the
debugger. For such cases, logging may be an appropriate methodology for tracking down
bugs. Logging is simply printing out the internal status of the program. Usually, the log
will be written to an external file to preserve the record for later debugging.

function f = factorial2(g, log_file)
fprintf(log_file, 'Entering factorial2(), g = %d', g)
itg ==

f=1;

return
end
f = g * factorial2(g-1);
end
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This example has been simplified to demonstrate logging. This example requires the log
file to remain open for the running of the program. Ideally, one would want the file only
open when the log was being updated. To realize this, the file name could be passed
instead of an open file, but that would require error-handling code in every function using
the log. A better approach would be to create a logging object, capable of maintaining a
file name and encapsulating all the file handling code. This approach improves the cohe-
sion of the factorial2() function, as only the portion of the logging relevant to supplying
factorial2’s behavior would remain in factorial2(). The code ahead demonstrates such a
class and its usage (post-R2008a semantics).

classdef logger
% Provides simple logging functionality.
% To create, use the constructor with a filename.
% Log entries are appended to the end of the file, with each
% entry added on its own line.
properties
filename;
end

methods
function obj = logger(filename)
obj.filename = filename;
end

function message(obj, msg_str)
% Outputs a message to the logging file.
% Messages should be a string,.
% Usage:
% log.message('Within function message()')
fid = fopen(obj.filename, 'a +’);
if fid == -
warning('Unable to open log file')
return
end
fprintf(fid, '%s\n', msg_str);
fclose(fid);
end

end
end

function f = factorial2(g, log)
log.message(sprintf('Entering factorial2(), g = %d', g));
ifg ==
f=1;
return
end
f = g * factorial2(g-1);
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end
>> log = logger('factorial-log.log");
>> f = factorial2(g, log);

4.4.3 Edge Cases and Unit Testing

Greater modularity and tighter cohesion lend themselves to simpler testing. With mod-
ular code, small portions of a larger program can be isolated and tested in a rigorous fash-
ion. Such automated testing of smaller logical components through isolating them from
the other parts of the program is called unit testing.

When unit testing, one wants to verify that all possible inputs have an expected result.
Since testing all possible inputs is not feasible (for a single two element vector alone, this
is 2'*® different possibilities!), unit testing focuses on what are termed edge cases: those
states or sets of parameters on the edges of different parameter spaces. Because these edge
cases are usually the boundary between qualitatively different types of functional behav-
ior, these types of inputs are often likely to evoke erroneous behavior because these types
of values are often unplanned for. To illustrate the selection of edge cases, we will use the
factorial2() function from previous sections:

function f = factorial2(g)
ifg<=1

f=1;

return
end
f = g * factorial2(g-1);
end

If the input is limited to scalars, the behavior is likely to differ for integers (positive
and negative), reals (positive and negative), 0, and 1. Thus, good edge cases would
include —1, 0, 1, positive values and negative distant from 0, and small real values.
Each test case should test a single edge case. Test cases should invoke the function
with known inputs and compare the result to the expected output. Errors are
acceptable as long as the error is the expected output for the function, given the input.

Here is a script with test cases for a — 1, 0, 1, and a sequence of positive integer inputs.

% test 1
if factorial2(-1) ! = -1
error('incorrect output for test 1: negative numbers');
end
% test 2
if factorial2(0) != 1
error('incorrect output for test 2: 0');
end
% test 3
if factorial2(1) != 1
error('incorrect output for test 3: 1');
end
% test 4
a=1[2 3 4 5];
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a = factorial(a);
a2 =1[2 3 4 5]
for ii = 1:length(a)
a2(ii) = factorial2(a2(ii));
end

ifa2 ~=a
error('incorrect output for test 4: positive value check');
end

EXERCISE 4.6

As coded previously, factorial2() does not pass the test cases. Modify factorial2() to pass
the test cases.

EXERCISE 4.7

Add test cases to the test script for other edge cases (reals, negative integers).

Even though the test script demonstrated clear deficiencies in the existing factorial2()
function, one of the benefits of a set of unit tests is quickly capturing bugs observed after
the initial design or implementation. Once an aspect of a unit’s functionality is captured in
a test script, regressions in that aspect can be spotted quickly. For example, if someone
later modifying the code changed the termination condition from g <=1 to g==1, exe-
cuting the unit test script would identify the error immediately. Unit tests capture the
expected behavior of a function and allow divergences to be identified much more quickly
than embedded in a large program.

EXERCISE 4.8

The following code thresholds a raw recording, separates the event set into trials, and
sorts the events to generate data for a PSTH (peri-stimulus time histogram).

function psth,bins = bin_for_psth(raw_data, sampling_rate, threshold,
trial_count, trial_length, bin_size)
% Locates events above threshold in raw data and generates PSTH from
% multi-trial recording. Trials should be contiguous.
%
% Input parameters
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%  raw_data: raw input data

%  sampling rate:  sampling rate in Hz

% threshold: threshold for events, in same units as raw data
%  trial_count: number of contiguous trials

%  trial_length: length of each trial, in seconds

% bin_size: size of each PSTH bin, in seconds

%o

% Output parameters

%o psth: count in each bin

%  bins: center position of each bin, in seconds relative to
) trial start

% first, threshold signal
events = raw_data > threshold;
% only positive threshold crossings (not sustained activity above
threshold)
events = diff(events) == 1;
events = [0 events];
% now, split into trials
events = reshape(events, trial_count, trial_length*sampling_rate);
% events should be MxN, where M = trial and N = sample
summed_events = sum(events);
% summed_events should be the sum of events at each sample relative
to
% the start of the trial
max_event_count = max(summed_events);
for count = 0:max_event_count-1
above_count = find(summed_events > count);
event_offsets = [event_offsets above_count];
end
% event_offsets should be the offset in sample counts where events
occur
event_times = event_offsets / sampling_rate;
End [psth, bins] = hist(event_times, trial_length/bin_size);
n

Determine edge cases for testing the input parameters of bin_for_psth, above.

EXERCISE 4.9

Write a unit test script for the edge cases identified in Exercise 4.8.
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4.4.4 A Few Words about Precision

Like most quantitative software, MATLAB does not represent most real numbers
exactly. Where this representation fails to capture values exactly is often a source of bugs
in quantitative code. This section discusses how MATLAB represents real numbers so that
such problems can be diagnosed and avoided.

MATLARB labels the specific representation of every variable, and this is visible in the
workspace. You may have noticed that nearly all variables have the label “double.” This
representation is the default representation type for values in MATLAB. Double here is in
deference to single precision floating point, a lesser used floating point representation that
consumes half the memory. Floating point representations are so called because the repre-
sentation does not fix the number of digits on either side of the decimal point. Since the
standards body IEEE (Institute of Electrical and Electronics Engineers) oversees the specifi-
cation of this format, it is commonly known as IEEE 754 or 64 bit IEEE floating point.
Similarly to MATLAB, most quantitative software uses this format for representing real
numbers (Figure 4.4).

The sign bit denotes whether the number as a whole is positive or negative.
The exponent is a base 2 number biased by 2'°—1, or 1023. The representation of
exponents are 1023 plus the exponent’s value. This system allows for exponents in the
range — 1023 to 1023.

The representation of the mantissa is the most complex portion of this standard. The
digits in the mantissa represent a binary fraction, where each successive digit represents a
successive fractional power of 2. Additionally, the mantissa is the fractional part of the
number; there is a 1 implicit in the number not represented in the format.

Here is an example to illustrate how a decimal floating point number is represented
internally by MATLAB.

Take 15.1875.

In base 2, 15 is 1111,. As a binary fraction, 0.1875 is 0.0011,. (0.1875 is 3/16, or 1/8 +
1/16, or 0*1/2 +0*1/4 + 1*1/8 + 1*1/16.) In total, 15.1875 is 1111.0011,. This must be con-
verted to binary exponential notation: 1.1110011, X 2°. To save space, the IEEE format
assumes a leading one, so we must do the same. To store this as in double precision for-
mat, we need to discard the initial 1 from the mantissa and bias the exponent (Figure 4.5).

Why is this important? MATLAB can only represent a small subset of real numbers with
absolute precision. These numbers are those whose fractional part is a sum of fractional
powers of 2. For example, 7/16 can be perfectly represented (1/4 + 1/8 + 1/16), but 7/17

Sign | Exponent (11 bits) Base 2 mantissa (52 bits)
L1
FIGURE 4.4 Representation of floating-point numbers.
Exponent (11 bits) | Base 2 mantissa (52 bits)
o[1[o] Jof[1[o[1][1]1]ofJo[1[1]0O] [0]0

FIGURE 4.5 Representation of the number 15.1875.
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cannot. Understanding the limitations of floating point representation can also help to diag-
nose difficult to see errors.

One such error is testing for equality with floating point values. This often occurs when
testing that a variable is zero or one valued. For example, the test below is attempting to
verify that the variable x is 0:

ifx ==

However, this will often not work if x is the result of extensive calculations. When test-
ing for zero, it is usually best to check a range around zero because the value is likely
some extremely small floating point number rather than exactly zero:

if abs(x) < 1.0e-6

This scenario most often happens when checking for equality with zero, but any com-
parison involving floating point values and an arbitrary value, such as 0 or 1, should use a
small interval instead.

Another such error occurs with operations on two values of extremely different magni-
tudes. The mantissa portion of the IEEE format has only 52 bits of precision. Thus, values
differing by more than 2°° cannot be reliably added. This example demonstrates the pro-
blems inherent with sums of large and small magnitude numbers.

>> format compact

>> format long

>> 2/52

ans =
4.503599627370496e + 15

Note that this is exactly 2°2; there are no values hidden from view. To demonstrate, we
can add one:

>> 2752 + 1
ans =

4.503599627370497e + 15
This cannot be done for 2°%:
>> 2A/53
ans =

9.007199254740992¢ + 15
>> 2A53+1
ans =

9.007199254740992¢ + 15

The result is identical to the original value, 2*°. Tt is important to note that this is not
the result of the unit’s place being hidden from view. The following demonstrates that, under
MATLAB, 1 + 2% is equal to 2°°. The equivalent example with 2°* is shown for comparison.

>> 2A53 == 2A53 + 1
ans =
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1
>> 2A52 == 2A52 + 1
ans =

0

Similar problems occur when multiplying or dividing exceedingly small numbers. For
example:

>> 10~(—200) * 10~(—100) * 10~(—100)
ans =
0
>> 10~(—200) * 10~(—100) * 10~ (—100) * 10~(300) * 10~ (300)
ans =
0

Rearranging the terms yields the correct answer:

>> 10~(—200) * 10~(300) * 10~(—100) * 10~( — 100) * 10~(300)
ans =
1.000000000000000e + 200

Such problems can be avoided by carefully considering the magnitudes of the values in
the calculation. When adding or subtracting terms of varying magnitudes, keeping the
large and small values separated as distinct terms as long as possible often avoids this
problem. Moving the calculation to logarithms is particularly effective for problematic
multiplication or division.

4.4.5 Suggestions for Optimization

Occasionally, the situation arises where code does produce the expected result, but the
code does so too slowly. In such cases, the code can be optimized. Optimization here
means the rewriting of a portion of the code to improve the performance of the overall
program. Since optimization involves scrutinizing working code, it is best to limit substan-
tial optimization efforts to known hot paths—places in a program where the MATLAB
interpreter spends a substantial proportion of the execution time.

Identifying hot paths from source code is difficult and quite error prone for larger
pieces of code. Before engaging in a substantial optimization effort at a poorly performant
site in the code, it is best to verify that the site is actually the cause of the perceived perfor-
mance problem. This can be done by timing experiments with tic/toc or using the
MATLAB profiler. Once identified, addressing efficiencies in the hot paths of a program
can yield substantial returns.

4.4.5.1 Vectorizing Matrix Operations

MATLAB is particularly efficient in executing matrix operations relative to the same
operations. Taking full advantage of matrix operations in code often doesn’t occur when
first learning MATLAB, as the syntax is not as straightforward. This and the following sec-
tions offer suggestions for moving common non-matrix operations to matrix form. Code
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transformations of this type are called vectorization, as the type of matrix operations
MATLAB offers are termed vector operations. (The use of vector to characterize MATLAB
matrix operations indicates multi-valued operations, in deference to scalar (single-valued)
operations, and does not refer to the mathematical objects operated on.)

A primary benefit of vectorizing code is a potential speed up in execution with a sub-
stantial change to the larger algorithm in the code. Here is an example contrasting two dif-
ferent approaches to adding matrices.

A = ones(4, 4); * 3; % matrix of threes

B = ones(4, 4); * 6; % matrix of sixes
C = zeros(4, 4);
forii = 1:4
forjj = 1:4
C(i, jj) = AdGi, jj) + B(i, jj);
end
end
or

A = ones(4, 4); * 3; % matrix of threes
B = ones(4, 4); * 6; % matrix of sixes
C = zeros(4, 4);

C=A+ B;

While both pieces of code accomplish the same task, the second executes measurably
faster. Note that the second snippet avoids the nested for loops.

Understanding why these two bits of code execute so differently requires a brief expla-
nation of how MATLAB evaluates code. Individual operations in MATLAB execute as
compiled machine code, at high speed. For example, the matrix addition in the second
code section executes in this manner.

However, in the case of the first example, evaluation of the inner statement alone
requires evaluating each of the two index variables, three matrix lookups, a scalar addi-
tion, and storing the scalar result. In between operations, the interpreter must be con-
stantly consulted to determine the next step.

4.4.5.2 Conditional Expressions

Using relational operations can often function as an alternative to an if statement nested
within a for loop. A relational operator acting on a matrix returns a matrix of the same
shape with values of 1 for true and 0 for false.

A = ones(4, 4);
B = rand(4, 4);
forii = 1:4
forjj = 1:4
if (B(ii, jj) > 0.5)
Adi, jj) = AdGi, jj) + B, jj);
end
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end
end

Compare the above with the following.

A = ones(4, 4);
B = rand(4, 4);
A=A+ (B.*(B > 0.5);

In the latter example, the single expression takes the place of the nested for loops and if
statement. The inner relational expression evaluates to a 4 X 4 matrix whose elements are 1
if the corresponding element of B is greater than 0.5. Thus, the element-wise multiplication
of this matrix with B generates a matrix whose elements are either the corresponding ele-
ment of B, if B is greater than 0.5, or 0, if that element of B is less than or equal to 0.5.

4.4.5.3 Extracting Subsets from Arrays

Many times, an if statement nested within a for loop is used to extract some subset of
values from a matrix. The use of matrix relational operations and find can eliminate the
need for the iteration. The function find returns all the indices of the input for which the
input is non-zero. For example,

>> A =[1234];
>> find(A < 3)
ans =

1 2

Specifying a set of values for the index of a matrix will return a subset of the matrix
values. This can apply to the results of find

>> A = [891011];
>> find(mod(A,2) == 0)
ans =

1 3
>> A(find(mod(A,2) == 0))
ans =

8 10

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

which
global
classdef
delete
clear
dbstack
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CHAPTER

5

Visualization and
Documentation Tutorial

5.1 GOALS OF THIS CHAPTER

This chapter represents the last chapter of the fundamentals before moving on to the
later parts of the book that contain more specific and more modular material. The content
of this chapter, Visualization and Documentation, will be revisited in each subsequent one
and quite likely as long as you use MATLAB®. Therefore, it is worthwhile to devote a
chapter to it at this point, getting a firmer grip on these elementary issues, allowing you to
focus on the specific new content that is introduced later on.

5.2 VISUALIZATION

The ability to rapidly and effectively visualize data that is afforded by MATLAB is one
of the key reasons why MATLAB is so popular in the first place, perhaps only second to
its efficient computation of matrix operations. In the previous chapters, we have already
seen how easy it is to create figures from data in MATLAB. It is so easy that anyone can
do it. However, this low threshold can be treacherous. While it is easy to make the figure,
comparatively few people know how to make the figure so that it looks just how they
want it to look. This causes much frustration and often drawn-out and lengthy modifica-
tion of figures with other image processing software. It is better to avoid this altogether by
taking complete control of the figure and its appearance from the start.

We already encountered the function set in Chapter 2 when we manipulated the color
of individual subplots. set is a key function in this context. It allows you to set the value
of any figure attribute you want.
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We will start with creating a figure in itself. By now, you have probably noticed that
MATLARB creates figures by default with a certain size and in a certain position. For many
purposes, this default is too small, which means you have to resize the figure manually
each time the program is executed. A better way to do this is to create the figure with the
right size from the get-go.

Let’s try it:

>>figure
>>set(gcf,'Position’,[100 200 400 300])

This code creates a figure at a position on the screen that is at a distance of 100 pixels
from the left edge of the screen, is 200 pixels from the bottom, extends 400 pixels to the
right (width), and extends 300 pixels upwards (height). The function that accomplished
this is set, which allows us to set the value of object attributes (the object in this case is a
figure, and attributes are called “properties” within MATLAB).

set expects three values in the parentheses: the handle of the object we refer to, the
property we want to change, and the new property value, in this order and separated by
commas.

In this case, we told the function set that we want to refer to a figure not by giving it
the object handle, but by using the function gcf, which stands for “get handle for current
figure.” This is adequate, as the current figure is the one we just created. If there are multi-
ple active figures, it is better to create the figures with a handle, and later specify the han-
dle of the figure object we want to refer to. The second value here was 'Position’; it is
important to put it into quotes, so that MATLAB recognizes it as a property. The third and
last value is a vector of the form

[Left_edge Bottom_edge Width Height]

You can think of the figure as a rectangular window that starts at the point defined by
the Left_edge and Bottom_edge values as their x and y and extends from there, as speci-
fied by width and height.

But how are you supposed to know all of this? How do you know which properties can
be set and what values they expect?

That is an excellent question. Luckily, the solution is relatively straightforward. Try

>>get(gcf)

This command displays a long list of figure properties that, as we just created the fig-
ure, are set to default values, except for position, which should be what we set it to be.
You can use the function get to either get all of the figure properties and their values as
with the previous command, or a specific one, as with the command ahead, for the case of
position.

>>get(gcf,'Position’)
ans =
100 200 400 300
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Note that you can either use this for your edification as in the previous command, in
which MATLAB is telling you what the position vector of the figure is, or you can store it
for further use, as with any other vector in MATLAB, and as in this command:

>>tempfigpos = get(gcf,'Position')
You can now use the variable tempfigpos to do calculations, like so

>>figpos = 2 .* tempfigpos %Doubling everything
>>set(gcf,'Position',figpos)
figpos =

200 400 800 600

Does it still fit on your screen? (I do realize that—given the rapid advance of
technology—the answer to this question will strongly depend on when you are reading this).

Speaking of figures fitting on the screen: For most applications, it is opportune to set
the figure size to the screen size. This will allow you to take advantage of the entire screen
real estate, which is beneficial for complicated figures, particularly if you have a second
monitor—which allows you to code in one window and look at the figures in another. If
you don’t know the number of pixels on your screen or you change monitors often, it is
better to ask MATLAB than to hardcode this, like so:

>>temp = get(0,'Screensize')
>>set(gcf,'Position’,temp)

“Screensize” is a property of root, which can be accessed by giving the function set “0”
as the object handle. But how were you supposed to know that 0 would work as a handle?

This is a good time to introduce the hierarchy of graphics objects within MATLAB. At
the top of the hierarchy is root, the screen itself (handle is 0). The screen (or root) can con-
tain any number (limited by memory) of figures. Each figure has a handle which allows
you to access its properties. If you don’t specify a handle, the figure handles are simply
consecutive integers, in order of figure creation, starting with 1. So passing an object han-
dle of “0” accesses root, whereas “1” accesses the first figure, “2” the second figure, and so
on. Each figure in turn contains any number (within reason) of individual axes, which can
also have their own handles. You can change the property values of any property of any
graphics objects in MATLAB by specifying its corresponding object handle.
Understanding this will allow you, as promised, to take complete charge of the appear-
ance of the figures you create. As you get more practice, this will substantially cut down
on the amount of post-processing you will have to do.

EXERCISE 5.1

What other properties does the screen have? What are their values?
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Note: Some of the root properties will have byzantine names and a possible use that
will likely escape you at this point. Do not be discouraged by this. It will come, in time.

Back to the figure. Let’s say that for this particular project, you want a figure that
doesn’t feature the usual MATLAB figure gray as a background (represented by the RGB
color vector [0.8 0.8 0.8]), but uses red instead. There are many ways to do this. The most
straightforward one involves passing the current figure handle and property a new value,
in this case “r” (for red).

Here you go:

>> set(gcf,'Color', 'r')

Your figure background should look red now.

MATLAB knows eight different character codes for all integer combinations of the
three-element RGB vector, such as “r” for red [1 0 0], “g” for green [0 1 0], “b” for blue
[0 0 1], and so on. If you need more nuanced coloring, you can pass the vector directly,
using non-integral values. For instance, if you want a darker shade of red with a touch of
purple, this would do it:

>> set(gcf, 'Color', [0.5 0 0.2])

EXERCISE 5.2

Explore 50 different shades of red. Which one do you like best?

Time to plot something. To make matters easy, we’ll just plot a sine wave. This will do
it, creating a nice sine wave:

>>x = 0:0.01:20;
>>y = sin(x);
>> plot(x,y)

Your figure should now look something like Figure 5.1.

This command did two things; first, it created an axis in our figure, and then it created
an object within that axis. Both can be addressed.

One issue that is immediately obvious is that the axes are now hard to make out, as
they are plotted in the default black. Setting them (both x and y) to a brighter shade of
gray should solve the problem:

>> set(gca,'xcolor', [0.7 0.7 0.7]) %Changing the color of the current x-axis.
>> set(gca,'ycolor’, [0.7 0.7 0.7]) %Changing the color of the current y-axis.

Voila. Now you can read the axis values again. However, the actual sine wave still looks
positively anemic. It might be prudent to increase the line width. Alas, you plotted it with-
out giving it an explicit object handle. It still has one, but you don’t know it. What to do?

There are several ways to retrieve the object handle.
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: . . . . FIGURE 5.1 A sine wave.
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One way is to use the findall command. findall returns a list of all objects for a given
handle. In this case, we’ll use the current axis:

>>temp = findall(gca)
temp =

686.1190

687.1194

This yields two object handles, one for the axis itself and one for the line (represented
by numbers; your numbers might vary, as they are assigned by MATLAB). But how to
find out which one is the line and one which one is the axis?

Type

>> get(temp(1))
and

>> get(temp(2))

Note that in the output, one will list “axes” as “type,” the other “line.” We want to
modify the line.

We can now either access this object handle, or—for future use—redefine temp as only
the object in the current axis out of all the objects that is a line, like this:

>>temp = findall(gca,'type','line')
temp =
687.1194
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Now set the line width to a thicker strength, but hash it at the same time:

>> set(temp,'linewidth',2,'linestyle',"")

The figure should now look something like Figure 5.2.

Note: If you were to print this figure, it would use up a lot of colored ink. To prevent
this, MATLAB prints the background as white and the axes in black by default. If you
want MATLAB to print things exactly as they look on the screen, you need to set a
figure property, like this: set(gcf, 'InvertHardCopy', 'off').

Of course, things really get interesting as one introduces multiple objects in the same

axes. Let’s do it.
In order to do this without erasing the other object, we need to put the hold on, so type

>> hold on

>>z = cos(x);

>>h = plot(x,z);

This adds a cosine to the mix. Now we have two line objects. The sine wave from
before, and the new one. This time, we labeled our object with an explicit object handle,
“h.” We can now access it.

EXERCISE 5.3

Take a look at the object properties of the second line object, both ways. Once by using
the explicit handle /, and once by using the MATLAB-internal handle.
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Say that in a not so distant future you have a busy figure with a large number of lines.
For some reason, you want to take all lines of a particular color and change a particular
property, e.g., their line width. To do this, you can use the function findobj. It returns the
handles of all objects with a particular property. For example,

>> temp = findobj(gca,'color','d")
temp =

692.1171

687.1194

finds the handles of our two lines again (as they are plotted in blue, per MATLAB
default). We can now set their line width to a uniform 3 and, while we are at it, change
their color to green (see Figure 5.3).

>> set(temp,'color','g','linewidth’,3)

If this is what your figure was supposed to look like, you can declare victory at this
point.

Of course, there is a lot left to be done. One important concept to be understood is that
of children in MATLAB. Another one is that of multiple axes in the same figure. We'll
tackle both at the same time.

If you type >> get(0,'children’), you should get “1” as an output. You are asking
MATLAB how many children (figures) the screen has. At this point, it has 1. If you open
another figure (please do so, by typing “figure”), the output will now be a vector with two
elements: 1 and 2.

1 —— . ~ - - - . : FIGURE 5.3 The sine and
R o - cosine waves plotted, in
08F\> - - S j green, with line width set to 3.
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The second figure seems to be empty at this point, as confirmed by

>> get(gcf,'Children')
ans =
Empty matrix: 0-by-1

but that is an illusion. MATLAB sometimes uses hidden handles, particularly if it doesn’t
want the user to accidentally do something foolish. However, even these handles can be
displayed and accessed by using the allchild function. For example,

>>temp = allchild(gcf)

returns plenty of handles.

EXERCISE 5.4

Find the handle that corresponds to the uitoolbar (which allows you to save, print the
figure, etc.), and turn it off by making it invisible.

There are, of course, a lot of figure, axes, and line properties to modify. It will take time
to become familiar with all of them. With some simple examples, this tutorial demon-
strated how to access these properties in principle. For more information on these proper-
ties and their potential values, search the help (or the function browser) for figure_props
(for figure properties), axes_props (for axes properties), and line_props or linespec (for
line properties). There are a lot of them.

Finally, what is left to do is to explore the syntax to add multiple axes to a given figure.

In Chapter 2, we already discussed how to add a tiled (and ordered) number of axes to
a figure by using the subplot command. While this is sufficient for many purposes, it is
good to know how to add axes at arbitrary positions in the figure.

This is done in relative figure coordinates, where 0,0 corresponds to the lower left and
1,1 to the upper right.

For instance, if we want to place three unequally shaped plots on a figure, we could type

>>h1 = axes('position',[0 0.8 1 0.2])
>>h2 = axes('position',[0.8 0 0.2 0.8])
>>h3 = axes('position',[J0 0 0.8 0.8]

to create the 3 axes and their handles, then type

>> set(gcf,'CurrentAxes',hl)
>> plot(x,y)
>> set(gcf,'CurrentAxes',h2)
>> plot(x,y)
>> set(gcf,'CurrentAxes' h3)
>> plot(x,y)

to get a figure that looks something like Figure 5.4.
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' ' ' ' ' ' ' ' FIGURE 5.4 Three unequally
shaped plots.

5.3 DOCUMENTATION

There are several interpretations of the notion of “documentation.” One of these, in the
sense of “commenting your code,” was already covered in the previous chapter. If you
skipped it, you might want to revisit that. All I want to say about it here is that you do
want to comment your code as neatly as possible. I can guarantee you that the very code
you just wrote, sans comments, will make perfect sense to you now, but it will be so
opaque to you in about 6 months that it might as well have been written by someone else.
This is a problem. It happens surprisingly often; for instance, it happens when you need
to revisit your code because reviewer 2 suddenly asks for a different analysis in the second
round of reviews of your paper.

Another sense of “documentation” is the sense of a protocol. This can come in handy
when you are in need of documenting your work, e.g., for a class. Copying and pasting
individual inputs and outputs from the command window to a word processor can get
tedious quickly. It might be easier just to copy the entire command history and paste that,
but it lacks the outputs. A simple solution is to type diary, which toggles the function
diary on (it is off by default). If it is invoked in the absence of a filename, “diary” will be
the filename, in the “current folder” directory. Of course you can specify a filename, e.g.,

by typing

>> diary('report.txt')

Yet another sense of “documentation” is the documentation of MATLAB itself. We
already covered the generic help function in Chapter 2; however, as you might appreciate

by now, MATLAB uses a great deal of punctuation, all of which has distinct meaning.
This can seem overwhelming to the beginner. But don’t despair. You don’t have to
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memorize this all. Proficiency will come with use. In the meantime, you can rely on spe-
cific MATLAB help functions for reminders, such as:

>> help punct %Details on punctuation

>>help relop %Details on logical and relational operators

>> help paren %Explains parentheses, braces, brackets and their use
>>help colon %Explains the use of the colon operator

>>help lists % Comma separated lists

Executing these functions by themselves (without help) doesn’t do anything. They are
specific help functions to remind you of the syntax.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

Get

Set

Gca
Gecf
Findall
Allchild
Findobj
Axes
Diary
Punct
Relop
Paren
Colon
Lists
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CHAPTER

6

Collecting Reaction Times I:Visual

Search and Pop Out

6.1 GOALS OF THIS CHAPTER

The primary goal of this chapter is to collect and analyze reaction time data using
MATLAB®. Reaction time measures to probe the mind have been the backbone of experimen-
tal psychology at least since the time of Donders (1868). The basic premise underlying the use
of reaction times in cognitive psychology is the assumption that cognitive operations take a
certain and measurable amount of time. In addition, it is assumed that additional mental pro-
cesses add (more or less) linearly. If this is the case, increased reaction times reflect additional
mental processes. Let us assume for the time being that this is a reasonable framework. Then,
it is highly useful to have a program that allows you to quickly collect reaction time data.

6.2 BACKGROUND

Understanding how the mind/brain decomposes a sensory scene into features is one of
the fundamental problems in experimental psychology and systems neuroscience. We take
it for granted that the visual system, for example, appears to decompose objects into differ-
ent edges, colors, textures, shapes, and motion features. However, it is not obvious a priori
which features actually represent primitives that are encoded in the visual system. Many
neurophysiological experiments have searched for neurons that are tuned to features that
were chosen somewhat arbitrarily based on the intuitions of the experimentalists.

Psychologists, however, have developed behavioral experiments by which feature pri-
mitives can be revealed. For instance, a study by Treisman and Gelade (1980) has been
particularly influential. This is probably due to the fact that it is extremely simple to grasp,
yet the pattern of results suggests provocative hypotheses about the nature of perception
(e.g., feature primitives, serial search, etc.).

So what is the visual search and pop-out paradigm that was used in the Treisman
study?

MATLAB® for Newroscientists. 1 5 3
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Research participants were asked to report the presence or absence of a target stimulus
(in this case, a colored lowercase letter “0”) among various numbers of distracter stimuli. If
the distracter stimuli are just of a different color—that is, if they differ by a single feature—
you usually find the “pop-out” effect: the reaction time to detect the target is independent
of the number of distracters. Conversely, if more than one stimulus dimension has to be
considered to distinguish targets and distracters (conjunction search), you typically find a
linear relationship between reaction time and the number of distracters. See Figure 6.1.

As pointed out previously, this pattern of results immediately suggests the existence of
“feature primitives”, fundamental dimensions that organize and govern human perception
as well as a serial scanner in the case of conjunction search, where one element of the stim-
ulus set after the other is considered as a target (and confirmed or discarded). Often, the
ratio of the slopes between conditions where the target is present versus where the target
is absent suggests a search process that self-terminates once the target is found.

There are many, many potential confounds in this study (luminance, eye movements,
spatial frequency, orientation, etc.). However, the results are extremely robust. Moreover,
the study was rather influential. Hence, we will briefly replicate it here.

6.3 EXERCISES

In this section, we introduce and review some code that will help you to complete the
project in Section 6.4. The first thing you need to be able to gather reaction time measures
is a way to measure time. There are different ways to measure time in MATLAB. One of
the most convenient (and, for our purposes, sufficient ones) comes in the form of the func-
tions tic and toc. They work in conjunction and effectively implement a stopwatch. Try
the following on the command line:

>>tic
>>toc

What is your elapsed time?

The time reported by MATLAB is the time between pressing Enter after the first state-
ment and pressing Enter after the second statement.

Of course, operating in the real physical world, MATLAB also takes some time to exe-
cute the code itself. In most cases, this delay will be negligible. However, you should not

O x [
O X 0 X ooy
Conjunction
0x Ol x X 0 £ :
X 0 0 O E
0 x © x  Ox 2
X X 0 X 0 §
© 0 X o © o Pop-out
X X X
Set size -

FIGURE 6.1 The pop-out task.
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take this delay for granted. Try it. In other words, write a program (M-file) that contains
only the following lines and execute it:

tic
toc

In my case, toc reported 0.000004 seconds.
You can now create some code to test if MATLAB takes equal amounts of time to incre-

ment an index or if it depends on the magnitude of the index. So open a new M-file and

en

ter the following:

format long; %We want to be able to see short differences in time

ii = 1; %Initializing the index, ii

t = [ ]; %Initializing the matrix in which we will store the times

while ii < 11 %Starting loop

tic%Starting stop-watch

ii = ii + 1; %Incrementing index

t(ii,1) = toc ; %Ending stop-watch and putting respective time into the matrix
end % End the loop

Try to run the program. It should execute rather quickly.
Now create a little plot by typing the following on the command line:

>>figure
>>plot (t)

The result should be fairly reproducible but the exact shape of the curve as well as the

absolute magnitude of the values depends on the computer and its speed.

3

25

1.5

0.5

The result should look something like that shown in Figure 6.2.

X 10-5 FIGURE 6.2  Task timing.
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As you can see, after an initial transient, the time does not depend on the actual value of
the index, unlike most human mental processes (e.g., Shepard and Metzler, 1971). This could
be taken as evidence for a different kind of information processing in man versus machine.

If you want to know the average time it took for the index to increment, type

>> mean(?)

If you want to know the maximum and minimum times, you can type max(#) or min(#),
respectively.

This example also illustrates several important points. First, when making an inductive
claim about all cases all the time, you should sample a substantial range of the problem
space (complete would be best). In this case, incrementing an index 10 times is not very
impressive. What about incrementing it 100,000 times?

EXERCISE 6.1

Increment your index 100,000 times. What does the resulting graph look like?
It should look something like the result shown in Figure 6.3.
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FIGURE 6.3 Task timing revisited.
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Hence, we discourage premature conclusions on the basis of scant data. Second, it
shows that while MATLAB inherently takes care of “plumbing issues” such as memory
management or the representation of variables, it cannot avoid the consequences of physi-
cal processes. In other words, they might very well impact the execution of your program.
Therefore, you should always check that the program is doing what you think it is doing.
The structure of the peaks and their robust nature (the subplots show different runs of the
program) indicate that they are reliable and not just random fluctuations, probably
induced by MATLAB having to change the internal representation of the variable ¢, which
takes longer and longer as it gets larger. This makes sense because MATLAB is shuffling
an increasingly large array around in memory, looking for larger and larger chunks
thereof. Some of the observed spikes in time taken appear to be distributed largely at ran-
dom, mostly due to other things going on with the operating system.

Finally, it is a lesson on how to avoid problems like this—namely by preallocating the
size and representation of ¢ in memory, if the final size is known in advance.

EXERCISE 6.2

Replace the line t = [I; with t = zeros The result should look something like
(100000,1); to preallocate the size of the vari-  that shown in Figure 6.4.
able in memory. Then run it.

There are still some issues left, but nowhere near as many as there were before. As you
can see, the problem largely goes away (you should also close all programs other than
MATLAB when running time-sensitive code). Note also the dramatic difference in the
time needed to execute the program. The reason for this is the same—namely memory
management. Therefore, if you can, always preallocate memory for your variables, particu-
larly when you know their size in advance and if their size is substantial.

If you'd like to, you can save this data (stored in the t variable) by clicking on the File
menu from the MATLAB command window and then clicking on the Save workspace as
entry. You can give your file any name you like. Later, you can import the data by clicking
on Open in the File menu from the MATLAB command window (not the editor). Try this
now. Save your workspace, clear it with clear all, and then open it again.

You can also use the tic-toc stopwatch to check on MATLAB. For example, the follow-
ing code is supposed to check (use another M-file) whether MATLAB really takes a 0.5
second break:

tic %Start stopwatch
pause (0.5) %Take a 0.5(?) second break
toc %End stop-watch
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0.06 T T T T T T T T T

0.04 |- -

0.02 |- i

x10%
FIGURE 6.4 Problem solved—mostly.

By running this program several times, you can get a sense of accuracy and variance
(precision) within internal timers in MATLAB. So much for time and timing.

What is still missing at this point is a way to handle random events. In the design of
experiments, randomness is your friend. Ideally, you want everything that you don’t vary
systematically to behave randomly (effectively controlling all other variables, including
unknown variables and unknown relations between them).

You encountered the random number generator earlier. Now you can utilize it more
systematically. This time, it will be enough to generate random numbers with a uniform
distribution. This is achieved by using the function rand( ). Remember that the function
randn( ) will generate random numbers drawn from a normal distribution. Conversely,
rand( ) draws from a uniform distribution between 0 and 1. This distinction is important
to know, since you can use this knowledge to create two events that are equally likely.
Now start a new M-file and add the following code:

a = rand(1,1) %Creates a random number and assigns it to the variable a
if a > 0.5 %Check if a is larger than “0.5”

b = 1 %We assign the value “1” to the variable b

else %If not,

b = 0 % We assign the value “0” to the variable b

end %End the condition check

Run this code a couple of times and see whether different random values are created
every time. Note that this is a rather awkward—but viable—way to create integral random
numbers. Recent versions of MATLAB include a new function randi, which draws from a
uniform discrete distribution. For example, the command randi(2,30,1) yields a single col-
umn vector with 30 elements randomly drawn to be 1 or 2. This new function is a good
example of how innovation in MATLAB versions makes previously accepted ways of
doing things (such as generating discrete random numbers) obsolete. The old way still
works, but the new one is much more elegant.

Next, we will introduce several functions and concepts that will come in handy when you
are creating your program for the project in Section 6.4. The first is the concept of handles. A
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handle typically pertains to an object or a figure, for our purposes. For more detailed treat-
ment of handles, see the Visualization and Documentation tutorial in Chapter 5.
It is simply declared as follows:

h = figure

This creates a figure with the handle h. Of course, the name can be anything. Just be
sure to remember which handle refers to which figure:

thiscanbeanything = figure

This creates the handles as variables in the workspace. You can check this by typing
whos or simply by looking in the workspace window.

Handles are extremely useful. They literally give you a handle on things. They are the
embodiment of empowerment.

Of course, you probably don’t see that yet because handles are relatively useless without
two functions that go hand in hand with the use handles. These functions are get and set.

The get function gives you information about the properties that the handle currently
controls as well as the values of these properties. Try it. Type get(h).

You should get a long list of figure properties because you linked the handle / to a par-
ticular figure earlier. These are the properties of the figure that you can control. This capa-
bility is extremely helpful and implemented via the set function.

Let’s say you don’t like the fact that the pointer in your figure is an arrow. For whatever
reasons you have, you would like it to be a cross-hair. Can you guess which
figure property [revealed by get(h)] controls this? Try this:

set(h, 'Pointer’, 'crosshair')

How do you know which property takes which values? This is something you can find
in the MATLAB help, under Figure properties. Don’t be discouraged about this. It is
always better to check. For example, MathWorks eliminated the former figure property
“fullcrosshairs” and renamed it “fullcross.”

Of course, some of the values can be guessed, such as the values taken by the property
visible—namely on and off. This also illustrates that the control over a figure with han-
dles is tremendous.

Try set (h,'visible','off') and see what happens. Make sure to put character but not
number values between'and'.

Of course, handles don’t just pertain to figures; they also pertain to objects. Make the
figure visible again and put some objects into it.

An object that you will need later is text. So try this:

g = text (0.5, 0.5, 'This is pretty cool")

If you did everything correct, text should have appeared in the middle of your figure.
Text takes at least three properties: x-position, y-position, and the actual text.

But those are not all the properties of text. Try get(g) to figure out what you can do.

It turns out, you can do a lot. For example, you can change color and size of the text:
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set(g,'color','r', 'fontsize', 20)

Also, note that this object now appears as a “child” of the figure h, which you can check
with the usual method.

Now you should have enough control over your figures and objects to complete the
project in Section 6.4.

Finally, you need a way for the user (i.e., the participant of the experiment) to interact
with the program. You can use the pause function, which waits for the user to press a key
before continuing execution of the program. In addition, the program needs to identify the
key press.

So type this:

pause %Waiting for single key press
h725 = get(h,'CurrentCharacter')

The variable h725 should contain the character with which you overcame pause.
Interestingly enough, it is a figure property that allows you to retrieve the typed character
in this case, but that is one of the idiosyncrasies of MATLAB. Be sure to do this within an
M-file.

Another function you will need (to be able to analyze the collected data) is corrcoef. It
returns the Pearson correlation between two variables, e.g.,

a = rand(100,2); %Creates 2 columns of 100 random values each, puts it in variable a
b = corrcoef(a(:,1),a(;,2)); % Calculates the Pearson correlation between the two columns

In my case, MATLAB returns a value close to 0, which is good because it shows that
the random number calculator is doing a reasonable job.

b =
1.0000 0.0061
0.0061 1.0000

Corrcoef as a function can also take several parameters:

[magnitude, p] = corrcoef(a(;,1),a(;,2)) %Same as before, but asking for significance
magnitude =

1.0000 0.0061

0.0061 1.0000
p -

1.0000 0.9522

0.9522 1.0000

According to MATLAB, there is a probability of 0.95 that the observed values were
obtained by chance alone (which is, of course, the case). Hence, you can conclude that the
correlation is not significant.

By convention, correlations with p values below 0.05 are called “significant.”

The final function concerns checking of the equality of variables. You can check the
equality of numbers simply by typing = (two equal signs in a row):
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>>5=26
ans =

>>5 =25
ans =
1

Since MATLAB 7, this technique is also valid for checking the equality of characters;

Try this:

>> varl = 'a"; var2 = 'b'; varl = var2
>> varl = varl

The more conventional way to check the equality of characters is to use the stremp

function:

>> stremp(varl,var2)
>> stremp(var2,var2)

Together with your knowledge from Chapter 2, “MATLAB Tutorial,” you now have all

the necessary tools to create a useful experimental program for data collection.

6.4 PROJECT

Your project is to implement the visual search paradigm described in the preceding sec-

tions in MATLAB. Specifically, you should perform the following:

Show two conditions (pop-out search versus conjunction search) with four levels each
(set size =4, 8, 12, 16). These conditions can be blocked (first all pop-out searches, then
all conjunction searches or something like that).

It is imperative to randomly interleave trials with and without target. There should be
an equal number of trials with and without targets.

Make sure that the number of green and red stimuli (if you are red/green blind, use
blue and red) is balanced in the conjunction search (it should be 50% /50%). Also, make
sure that there is an equal number of x and o elements, if possible.

Use only correct trials (user indicated no target present when no target was presented
or indicated target present when it was present) for the analysis.

Try to be as quick as possible while making sure to be right. It would be suboptimal if
you had a speed/accuracy trade-off in your data.

The analysis should contain at least 20 correct trials per level and condition for a total
of 160 trials. They should go quickly (about 1 second each).

Pick two keys on the keyboard to indicate responses (one for target present, one for
target absent).

Report and graph the mean reaction times for correct trials as a function of pop-out
search versus conjunction search and for trials where the target is present versus where
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the target is absent. Hence, you need between two and four figures. You can combine
graphs for comparison (see below).

Report the Pearson correlation coefficients between reaction time and set size and
indicate whether it is significant or not (for each condition).

Make a qualitative assessment of the slopes in the different conditions (we will talk
about curve fitting in a later chapter).

Hints:

Start writing one trial and make sure it works properly.

Be aware that you effectively have an experimental design with three factors [Set size: 4
levels (4, 8, 12, 16), conjunction versus feature search: 2 levels, target present versus
absent: 2 levels]. It might make sense to block the first two factors and randomize the
last one.

Be sure to place the targets and distracters randomly.

Start by creating a figure.

Each trial will essentially consist of newly presented, randomly placed text.

* Be sure to make the figure big enough to see it clearly.

Make sure to make the text vanish before the beginning of the next trial.

Your display should look something like Figure 6.5.

* Determine reaction time by measuring time from appearance of target to user reaction.
Elicit the key press and compare with the expected (correct) press to obtain a value for
right and wrong answers.

Put it into a matrix, depending on condition. It's probably best to have as many
matrices as conditions.

Plot it.

1- FIGURE 6.5 The display.
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1.3 : : FIGURE 6.6 Typical results.
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Write a big loop that goes through trials. Do this at the very end, if individual trials
work.

You might want to have a start screen before the first trial, so as not to bias the times of
the first few trials.

If you can’t do everything at once, focus on subgoals. Implement one function after the
other. Start with two conditions.

Figure 6.6 shows one of the exemplary result plots from a participant. Depicted is the
relationship between mean reaction time and set size for trials where a target is present
(only correct trials). Red: Conjunction search. Blue: Pop-out search. Pearson r for
conjunction search in the data above: 0.97.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

clear all
tic

toc
mean
min
max
pause
rand
randi
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strcmp

whos

get

set

text

corrcoef
pointer
fullcrosshair
visible
fontsize
CurrentCharacter

II. DATA COLLECTION WITH MATLAB



CHAPTER

7

Collecting Reaction Times II:
Attention

7.1 GOALS OF THIS CHAPTER

The primary goals of this chapter are to consolidate and generalize what you learned in
Chapter 6 about data collection in MATLAB®. Moreover, we will elaborate on data analy-
sis in MATLAB beyond simple correlations. You will also learn how reaction time data
can be used to infer the mental process of spatial attention.

7.2 BACKGROUND

As the pioneering American psychologist William James pointed out well over 100 year
ago, we all have a strong intuition what attention is:

Everyone knows what attention is. It is the taking possession by the mind, in clear and vivid form, of
one out of what seem several simultaneously possible objects or trains of thought. Focalization, concentra-
tion of consciousness are of its essence. It implies withdrawal from some things in order to deal effectively
with others, and is a condition which has a real opposite in the confused, dazed, scatterbrained state. ...

(James, 1890, p. 403)

The idea of attention as a process by which mental resources can be concentrated or
focused continues to pervade thinking in the scientific study of attention. Psychologists
and neuroscientists have divided the concept into three different forms: space-based,
object-based, and feature-based attention. In this chapter, we will focus on spatial atten-
tion. Helmholtz (1867) was one of the first experimentalists to demonstrate that one could
covertly (i.e., by holding the eyes fixed) shift one’s attention to one part of space prior to
presentation of a long list of characters. He found that one could more effectively recollect
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the characters within the region of space to which the “attentional search light” was
shifted.

In the modern study of attention, the Posner paradigm (Posner, 1980) has been particu-
larly influential. This is likely owed to the fact that it is extremely simple to grasp, yet the
pattern of results has potentially far-reaching implications for our understanding of spatial
attention in mind and brain. In particular, this paradigm has been used to quantify the
attentional deficits in patients with parietal-lobe damage (i.e., parietal hemi-neglect syn-
drome), leading to the theory that spatial attentional mechanisms may be localized in the
parietal cortex.

7.2.1 So What is the Posner Paradigm?

In the Posner paradigm, research participants are asked to fixate in the center of the
screen and not to break fixation for the duration of the trial. Then, a location on the screen
is cued in some way (usually by highlighting or flashing something). After the cue, a tar-
get appears in either the cued location or in another location. Research participants are
instructed to press a key as soon as they see the target. Figure 7.1 provides a schematic
illustration of the paradigm.

Posner (1984) found that if the cue is valid, reaction time was substantially lower than if
it was invalid. He interpreted this in terms of an “attentional spotlight” that is focused on
a certain region in space and permanently shifting at a finite and measurable speed.

7.3 EXERCISES

Most of the functions needed to write software that allows you to gather reaction time
data were already introduced in Chapter 6, “Visual Search and Pop Out.” This time, we
will introduce some functions that allow you to generalize the kinds of conditions in
which such data are collected. To this end, we introduce another drawing function, rectan-
gle, that will come in handy when creating your program in Section 7.4.

\ Valid trial Invalid trial FIGURE 7.1 The Posner paradigm.
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Try this code:

figure %Create a new figure

xlim([0 1]) %Set the range of values on the x-axis to (0 to 1)

ylim([0 1]) % Set the range of values on the y-axis to (0 to 1)

rectangle('Position’, [0.2 0.6 0.5 0.2]) %Create a rectangle at the x-position 0.2,
%y-position 0.6 with an x-width of 0.5 and a y-height of 0.2

If you declare rectangle with a handle, you can change all properties of the rectangle.

Try it. Rectangles have some interesting properties that can be changed.

Regarding data analysis, the most important function we can introduce at this point is
the t-test. MATLAB uses ttest2 to test the hypothesis that there is a difference in the mean
of two independent samples.

Consider this:

A = rand(100,1); % Create a matrix A with 100 random elements in one column
B = rand(100,1); % Create a matrix B with 100 random elements in one column
[significant,p] = ttest2(A,B)

MATLAB should have returned:

significant = 0
p = 0.6689

This means that the null hypothesis was kept because you failed to reject it. You failed
to reject it because the observed difference in means (given the null hypothesis is true)
had a probability of about 0.67, which is far too high to reject the null hypothesis. This is
what you should expect if the random number generator works. Now try this test:

B =B.*2;

[significant,p] = ttest2(A,B)
significant = 1

p = 3.3467e-013

Now, the null hypothesis is rejected. As a matter of fact, the p-value is miniscule.

Note on seeding the random number generator: If you use the rand() function just as
is, the SAME sequence of pseudorandom numbers will be generated each session. You can
avoid this by seeding it first like this: rand('state’, number). It is important to note that the
“random number generator” does no such thing. As a matter of fact, all numbers gener-
ated are perfectly deterministic, given the same seed number. We don’t want to go on a
tangent why this has to be the case or how to avoid this by relying on a genuinely random
(at least as far as we can tell) natural process (such as radioactive decay). As long as you
pick a different number as a seed each time, you should be fine, for all common intents
and purposes. Hence, it is popular to make the number after the state argument depen-
dent on the cpu-clock. In old versions of MATLAB (e.g., 7.04), this could be done as
follows:

rand('state', sum(100*clock))
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Newer versions of MATLAB (e.g., 8.1 onwards) rely on a very different system.
Namely, the notion of a random number stream that underlies rand, randn, and randi.
This random number stream is implemented as randstream.

To seed the generator in new versions of MATLAB, things are more complicated but
also more versatile.

First type

RandStream.list

to get a list of available pseudorandom number generation methods. Mersenne twister
with Mersenne prime 2719937-1 sounds appealing.

Now type

s = Randstream('mt19937ar', 'seed', sum(100*clock))

Note the value of “Seed”.
Now type

RandStream.setDefaultStream(s);

These changes are due to the fact that MATLAB is becoming increasingly object ori-
ented. We are now handling Randstream “objects.” Expect to see more of this in the
future. For the project in Section 7.4, it might be useful to know at least one other common
data analysis function, namely ANOVA (analysis of variance). ANOVA generalizes the
case of a two-sample t-test to many samples. For the purposes of this chapter, a one-way
ANOVA will be sufficient:

A = rand(100,5); % Generating 5 levels with 100 repetitions each.
anoval(A); %Do a one-way balanced ANOVA.

In this case, there were no significant differences, as revealed by Table 7.1 and
Figure 7.2.
Now try this:

B = meshgrid(1:100); % Generate a large meshgrid

B = B(;1:5); %We only need the first five columns

A = A * B; %Multiply!

anoval(A); %Doing the one-way balanced ANOVA again

This time, there can be no doubt that there is a positive trend, as you can see in
Table 7.2 and Figure 7.3.

The anoval function assumes that different samples are stored in different columns and
that different rows represent different observations in the same sample.

TABLE 7.1 ANOVA Table 1

Source SS df MS F Prob >F
Columns 0.288 4 0.072 0.81 0.5221
Error 442525 495 0.0894

Total 44.5405 499
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Note that anoval assumes that there is an equal number of observations in each sample.
For more generalized ANOV As or unequal samples, see anova2 or anovan. Their syntax is
very similar. This, however, should not be necessary for the following project.

7.4 PROJECT

For this project, your task is to replicate a generalized version of the Posner paradigm.
In essence, you will measure the speed of the “attentional spotlight” in the vertical versus
horizontal directions. You need to create a program that allows you to gather data on reac-
tion times in the Posner paradigm as described in the preceding sections. Most of the par-
ticular implementation is up to you (the nature of the cue, specific distances, etc.).
However, be sure to implement the following;:

* Cue and target must appear in one of 16 possible positions. See, for example, Figure 7.4.

* Make sure you have an equal number of valid and invalid trials. [If the trial is valid,
the target should appear in the position of the cue. If the trial is invalid, the target
position should be picked randomly (minus 1, the position of the cue).]

* Choose two temporal delays between cue and target: 100 ms and 300 ms. Make the
delay an experimental condition.

* Collect data from 80 trials per spatial location of the cue (so that you have 20 for each
combination of conditions: Valid/invalid, delay1/delay2). This makes for a total of 1280
trials. But they will go very, very quickly in this paradigm.

* Make sure that the picking of condition (valid/invalid, delay1l/delay2, spatial location
of cue) is random.

* After collecting the data, answer the following questions:

1. Is there a difference in reaction times for valid versus invalid trials? (t-test)

2. Is there a difference in reaction times for different delays? (t-test)

3. Does the distance between target and cue matter? For this, use only invalid trials and
plot reaction time as a function of
a. Total distance of cue and target

Valid trial Invalid trial FIGURE 7.4 Valid and invalid trials.
Cue phase Cue phase
Target phase Target phase
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b. Horizontal distance of cue and target
c. Vertical distance of cue and target

4. Related to this: Is there a qualitative difference in the slope of these lines? Is the
scanner faster in one dimension than the other?

5. What is the speed of the attentional scanner? How many (unit of your choice, could
be inches) does it shift per millisecond?

Implement the project in MATLAB and answer the preceding questions. Illustrate with
figures where appropriate.

*If you are adventurous: Use anova2 or anovan to look for interaction effects between
type of trial (valid/invalid, delay and spatial location of cue).

Hints:

Start writing one trial and make sure it works properly.

Be aware that you effectively have an experimental design with three factors: Cue
position (16 levels), trial type (2 levels), and temporal delay (2 levels). However,

you can break it up into four factors: Horizontal cue position (4 levels), Vertical cue
position (4 levels), trial type (2 levels), and temporal delay (2 levels), which will
make it easier to assess the x- versus y-speed of the scanner.

If you can’t produce a proper cue, try reviewing object handles (in figures).

Write a big loop that goes through trials. Do this at the very end, if individual trials
work.

If you can’t do everything, focus on subgoals. Implement one function after the other.
Start with two conditions. If you are not able to implement all eight conditions, try to
get as far as you can.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

randstream
rectangle
ttest2

state

clock
anoval
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CHAPTER

8

Psychophysics

8.1 GOALS OF THIS CHAPTER

In this chapter, you will learn how to use MATLAB® to do psychophysics. Once you
master these fundamentals, you can use MATLAB to address any psychophysical question
that might come to mind. While—in principle—all sensory modalities are open to psycho-
physical investigation, we will focus on visual psychophysics in this chapter.

8.2 BACKGROUND

Psychophysics deals with the nature of the quantitative relationship between physical
and mental qualities. Today, the practice of psychophysics is ubiquitous in all fields of
neuroscience that involve the study of behaving organisms, be they man or beast.
Curiously enough, the origins of systematic psychophysics can be traced to a single indi-
vidual: Gustav Theodor Fechner (1801—1887). Fechner’s biography exhibits many telling
idiosyncrasies. Born the son of a pastor, he studied medicine at the University of Leipzig,
but never practiced it after receiving his degree. Mostly by virtue of translating chemistry
and physics textbooks from French into German, he was appointed professor of physics at
the University of Leipzig. In the course of studying afterimages by gazing into the sun for
extended periods of time—himself being the primary and sole research participant—he
almost lost his eyesight and went into deep depression in the early 1840s. This episode
lasted for nearly a decade, a time which Fechner spent mostly within a darkened room.
Emerging from this secluded state, he was overwhelmed by the sheer brilliant radiance of
his surroundings, giving rise to his panpsychist worldview: he was now utterly certain
that all things have souls, including inanimate objects such as plants and stones.

MATLAB® for Newroscientists. 1 7 3
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Determined to share his insights with the rest of humanity, he soon started publishing on
the topic, formulating an “identity theory” stating that the physical world and the spiritual
world are not separate entities, but actually the same—the apparent differences resulting
from different perspectives (first versus third person) onto the same object. In his view,
this reconciles the incompatible dominant philosophical worldviews of the 19th century:
idealism and materialism. However, his philosophical treatises on subjects such as the
soul-life of plants or the transcendence of materialism were poorly received by the scien-
tific community of the day (Fechner, 1848). In order to convince his colleagues of the valid-
ity of his philosophical notions, he set out to devise methods that would allow him to
empirically link physical and spiritual realms (Fechner, 1851). His rationale being that if it
can be shown that mental and physical qualities are in a clear functional relationship, this
would lend credence to the notion that they are actually metaphysically identical.

Publishing the results of empirical studies on the topic in his Foundations of
Psychophysics in 1860, he showed that this is the case for several mental domains, such as
the relationship between physical mass and the perception of heaviness or weight.
Fechner formulated several methods to arrive at these results that are still in use today.
Importantly, he expressed the results of his investigations in mathematical, functional
terms. This allowed for the theoretical interpretation of his findings. Doing so, he intro-
duced notions such as sensory thresholds quantitatively.

Ironically, inventing psychophysics did not help Fechner in convincing his philosophi-
cal adversaries of the merits of his identity theory. Few philosophers of the day renounced
their idealistic or materialistic positions in favor of identity theory. Most of them simply
chose to ignore Fechner, while the others mostly attacked him. Consequently, Fechner
spent much of the remainder of his life fighting these real or imaginary adversaries, pub-
lishing two follow-up volumes in 1877 and 1882, chiefly focusing on the increasingly bitter

FIGURE 8.1 Gustav Theodor Fechner (1801—1887).
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struggle against the philosophical establishment of Imperial Germany. Ultimately, these
efforts had little tangible or lasting impact. Meanwhile, the first experimental psycholo-
gists, particularly the group around Wundt, pragmatically used these very same methods
to create a psychology that was both experimental and empirical. It is not too bold to claim
that they never stopped and that contemporary psychophysics derives in an unbroken line
from these very roots.

The key to visual psychophysics (and psychophysics more generally) is to elicit rela-
tively simple mental phenomena that lend themselves to quantification by presenting
physical stimuli that are easily described by just a few parameters such as luminance, con-
trast, or spatial frequency.

It is imperative that the experimenter has complete control over these parameters. In
other words, the visual stimuli that s/he is presenting have to be precise. One way to cre-
ate these stimuli is to use commercially available graphics editors, most prominently
Photoshop®. While this practice is very common, it comes at a cost. For example, the
images created by Photoshop have to be imported by the experimental control software. It
is more elegant to create the stimuli in the same environment in which they are used.
More importantly, the experimenter surrenders some degree of control over the created
stimuli, when using commercial graphics editors, because the proprietary algorithms to
perform certain image functions are not always completely documented or disclosed. This
problem is equally avoided by creating the stimuli in a controlled way within MATLAB.

8.3 EXERCISES

We need to introduce methods by which to create and present visual stimuli of any
kind on the screen. Fortunately, MATLAB includes a large library of adequate functions.
We will introduce the most important ones here.

By default, MATLAB visualizes images by triplets in a 256-element RGB space. Each
element of the triplet has to be an integral value between 0 and 255. This corresponds to a
range of 8 bits. Hence, these elements can be represented by variables of the type uint8.
These values correspond to the intensity of red, green, and blue at a particular location in
the image. Depending on the physical output device (typically cathode ray tube or LCD
displays), these values effectively regulate the voltage of individual ray guns or pixels. Of
course, MATLAB also supports much higher bit-depths. For the purposes of our discus-
sion, 8 bit will suffice.

One important caveat is that the relationship between the assigned voltage values of the
three individual ray guns in the cathode ray tube (0 to 255) and the perceived luminance
of the screen is not necessarily linear. Visual scientists generally calibrate their monitors
by “gamma correcting” them. This linearizes the relationship between assigned voltage or
intensity values and the perceived luminance.

To be able to linearize the relationship, you need a photometer. Because we assume that
those are—due to their generally high price—not readily available, we will forgo this step
for the purposes of this book. However, we urge budding visual scientists to properly
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calibrate their monitors before doing an experiment in which the veracity of the data is
crucial—as is the case if they are intended for publication. For more information on the
issue of monitor calibration, see for example Carpenter and Robson (1999).

To begin, create a simple matrix with the following command:

>> test_disp = uint8(zeros(3,3,3))

This command creates the matrix test_disp, which is a three-dimensional matrix with
three elements in each dimension. Importantly, it is of the data type uint8, which
MATLAB assumes by default for its imaging routines. Of course, the function image can
also image other matrices, but this would require to specify additional parameters.
Imaging only matrices of the type uint8 is the most straightforward thing to do for the
purposes of this chapter.

Now type the following;:

>> figure
>> subplot(2,2,1)
>> image(test_disp)

The function image compels MATLAB to interpret the values in the matrix as com-
mands for the ray guns of the monitor and to display them on the screen. You should now
be looking at a completely and uniformly dark (black) subplot 1.

Now, type the following:

>> test_disp(2,2,:) = 255
>> subplot(2,2,2)
>> image(test_disp)

The structure of the matrix and the function of the image command now become
apparent.

The 0 values are interpreted as turning off all ray guns. The 255 values are interpreted
as full power. As you maximally engage all three guns (represented by the third dimen-
sion of the matrix), the result is an additive mix of spectral information that is interpreted
by the visual system as white. Now, try this:

>> subplot(2,2,3)
>> test_disp(2,2,1) =0
>> image(test_disp)

The picture in subplot 2 is devoid of color from the red gun. It should appear cyan.
Now try the following;:

>> test_disp(2,2,2) =0
>> test_disp(2,2,1) = 255
>> subplot(2,2,4)

>> image(test_disp)
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FIGURE 8.2  Testing the ray guns with matrices interpreted as images.

This code has the opposite effect, yielding a red inner pixel. The result should look
something like Figure 8.2.

SUGGESTION FOR EXPLORATION

Can you create arbitrary other colors? Can you create arbitrary shapes?

While it is hard to surpass this example of using just 9 pixels in clarity, it is also some-
what pedestrian. The true power of this approach becomes clear when considering natural
stimuli, which are also increasingly used in visual psychophysics. To do this, you need to
import an image into MATLAB. For this example, use the imread function:

>> temp = imread('"UofC.jpg")

This command creates a large three-dimensional matrix of the uint8 type (positive inte-
gral values from 0 to 255, as can be addressed by 8 bits).
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Next, type the following to get a magnificent view of the Harper Library at the
University of Chicago:

>> figure
>> subplot(2,2,1)
>> image(temp)

Now, you can manipulate this image in any way, shape, or form. Importantly, you will
know exactly what you are doing, since you are the one doing it, which cannot be said for
most of the opaque algorithms of image processing software. For example, you can sepa-
rate the information in different color channels by typing the following:

>> forii=1:3

>> bigmatrix(,:,:ii) = zeros(size(temp,1),size(temp,2),3);
>> bigmatrix(;:ii, ii) = temp(,:,ii);

>> subplot(2,2,ii + 1)

>> upazila = uint8(bigmatrix(:,:,:ii));

>> image(upazila)

>> end

You get the picture shown in Figure 8.3 as a result.
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FIGURE 8.3  The University of Chicago Harper Library in red, green, and blue.
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SUGGESTION FOR EXPLORATION

Can you find the MATLAB “Easter arguments, the creepy “MATLAB Ghost”
eggs”? MATLAB once had a large number  appears in your figure. Another remaining
of those. Most of them have been removed  easter egg concerns the spy function, a
by the PC police now. Some of them function to visualize the structure of sparse
remain. One of them concerns the image  matrices. Try it without arguments as well.
function. If you type image without any

Note the use of the upazila helper variable. You have to use this because MATLAB
interprets non-3D-uint8 matrices differently when presenting images. Later you will learn
how to make do without the upazila step. The different subplots illustrate the brightness
values assigned to an individual ray gun (Upper left: all of them together. Upper right:
red. Lower left: green. Lower right: blue). This allows you to assess the contribution of
every single channel (red/green/blue) to the image. Another way of judging the impact of
a particular channel is to leave it out. To do this, you add the other channels together, as
follows:

>> bigmatrix2(:::1) = bigmatrix(,:,,1) + bigmatrix(,:,:,2) + bigmatrix(,:,:,3);
>> bigmatrix2(:::2) = bigmatrix(::,:,1) + bigmatrix(,:,:,2);

>> bigmatrix2(:::3) = bigmatrix(::,,1) + bigmatrix(,:,:,3);

>> bigmatrix2(:::4) = bigmatrix(::,,2) + bigmatrix(,:,:,3);

>> figure

>> forii=1:4

>> subplot(2,2,ii)

>> image(uint8(bigmatrix2(:,:,:,ii)))

>> end

Doing so should yield the picture shown in Figure 8.4.

In this figure, the upper left is all channels. In the upper right, the blue channel is
missing. In the lower left, the green channel is missing. In the lower right, the red chan-
nel is missing. Belaboring this point enhances an understanding of the relationship
between the brightness values in the three-dimensional matrix and the appearance of
the image.

SUGGESTION FOR EXPLORATION
Find out what the MATLAB upazila actually is.
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FIGURE 8.4 The University of Chicago Harper Library without red, green, and blue information.

You are now in a position to implement arbitrary changes to the image. For example,
you can brighten it, increase the contrast, or selectively change the color balance. To
explore this, start by changing the overall brightness by typing the following:

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

figure

subplot(2,2,1)
image(uint8(bigmatrix2(::,:1)))
subplot(2,2,2)

image(uint8(bigmatrix2(:,:,:,1) + 50))
subplot(2,2,3)
image(uint8(bigmatrix2(:,:,:,1)-50))
subplot(2,2,4)

bigmatrix2(::,1,1) = bigmatrix2(;,;,1,1) + 100;
image(uint8(bigmatrix2(::,:,1)))

The result, shown in Figure 8.5, is a picture that has been somewhat brightened (upper
right), darkened (lower left), and where the red channel has been turned (way) up in the
lower right.
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FIGURE 8.5 Brightening and darkening any or all ray guns has a profound effect.

SUGGESTION FOR EXPLORATION

Increase the contrast of the image. Also try to image matrices that are not of the type uints.

One of the most common image manipulations using image editors is the smoothing or
sharpening of the image. The former is often performed to get rid of random noise or
granularities in the image. Scientists might do this to simulate and understand the output
of the visual system of another species. Importantly, these ends are typically achieved by
low- or high-pass filtering of the original image. Unfortunately, most users don’t really
understand what is happening behind the scenes when using a commercially available
image editor. Of course, this is unacceptable for doing psychophysics in particular or sci-
ence in general.

Hence, we will now discuss how to perform these operations in MATLAB. First, import
another image by typing the following. This image is more suited to making the effects of
your manipulations more readily apparent.

>> pic = imread('filtering.jpg")
>> figure
>> subplot(2,2,1)
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Look at the image. So far, so good. Now, slightly blur the image. To do so, you will con-
volve the image with a filter. Refer to Chapter 16, “Convolution,” to understand precisely
the underlying mathematics of the operation. For purposes of this example, it is enough to
understand that the convolution operation will allow you to blur the image by blending
brightness values of adjacent pixels. To create a small 3 X 3 filter, you type

>> filter = ones(3,3)
then
>> 1p3 = convn(pic,filter)

to perform the convolution of the image with the 3 X 3 filter. You might have noted that
the values are no longer in the range between 0 and 255. This is due to the multiplying
and adding brought about by the convolution. Next, divide by the block size (9) to rectify
this situation:

>> 1p3 = 1p3./9;

This operation creates floating-point values, so you have to be careful when imaging
this:

>> subplot(2,2,2)
>> image(uint8(Ip3))

This code creates a very slightly low-pass filtered version of the image. This result is
most readily apparent when you look at the texture of the hat or hair in the image. Now,
try a more radical low-pass filtering:

>> filter = ones(25,25)

>> 1p25 = convn(pic,filter)
>> 1p25 = 1p25./625;

>> subplot(2,2,3)

>> image(uint8(1p25))

Looking at the image reveals significant blurring. This is the low-frequency component
of the image. It is similar to what a typical nocturnal animal with relatively poor spatial
acuity might see (sans the color). You arrive at the image by blurring a substantial number
of pixels together.

SUGGESTION FOR EXPLORATION

What happens if you use ever larger filters?

Note that the matrices you created with the convolution operation are slightly larger
than the one that represents the initial picture (which had a format of 600 X 800). This is
due to the nature of the convolution operation. It creates an artificial black rim not present
in the original picture. You will understand why this happens and why this is a hard
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problem when reading Chapter 16. For now (we will encounter much more elegant ways in
Chapter 16), and to (mostly) get rid of it and cut the image back to size, try the following;:

>> Ip25cor = 1p25(13:612,13:812,:);

You might also have noted that the execution of the convolution operation took a signif-
icant amount of time. This might be important if you want to create your stimuli on the
fly, as the observer does the experiment. To assess how your system stacks up against cer-
tain known benchmarks, type this command:

>> bench

Doing so makes MATLAB perform various typical operations and compare the speed
of their execution to other benchmark systems. This is particularly crucial when you're
running a time-sensitive program. Don’t be surprised when receiving rather low bench-
mark values, particularly when running MATLAB over a network, despite basically fast
hardware. To evaluate the reliability of the benchmark values, try running bench more
than once, e.g. bench(5) runs it 5 times.

Let’s get back to the filtering problem. The image in the lower left corresponds to what
psychophysicists would call the “low spatial frequency” channel. It contains the low spa-
tial frequency information in the image. Notably, it is mostly devoid of sharp edges. This
information about edges in the image is contained in the “high spatial frequency” channel.
How do you get there? By subtracting the low spatial frequency information from the orig-
inal image. Try this:

>> subplot(2,2,4)

>> hp = pic-uint8(Ip25cor);

>> image(hp)

The image in the lower right now contains the high spatial frequency information. It
represents most of the textures and sharp edges in the original image.

Unfortunately, it is rather dark (due to the subtraction). To appreciate the full high spa-
tial frequency information, add a neutral brightness level back in:

>> hp = hp +127;

>> image(hp)

Much better. The final result should look something like that shown in Figure 8.6.

EXERCISE 8.1

Use the information in the high spatial  edges) of the original image.
frequency channel to sharpen (enhance the

We have discussed a variety of image manipulations with MATLAB, namely the manip-
ulation of form, color, and spatial frequency. One remaining major issue is the creation of
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FIGURE 8.6 Information about texture is carried in different spatial frequency channels.
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moving stimuli. There are many ways to do this in MATLAB. One of the most straightfor-
ward is to use the circshift function in combination with a frame capture function.
To use this function, type the following;:

>> figure
>> pic3 = circshift(pic,[100 0 0]);
>> image(pic3)

The circshift function shifts all matrix values by the stated amount in the second
argument—in this case, 100 in the direction of the first dimension, nothing in the others.
You can use this to create a movie:

>> figure

>> pic4 = pic;

>> for ii = 1:size(pic4,1)/10 + 1
>> image(pic4)

>> picd = circshift(pic4,[10 0 0]);
>> Ml(ii) = getframe;

>> end

There are other ways to create movie frames, for example, using the im2frame function.
However, this version lets you preview the movie as you create it. You can play it by

typing
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movie(M,3,24)

This command plays the movie in matrix M three times, at 24 frames per second, in the
existing figure. One caveat for movies is size in memory. These frames take up a considerable
amount of space. You might get an error message indicating that the frames could not be cre-
ated if you go beyond the available memory. The available memory depends on the computer
and operating system. To assess the memory situation on the machine you are using, type

memory

There are several caveats when making movies with MATLAB. For example, the chop-
piness will depend on many factors, including machine speed, available memory, step
size of the circshift, as well as frame rate. On most systems, it will be hard to avoid trade-
offs to create movies that are reasonably smooth.

Use this knowledge to create a movieofa  RGB values in the matrix for each frame
single white dot (pixel) that moves from the  with the right values. As most pixels don’t
far left of the screen to the far right. Then do  change frame to frame, they don’t need to
it without circshift, simply updating the  be updated (circshift shifts all of them).

EXERCISE 8.2

Import two pictures with the same size.  in the matrix that represents the image
Create a movie in which one morphs into the = should gradually shift from one to the next
other. Hint: Over time, the numerical values  while you capture this process in frames.

SUGGESTION FOR EXPLORATION

As the color information is represented in the third dimension of the matrix, you can
also use circshift to elegantly swap colors, as in this example:

>>
>>
>>
>>
>>
>>
>>
>>

figure

for ii = 1:3

subplot(1,3,ii)

image(pic)

axis equal

axis off

pic = circshift(pic,[0 0 1]);
end

The result should look something like Figure 8.7.
Often, when creating large numbers of stimuli, you might want to save them on the
hard disk to free up some space in available memory. You can easily do this by using

II. DATA COLLECTION WITH MATLAB



186 8. PSYCHOPHYSICS

FIGURE 8.7 You can use circshift to shift colors.

the imwrite function. For example, you can save the image in which the RGB values were
swapped for BRG by typing imwrite(pic, BRG.jpg’,’jpg’). This should have created the
file BRG.jpg as a .jpg file in your working directory. You can now open it with other image
editing software, put it online, etc. Similarly, you can save the movie by typing

movie2avi(M,'upazila.avi','quality',100,'fps',24)

which creates an .avi file named upazila at a frame rate of 24 and a quality of 100 in your
working directory. From now on, this file will behave like any other movie file you might
have on your hard disk.

At this point, we have explored several important image manipulation routines that
should really give you a deep appreciation of the way MATLAB represents and displays
images. Of course, many more image manipulations are possible in MATLAB. We will leave
those for you to discover and return to the task of collecting psychophysical data, using this
newfound knowledge. Because MATLAB represents images as brightness values in a three-
dimensional matrix, you can manipulate them at will with any number of matrix operations.
In principle, you could write your own Photoshop toolbox in MATLAB.

EXERCISE 8.3

Can you rotate an image by 90°? Can you rotate by an arbitrary number of degrees?

EXERCISE 8.4

Try adding different images together. For  create artificial stimuli. For example, in the
example, you can transmit secret information attention community, it is popular to super-
by embedding one image in another. Or  impose pictures of houses and faces.
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SUGGESTION FOR EXPLORATION
Implement your favorite Photoshop routine in MATLAB.

Let’s get back to psychophysics. Fechner formalized three fundamental methods to elicit
the relationship between mental and physical qualities and introduced them to a wider
audience. These methods are still in use today. You should recognize the method of limits
from visits to the ophthalmologist investigating your vision or the otologist investigating
your hearing. Basically, the observer is presented with a series of stimuli in increasing (or
decreasing) intensity and asked to judge whether or not the stimulus is present. This
method is extremely efficient because only a few stimuli are necessary to establish fairly
reliable thresholds. Unfortunately, the method suffers from hysteresis; the threshold is
path dependent, as participants exhibit a certain inertia (e.g., stating that the stimulus is
still present even if they can’t detect it, if coming from the direction of a stimulus being
present). This problem can be overcome by counterbalancing (starting from different
states). However, a better correction is the method of constant stimuli. In this method, the
experimenter presents stimuli to be judged by the observer in random order, from a pre-
determined set of values. The advantage of this method is that it yields very reliable and
mostly unbiased threshold measurements. The drawback is that one needs to sample a rel-
atively large range of stimuli (as one doesn’t a priori know where the threshold will lie)
and a large number of repetitions per conditions to reduce error. Hence, this method is
usually not used where time is at a premium (such as in a doctor’s office), but rather in
research, where the time of undergrad or grad student observers is routinely sacrificed for
increases in accuracy.

Finally, the method of adjustment lets the research participant manipulate a test stimulus
that is supposed to match a given control. This method is particularly popular in color
psychophysics. It is relatively efficient, but suffers from its own set of biases.

8.4 PROJECT

In this project, you will use the method of constant stimuli to determine the absolute
threshold of vision, a classic experiment in visual psychophysics (Hecht, Shlaer, and
Pirenne, 1942). Obviously, you will be able to do only a crude mock-up of this experiment
in the scope of this chapter. The actual experiment was extremely well controlled and took
a long time to carry out (not to mention specialized equipment).

Since you are unconcerned with publishing the results (these are extremely well estab-
lished), you can pull off a “naive” version in order to highlight certain features and princi-
ples of the psychophysical method. If you want to increase experimental control, perform
the experiment in a dark room and wait 15 minutes (or better 30 minutes) before data col-
lection. Also, try to keep a fixed distance from the monitor (e.g., 50 cm) throughout the
data collection phase of the experiment.
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However, before you can collect data, you need to write a stimulus control program uti-
lizing the skills from the previous two chapters and the image manipulation skills intro-
duced in this chapter. Here is a simple program that will do what is needed (make this an
M-file). Note the somewhat obsolete use of the modulus function to order the stimuli. We
could also do this with randi in the latest versions of MATLAB. On the other hand, the
use of the modulus function allows you to have exactly the same number of trials per con-
dition (as opposed to them having random frequencies).

clear all; %Emptying workspace
close all; %Closing all figures

temp = uint8(zeros(400,400,3)); %Create a dark stimulus matrix
templ = cell(10,1); %Create a cell that can hold 10 matrices

for ii = 1:10 %Filling temp1
temp(200,200,:) = 255; %Inserting a fixation point
temp(200,240,:) = (ii-1)*10; %Inserting a test point 40 pixels right
%of it. Brightness range 0 to 90.
temp1{ii} = temp; %Putting the respective modified matrix in cell
end %Done doing that

h = figure %Creating a figure with a handle h

stimulusorder = randperm(200); % Creating a random order from 1 to 200.
%For the 200 trials. Allows to have
%a precisely equal number per condition.

stimulusorder = mod(stimulusorder,10); % Using the modulus function to
%create a range from 0 to 9. 20 each.

stimulusorder = stimulusorder + 1; %Now, the range is from 1 to 10, as
% desired.

score = zeros(10,1); %Keeping score. How many stimuli were reported seen

for ii = 1:200 %200 trials, 20 per condition
image(temp1{stimulusorder(1,ii)}) %Image the respective matrix. As
%designated by stimulusorder
ii %Give observer feedback about which trial we are in. No other feedback.
pause; %Get the keypress
temp2 = get(h,'CurrentCharacter'); % Get the keypress. “.” for present,
%*,” for absent.
temp3 = strcmp('.', temp2); % Compare strings. If . (present), temp3 =1,
% otherwise 0.
score(stimulusorder(1,ii)) = score(stimulusorder(1,ii)) + temp3; % Add up.
% In the respective score sheet.
end %End the presentation of trials, after 200 have lapsed.

Note that these are relatively crude steps. In a real experiment, you might want to probe
every luminance value and collect more samples per condition (50 or 100 instead of 20).
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Also, a time limit of exposure and decision time is usually used. But for now, this will do.
When running this program yourself, make sure to focus on the central fixation dot. Don’t
get frustrated or bored. Psychophysical experiments are extremely intricate affairs, usually
operating at the limits of the human sensory apparatus. Hence, they are rarely pleasant.
So try to focus the firepower of your cortex on the task at hand. Also note that you will
make plenty of errors. Don’t get frustrated. That is the point of psychophysics. In a way,
psychophysics amounts to a very sophisticated form of producing and analyzing errors. If
you don’t make any errors, there is no variance, and without variance, most of the psycho-
physical analysis methods fail—hence the large number of trials. Given enough trials, you
can count on the statistical notion that truly random errors will average out, while retain-
ing and strengthening the systematic trends in the data, revealing the properties of the sys-
tem that produced it. As a matter of fact, you might want to throw in a couple of practice
runs before deciding to analyze your data for real. Given that you are likely to be what is
technically called an untrained observer there will be various dynamics going on during
the experiment. At first, practice effects will enhance the quality of your judgments; then
fatigue will diminish it. Also note that you are technically not a “naive” observer, as you
are aware of the purpose of the experiment. Don’t let this discourage you for now. Doing
so, we obtained the curve shown in Figure 8.8. This figure shows a fairly decent psycho-
metric curve. It is obvious that we did not see the dot on the left tail of the curve (the
observed variation represents errors in judgment). Similarly, it is obvious that we did
always see the dot on the right of the curve, yet there is some variation in the reported
instances seen. In other words, the points on the left are below threshold, whereas the
points on the right are already saturated. In a real experiment, we would resample
the range between the brightness values 20 and 70 much more densely, as it is clear that
the date points outside this range add no information. However, this neatly illustrates one
problem of the method of constant stimuli. We didn’t know where the threshold would
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lie. Hence, we had to sample a broad range—undersampling the crucial range and over-
sampling regions of no interest. Even limiting the range from 0 to 90 was an educated
guess. Strictly speaking, and without any previous knowledge, we would have had to
sample the entire range of 0 to 255. Modern “staircase” procedures attempt to solve this
problem, but are beyond the scope of this chapter. Psychophysicists like to boil down this
entire dataset into one number: the absolute threshold. In this case, you can derive this value
by interpolation. It is the x-value that corresponds to the intersection between the curve
and the y-value of probability reported seen of 0.5, as shown in Figure 8.9. In other words,
this analysis indicates an absolute threshold of a brightness value of 43. If you want to get
a precise threshold, you would have to resample the range between 30 and 60 (or even
between 40 and 50) very densely. Also note that this value of 43 is not inherently meaning-
ful. Without having the monitor calibrated with a photometer, we don’t know to how
much physical light energy this corresponds to. Hence, we can’t relate it to the minimum
number of light quanta that can be detected. However, this threshold is meaningful in the
context of a behavioral task: a shifted threshold under different conditions can give rise to
conjectures about the structure and function of the physiological system producing these
thresholds, as you will see when doing the exercises. Moreover, the absolute threshold is a
stochastic concept. It is not true that lights below it are never seen. Of course, psychophy-
sicists have very elaborate ways to analyze data like these. Most straightforwardly, they
like to fit sigmoidal logistic curves to such data. We will go into the intricacies of psycho-
physical data analysis in the next chapters. Finally, we chose luminance values that
worked on our monitor, yielding a decent psychometric curve, allowing us to determine
the threshold. You might have to use a different range when working within your setup.
For more background on psychophysical methods, read the classic Elements of
Psychophysics by Fechner (1860) or, for a modern treatment of the use of these methods in
visual neuroscience, The Psychophysical Measurement of Visual Function by Norton, Corliss,
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and Bailey (2002). In this project, you should specifically address the following issues:
Compare thresholds in the periphery and center. You just did a parafoveal stimulus pre-
sentation (if you were honest and fixated the fixation point) or even a foveal presentation
(if you looked at the stimulus directly). How does the threshold change in the periphery
(putting the stimulus several hundred pixels away from the fixation point)?

Determine the thresholds for brightness values of the red, green, and blue guns individ-
ually. Which gun has the lowest threshold (is perceived as brightest)? Which gun has the
highest threshold (is perceived as dimmest)? Can you account for the white threshold (as
we did above) by adding the individual thresholds?

You just determined absolute thresholds. Another important concept in psychophysics
is the relative threshold. To determine the relative threshold, put another test dot to the
left of the fixation point. The task is now to indicate if the brightness of the right dot is
higher () or lower (,). Does the relative threshold depend on the absolute brightness
values of the dots? If so, can you characterize the relationship between relative threshold
(difference in stimulus brightness values that gives a probability of 0.5) and absolute value
of the stimuli?

When determining the relative threshold, can you reason why it makes sense to ask
which of the two is brighter, instead of asking if they are the same or different (which
might be more intuitive)?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

uint8
double
convn
circshift
image
bench
imread
imwrite
memory
movie
getframe
movie2avi
randperm
mod

Spy
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CHAPTER

9

Psychophysics with GUIs

9.1 GOALS OF THIS CHAPTER

This chapter pursues dual goals. First, we want to build on the data collection with the
psychophysical methods that were introduced in the last chapter. Second, and more
importantly, this chapter will introduce the concept of a graphical user interface (GUI)
within MATLAB® and demonstrate its gainful use.

9.2 INTRODUCTION AND BACKGROUND

A surprisingly large number of scientists pride themselves on their coding skills as a
considerable source of self-esteem and identity. For them, it is bad enough that they are
using a high-level interpreted language like MATLAB in the first place. They surely
wouldn’t be caught dead using a GUI on top of that, as giving up the command line
would likely constitute a deadly blow to their street cred.

Nevertheless, there are legitimate uses for GUIs. These reasons are largely the same ones
that made GUISs catch on in the community at large. Briefly put, they make things more acces-
sible, and they require less user knowledge to operate. This is neatly illustrated by the success
of Microsoft Windows, which made the use of computers conceivable for a mass audience
that couldn’t realistically be expected to learn how to profitably interact with a command line.

To illustrate this point within a MATLAB context, the following (true) example should
suffice. I was once involved in a long-distance collaboration involving a question that was
of theoretical interest to me. They had specialized equipment and would collect the data,
but they were not trained in the arts of MATLAB, so we decided that I would do the data
analysis. So far, so good. What I didn’t realize is that there was a rather large amount of
data files collected under a daunting number of experimental conditions that didn’t seem
to be organized or denoted in any way that made sense to me. Worse, they didn’t seem to
be able to communicate the structure to me, and on top of everything else, the organiza-
tion of these data files seemed to keep changing. As you will learn in some of the later
chapters, the proper organization of data is absolutely crucial when attempting to analyze
complex datasets. I couldn’t just send them the code so that they could adapt to their use,
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because they didn’t have MATLAB, nor did they know how to use it. To make a long
story short, after a few miserable and drawn-out attempts, the collaboration failed. It was
my fault. What I should have done instead (short of physically going there, which I
couldn’t do, due to other commitments) was to write a self-contained GUI that encapsu-
lated the data analysis itself. Such a GUI can be deployed on any machine, even if it
doesn’t have MATLAB, and—if properly set up—can be operated by anyone, even with-
out any MATLAB knowledge. Put differently, I should have used a MATLAB GUI to cre-
ate a data browser (and analyzer), then given it to those who understood the structure of
the dataset (because they collected it). Instead of struggling with an impossible analysis, I
should have invested my time in creating a purpose-built GUI. Luckily, you can learn
from my mistake. This example serves—at least to me—as a very vivid cautionary tale of
why one disregards GUIs at one’s peril. They do have legitimate uses.

9.3 GUI BASICS

GUI stands for graphical user interface. It is therefore redundant to say “GUI interface.”
GUIs were pioneered by Xerox in the 1960s, along with the mouse. They were introduced to
public use with the Apple Macintosh in 1984 and to widespread public use with Windows. In
terms of MATLAB, early GUI functionality was introduced to MATLAB with version 4 in 1992.

For most purposes, the use of GUIs is not indicated. It takes effort to make them, and it is
overkill if only the programmer will ever use the program, e.g., in most data analysis cases in
research. This is particularly true if speed is of the essence, e.g., if you are rushing to meet a
deadline. The two most common use cases that do warrant the construction of a GUI are:

* If the end user is not the programmer and not expected to know the intricacies of the
program, e.g., for teaching, data collection, or analysis (as in the case of my ill-fated
collaboration).

e If the program involves a lot of flags and parameters that need to be customized with
every run. Instead of doing this on the command line, it is easier to press buttons (and
not forget one). This is good if you, for instance, write a data browser or a simulation.

Having now discussed the conceptual history and defined use cases for GUISs, the obvi-
ous question is: How to make one?

This question is best answered not in the abstract, but with a practical example; which
is why we cover that in the next section.

9.4 USING A GUI TO TRACK AN IP ADDRESS

In popular culture, GUIs are, perhaps unsurprisingly, steeped in mystery. For instance,
in an episode of “CSI: New York,” a character states, during an urgent crisis, that she
will “create a GUI interface using Visual Basic to see if she can track an IP address”
(http://goo.gl/0Dxv0). While this is plainly ridiculous on many levels (see use cases, pre-
vious section), this will do as a simple starter example that will allow you to grasp the
basic functionality. Let’s see if we can create a GUI (not a GUI interface!) to track an IP
address. And we'll do it using MATLAB, not Visual Basic.
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The first thing to note is that while you can, in principle, build a GUI by hand and from
scratch, no one really does this anymore since MathWorks introduced the function guide.

GUIDE stands for “GUI design environment,” and it provides exactly that, an editor
that allows you to create GUIs in a point-and-click fashion. It allows you to quickly create
functional GUIs, automatically taking care of most of the plumbing. In MATLAB, GUIs
consist of a figure with associated code. The shell of all of this is created by guide, you are
simply expected to add the functionality. You add elements like buttons, sliders, and lists
in the figure, and you spell out what should happen once the users interact with these ele-
ments in the code. Let’s try it.

After you type guide, you will be prompted with a quick start dialog window; see
Figure 9.1. Note: This GUI was created on a Mac. If you use a PC, your directory structure
will show backslashes, not slashes.

For now, please opt to create a new GUI, use the default “Blank GUI” template, and
click “OK.”

Once you do that, a figure opens that will allow you to build your GUI (see Figure 9.2).
At this point, nothing is on it, but note in the bottom right the indication of a “current
point” vector, which denotes the x and y position of your mouse cursor on the figure, as
well as the “Position” vector. You can resize the figure by dragging the black rectangle on
the bottom right corner of the gray figure canvas. Make sure to keep the screen dimen-
sions of the machine that you want to deploy the GUI in mind. It would be annoying if
the GUI you create so painstakingly wouldn't fit on the target screen.

On the left is a palette of tools you can insert in the figure, containing buttons and the
like. Click on the button icon (“OK,” below the arrow), and draw its outline on the canvas.
Once you are done, it should look something like Figure 9.3.

The button reads “Push Button”; let’s change that. Double-click on the button. This brings
up the “Inspector.” In this case, the inspector indicates that it is inspecting the uicontrol
pushbuttonl. You can also invoke this menu by typing “inspector” in the command line.
You do need to give the handle of the uicontrol as an argument. For now, simply scroll

® 0 O GUIDE Quick Start FIGURE 9.1 GUIDE quick start.

EEEEINEAEUR  Open Existing GUI

GUIDE templates rPreview

=) Blank GUI (Default)

4\ GUI with Uicontrols
4\ GUI with Axes and Menu
4\ Modal Question Dialog
BLANK
() Save new figure as: |/Users/lascap/Documents/M/| | Browse... |
[ Help ] [ Cancel ] [ oK ]
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FIGURE 9.2  Blank GUI template.
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FIGURE 9.3 Newly created button.
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down and take note of the different properties. At this point, the tag “pushbutton1” and the
“String” are most relevant. The tag is how we will later address the button. We click on the
text next to the string, change it to “TRACK!,” and click OK; see Figure 9.4. Uicontrols are
user interface objects such as buttons, sliders, and the like. They have a great many proper-
ties that can be set. They can be created both by dragging them onto the canvas within the
guide, or programmatically. For now, we'll focus on the guide approach.

EXERCISE 9.1

Add another button to the right of the existing button; label it “Own machine.”

Now add an “Edit Text” control. After adding it, change its background color to white
(via the inspector) and take note of its tag. Your figure should now look something like
Figure 9.5.

Now add another “Edit Text” control, and label them with Static text controls as “Host”
and “IP,” as in Figure 9.6.

As you can see, the aesthetics of this GUI leave a lot to be desired, but we'll fix that
later. For now, let’s focus on functionality.

Click on the green arrow to run the GUL If you do this for the very first time, you will be
polled for a name. Call it iptracker. After you enter a filename, two things will open: The
GUI as it will look to the end user and the code that was created by GUIDE; see Figure 9.7.

O O O Inspector: uicontrol (pus... untitled3.fig
BB miml Ry sBEd BEE% b
FontWeight normal e
4 ForegroundCoIor@ |
HandleVisibility on A
HitTest on ¥
HorizontalAlig... center -
Interruptible on v
KeyPressFcn @ 2 |19.0.0 String
ListboxTop 1.0 & RACK!'
Max 1.0 4
Min 0.0 &
> Position [16.5 7.167...
SelectionHighli... on -
> SliderStep [0.01 0.1]
String E| TRACKI &
Style pushbut... =
Tag pushbut... &
TooltipString &
UlContextMenu <None> |
Units characters ~
UserData ﬂ [0x0 do... & |
Valde . 1] 100] Current Point: [2, 146] Position: [100, 87, 201, 51]

FIGURE 9.4 Renaming the button to “TRACK!”.
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FIGURE 9.5 Edit Text control added.
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FIGURE 9.6 Host and IP Edit Text controls.
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The code looks complicated. It seems like GUIDE already created over a hundred lines of
code. But we'll look at that soon. First, click on the buttons. Nothing will happen. You can enter
text into the text controls, but that's it. Clearly, we need to add functionality to our program.

That’s what we’ll do now. Close the running instance of the GUI, which should leave you
with the GUI editor and the code. All existing code is stored in iptracker.m, and was created
automatically by GUIDE. Analyzing the code, there are eight functional parts. First, a
lengthy comment section explains the iptracker function (in principle). You can edit this if
you want to. Then comes initialization code, which you should not edit until you know
what you are doing; changes here can break the GUI. After that comes a function that exe-
cutes at the opening of the GUI, before you can see it. Do not concern yourself with this
either at this point. Then comes a function that handles potential output to the command
line. Of particular interest for our purposes are the functions that come after that. Two of
them, “pushbuttonl_Callback” and “pushbutton2_Callback,” govern what happens if the
respective button is pressed. To make this explicit: If a given button (identified by the tag,
which you can change via the inspector) is pressed, the code in the corresponding callback
function is executed. The remaining functions govern the creation and updating of the two
edit text boxes. These are the guts of the GUL We need to define what the code should be
doing by editing the “callback” functions. Speaking more generally, every time you invoke
the uicontrol by moving a slider or pressing a button, the code within the associated “call-
back” function is executed. On a sidenote, you can add uicontrols and associated callback
functions to any figure, without formally creating a GUI if you want the user to be able to
interact with the figure directly, e.g., allowing to change line styles on the fly.

Editor - /Users/lascap/Documents/MATLAB/ iptracker.m
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90

91 function editl_Callback(hObject, eventdata, handles)

92 ©% hObject  handle to editl (see GCBO) @00 iptracker
93 ‘ % eventdata reserved - to be defined in a future version of MATLAB

94 % handles structure with handles and user data (see GUIDATA)

95

96 @ mints: get(hobject, 'String!) retums contents of editl as text

97 str2double(get (hObject, 'String')) returns contents of editl

98

99

100 % --- Executes during object creation, after setting all propertiess

101 @ function editl. hObject, handles) Host Edit Toxt |
102 &% hobject  handle to editl (see GCBO)

103 % eventdata reserved - to be defined in a future version of MATLAB

104 % handles  empty - handles not created until after all CreateFcns o ‘ Edit Toxt
105

106 bizints edit controls usually have a white background on Windows.

107 See ISPC and COMPUTER.

qoal |3 ispc && isequal (get(hObject, 'BackgroundColor'), get(0,'defaultUicd

109 - set(hObject, 'BackgroundColor', 'white') ;

110 - end

111 i TRACK! ] { Own machine ]
112

113

114 function edit2_Callback(hObject, eventdata, handles)

115 ;% hobject  handle to edit2 (see GCBO)

116 I % eventdata reserved - to be defined in a future version of MATLAB

117 4 handles  structure with handles and user data (see GUIDATA)

118

119 ? mints: get(nobject, 'String!) returns contents of edit as text

120 Str2double(get (objeot,  String')) retarns contents of em_
121

122

123 % --- Executes during object creation, after setting all properties.

124 o function edit2_( hobject, handles)

125 0% hobject  handle to edit2 (see GCBO)

126 [ % eventdata reserved - to be defined in a future version of MATLAB

127 4 handles  empty - handles not created until after all CreateFcns called

128

129 $(EiaYE, St ontralejusnaliy hava)a White! backirondd]en Windses.

130 See ISPC and COMPUTI

131 - 1f ispc && 1sequal(get(h0bject 'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

132 - set (hObject, 'BackgroundColor ', 'white') ;

133 - lend

FIGURE 9.7 The GUI and its code.
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EXERCISE 9.2

Use the inspector to change the tag for This is recommended so that you don’t
the two buttons from pushbuttonl and lose track of what is what in GUIs with
pushbutton2 to “track” and “own,” respec-  many elements.
tively. Similarly, change the tag of the two The code still won’t do anything, but

edit text elements to “ip” and “host.” See at least the functions are now named
how it changes automatically in the code  properly.
after saving the figure by running it again.

Now, we are in a position to create the right functionality in the right places. There are
actually only a few key structures and functions that govern the behavior of the GUL
These are:

* handles: this is the name of the structure that contains all data that is passed around
within the GUI as its elements.

e get: this function is used to get the value of a GUI element.

* set: this function is used to set the value of a GUI element.

* guidata(hObject,handles): invoking this updates the handles data structure.

And that’s basically it. The rest is details and commentary.

We now add the following code to the track callback function, which executes when the
track button is pressed. Basically, we implement a three-step process. First, we read in the
value of the “host” text field, then we use a special Java function provided by MATLAB
(getHostAddress) to resolve the IP address. Third and finally, we put output this value
into the ip text field, as follows:

handles.temp = get(handles.host,'String'); %Reading in the string in "host" text field,
%putting it into temp.
ipaddress = char(getHostAddress(java.net.InetAddress.getByName(handles.temp)));
%Resolving the IP address.
set(handles.ip,'String',ipaddress); % Updating the string field of the ip object with
%the ip address.

At the end of this exercise, your function should look like Figure 9.8.
Now execute your code and try it. Input a URL into the host field, then click the track
button (see Figure 9.9).

76 % --- Executes on button press in track.

77 function track. Callback(hObject, eventdata, handles)

78 % hObject handle to track (see GCBO)

79 % eventdata reserved - to be defined in a future version of MATLAB

80 % handles structure with handles and user data (see GUIDATA)

81 - handles.temp = get(handles.host, 'String'); %Reading in the string in "host" text field, putting it into temp.
82 - ipaddress = char(getHostAddress(java.net.InetAddress.getByName(handles.temp))); %Resolving the IP address.

83 - set(handles.ip, 'String',ipaddress); %Updating the string field of the ip object with the ip address.

FIGURE 9.8 Track callback function.
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8.0 .0 iptracker

Host www.google.com

173.194.73.99

TRACK! Own machine

T
I I

FIGURE 9.9  Success!

It works! Congratulations, you just executed your first MATLAB function from a GUI,
and you tracked an IP address in the process.

Naysayers might complain that we didn’t actually track an IP address, we just resolved
one. OK, fine. Luckily, we anticipated this in the design of our program.

We'll use similar but slightly different logic as before, (as we now need to use functions
to retrieve our own IP). To do that, add the following code to the callback function that
corresponds to the “own machine” button (see Figure 9.10):

8.0 .0 iptracker

Host This machine

192.168.0.199

TRACK! Own machine

T
I I

FIGURE 9.10  Success again!
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ipaddress = char(getHostAddress(java.net.InetAddress.getLocalHost)); % Get own IP
%address.
set(handles.ip,'String',ipaddress); % Updating the string field of the ip object with %
%the ip address.
set(handles.host,'String','This machine'); % Updating the string field of the host
%object.

We taste sweet success yet again. We tracked an IP address (in real time!), even if it was
our own. You can even toggle back and forth between tracking URLs and your own IP.

Now that you understand the basic mechanics of GUIs, we can move on to something
more exciting, like psychophysics.

9.5 USING A GUI FOR PSYCHOPHYSICS

We won't reinvent the wheel here. If temporal precision is an issue and if you want to
do advanced psychophysics, you should use the Psychophysics Toolbox or MGL, as
explained in more detail in Appendix B. Nevertheless, you can use GUIs to nicely collect
psychophysical data, and maybe even add a button to calculate thresholds, and so on.

As you will also learn in Appendix B, there is a MATLAB compiler that allows you to
deploy a GUI without needing the machine of the end user to have MATLAB installed.
This adds versatility if you need to collect data in the field.

People are very used to GUIs by now. Most participants in your experiments won’t know
much about MATLAB, but they will know how to use a GUI (if you designed it right).

For educational purposes, we won't start with a fresh GUI, but will continue in medias
res. Let’s add some things to the existing GUI that you will need for psychophysics.

The first thing to do is to resize it (make it bigger) to accommodate our changes.

Then, add an axes element (you can add as many axes as you want, but one will do for
now), a slider element, another two buttons (“START” and “HAPPY”), and another text
edit field (tagged brightness), roughly as shown in Figure 9.11.

As you know by now, these elements don’t do anything yet, so we have to add the func-
tionality by adding code. Once we execute the program by clicking on the green arrow,
MATLAB will create the necessary wrappers/callbacks for us. We just have to fill them.

Appropriately, we’ll start with the functionality of the “START” button. The point of
this button will be to initialize the display in “axes.” Put this code into the callback func-
tion for the start button:

% Create a dark background with one spot of random brightness
handles.X = zeros(500,500,3);

% Create a matrix with zeros, in 3 dimensions

actual_brightness = randi([0 255],1);

%Pick a random integer as a luminance value from 0 to 255.
actual_brightness = actual_brightness./255;

%Scale down

handles.X(250:259,200:209,:) = actual_brightness;

% Assign it to a 9 X 9 pixel square.

imagesc(handles.X,[0 255]); %Image it, scaled.
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Host Edit Text

P Edit Text

axest

TRACK! Own machine

START J { HAPPY }

Edit Text —‘

FIGURE 9.11  The expanded GUL

axis off; % Take off axes labels, etc.

axis square %Make it square

handles.actbright = actual_brightness; %Put the actual brightness in the handles
%structure.

Now every time you execute the code, a bright square will be displayed on a dark
background. Every time you press start again, a new, random brightness is picked (see
Figure 9.12).

Now for the slider. The idea is that the participant can dial the brightness of a compari-
son square up and down. The goal is to match the brightness of the square set by
MATLAB (once START is pressed).

Add this code to the slider function. It executes every time the slider is moved. The
logic is that we first get the slider value, then add it to the matrix:

handles.bright = get(handles.sliderl,'Value'); % Getting the slider value

handles.X(250:259,300:309,:) = handles.bright; % Assign it to another 9 X 9 pixel
%square next to the other one.

imagesc(handles.X,[0 255]); %Image it, scaled.

axis off; % Take off axes labels, etc.

axis square %Make it square

Run the code. Something weird will happen. In my case, the whole screen turns blue
every time I move the slider (see Figure 9.13). Not quite the outcome I was hoping for.
What is going on?
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8 0 0O iptracker

Host Edit Text

P Edit Text

[ TRACK! } [ Own machine J

START HAPPY

| ——
‘ Edit Text |

FIGURE 9.12 The START button at work.

© 00 iptracker
—
o | Edit Text |
_—
P | Edit Text |

l TRACK! ’ l Own machine ’

=) = ]

e —
Edit Text ‘

FIGURE 9.13 Not the desired outcome.
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Bugs like these are hard to track down. In this case, it helps to remember what we dis-
cussed earlier in terms of the functions that implement virtually all basic GUI operations.
The individual functions that make up the GUI don’t by themselves have access to vari-
ables in other functions. They only do so via the handles structure. And that is only
updated if the function guidata is invoked. This means there is an easy fix here. The slider
function did not have access to the X matrix we created in the start button function, as
handles hadn’t yet been updated. To remedy this, add this code at the end of the start but-
ton code (and for good measure, put it at the end of the slider code as well):

guidata(hObject, handles);

That did it; see Figure 9.14. The user can adjust the brightness of the right patch at will,
by moving the slider.

We now need to assign an end condition, a condition that allows the user to indicate
that he is happy with the match and ready to move on to the next trial. That’s where the
“HAPPY” button comes in.

Add this code to the function that executes when the happy button is pressed:

handles.diff = abs(handles.bright-handles.actbright).*255; % Calculate the absolute
%difference between the values
set(handles.brightness,'String',num2str(handles.diff)); %Put it in the text field tagged
%" brightness"
guidata(hObject, handles); %Don’t forget to update. Save your work.

® 0 O iptracker

Host Edit Text |
P Edit Text |

{ TRACK! ] [ Own machine }

START HAPPY

Edit Text

The brightness slider working properly.
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It calculates the difference between the two brightness values, and outputs it in the text
field we haven’t used yet (see Figure 9.15).

Now, if you were adventurous, you could add code that starts a new trial in this very same
function. You could also add code that calculates thresholds on the press of a button, you could
display the data on the screen and prettify the design of this figure, etc.; you get the idea.

This is as far as we’ll go for now. You can write GUIs of arbitrary complexity with hun-
dreds of elements and multiple pages with the principles we covered here. If you are
interested in more details and, in particular, how to build GUIs by hand (without using
guide), we refer you to Smith (2006), although the book is somewhat dated by now.

Congratulations, you did “CSI: New York” one better. Not only did you create a GUI
that tracks an IP address in real time, the same GUI also allows you to collect psychophys-
ical data at the same time. Impressive.

EXERCISE 9.3

The “method of production” sensu  participant is presented with a given colored

Fechner, in which the study participant con-
trols a dial to match a given stimulus inten-
sity, is particularly popular color
psychophysics. Create a GUI where the

in

light and has to reproduce it by adjusting
three sliders: one for the red gun, one for the
green gun, and one for the blue gun of the
screen.

© 00

iptracker

| Edit Text
P [ Edit Text

[~ ] |

Host

Own machine }

HAPPY
|
| 3.4861

START

FIGURE 9.15 The HAPPY button at work.
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9.6 PROJECT

This one is very straightforward. Put the psychophysics task that you created in the last
chapter into a GUI! Make sure to add a button that allows you to calculate thresholds at
the end. It doesn’t have to calculate IP addresses, so start with a fresh GUIL

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

guide

inspector
getHostAddress
guidata

randi

guidata
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CHAPTER

10

Signal Detection Theory

10.1 GOALS OF THIS CHAPTER

This chapter will mostly concern the use of signal detection theory to analyze data gen-
erated in psychophysical—and hypothetical neurophysiological—experiments. As usual,
we will do this in MATLAB®.

10.2 BACKGROUND

At its core, signal detection theory (SDT) represents a way to optimally detect a signal
in purely statistical terms without an explicit link to decision processes in particular or
cognitive processes in general. However, in the context of our discussion, SDT provides a
rich view of the problem of how to detect a given signal. It reframes the task as a decision
process, adding a cognitive dimension to our understanding of this matter.

To illustrate the application of SDT in psychophysics, let us again consider the problem
of reporting the presence or absence of a faint, barely visible dot of light, as in Chapter 8,
“Psychophysics.” In addition to the threshold, which is determined by the physical prop-
erties of the stimuli and the physiological properties of the biological substrate, there are
cognitive considerations. In particular, observers have a criterion by which they judge (and
report) whether or not a signal was present. Many factors can influence the criterion level
and—hence—this report. You likely encountered some of those in the preceding chapters.
For example, your criterion levels might have been influenced by doing a couple hundred
trials, giving you an appreciation of what “present” and “absent” mean in the context of
the given stimulus range (which is very dim overall). Moreover, motivational concerns
might play a role when setting a criterion level. If research participants have an incentive
to over- or under-report the presence of a signal—e.g., if they think that the experimenter
expects this—they will in fact do so (Rosenthal, 1976). Interestingly, neuroeconomists uti-
lize this effect by literally paying their research participants to prefer one alternative, in
order to study the mechanisms of how the criterion level is set.

Of course, one could question the real-world relevance of these considerations, given
that they arose in very particular and arguably often rather contrived experimental

MATLAB® for Newroscientists. 209
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settings. It is worth emphasizing that this first impression is extremely misleading. Today,
signal detection theory constitutes a formal, stochastic way to estimate the probability by
which some things are the case and others are not; by which some effects are real and
others are not, and so on. As such, it has the broadest possible implications. Signal
detection theory is used by pharmaceutical companies as well as oil prospectors, and it
has even made its mark in public policy considerations. Of course, experimenters—
psychophysicists in particular—also still use it.

The astonishing versatility and base utility of signal detection theory are likely owed to
the fact that it goes to the very heart of what it means to be a cognitive organism or sys-
tem, as we will now describe.

Consider the following situation. Let us assume you work for a company that builds
and installs fire alarm systems. As these systems are ubiquitous in modern cities, business
is good. However, you are confronted with a rather confounding problem: How sensitive
should you make these alarms? The four possible cases are tabulated in a classic matrix, as
shown in Table 10.1.

Let’s peruse this matrix in detail as it is the foundation of the entire discussion to fol-
low. The cell in the upper left represents the “desired” (as desired as it can be, given that
there is a real fire in the building) case: there actually is a fire and the alarm does go off,
urging the occupants of the building to leave and alerting the fire department to the situa-
tion. Ideally, you would like the probability of this event to be 1. In other words, you
always want the alarm to go off when there is a fire present. This part should be fairly
uncontroversial. The problem is that in order to reach a probability of 1 for this case, you
need to set the criterion level for indicating “fire” by some parameters (usually smoke or
heat or both) incredibly low. In fact, you need to set it so low that it will likely go off by
levels of smoke or heat that can be reached without a fire being present. This puts you
into the cell in the upper right. If this happens, you have a false alarm. From personal
experience, you can probably confirm that the criterion levels of fire alarms are typically
set in a hair-trigger fashion. Almost anything will set them off, and almost all alarms are
therefore false alarms, given that the a priori probability of a real fire is very, very low. As
is the case in modern cities. While this situation is better than having a real fire, false
alarms are not trivial. Having them frequently is disruptive, can potentially have deleteri-
ous effects in case of a real fire (as the occupants of the building learn to stop taking action
when the alarm goes off), and strains the resources of the firefighters (as a matter of fact,
firefighters have been killed in traffic accidents on their way to false alarms). In other
words, setting the sensitivity too high comes at a considerable cost. Hence, you want to
lower the sensitivity enough to always be in a state that corresponds to one of the cells on
the main diagonal of the matrix, either having a hit (if there is actually a fire present) or a
“correct rejection,” arriving in the lower right. The latter should be the most common case,

TABLE 10.1 The Signal Detection Theory Payoff Matrix

Real fire No fire (but possibly some smoke or heat)
Alarm goes off Hit False alarm
Alarm does not go off Miss Correct rejection
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indicating that there is no fire and the fire alarm does not go off. Unfortunately, if you
drop the sensitivity too low, you arrive in the worst cell of all in terms of potential for
damage and fatalities: having a real fire, but the fire alarm does not alert you to this situa-
tion. This is called a “miss,” in the lower left.

In a way, this matrix illustrates what signal detection theory is all about: figuring out a
way to set the criterion in a mathematically optimal fashion (in the applied version) and
figuring out how and why people, organisms, and systems actually do set criteria when
performing and solving cognitive tasks (in the pure research version).

If this description sounds familiar, it should. As contemporary science has largely
adopted a stochastic view on epistemology, this fundamental situation of signal detection
theory appears in many if not most experiments, disguised as the “p-value” problem.

You are probably well aware of this issue, so let us just briefly retrace it in terms of sig-
nal detection theory.

When performing an experiment, you observe a certain pattern of results. The basic
question is always: How likely is this pattern, given there is no effect of experimental
manipulation? In other words: How likely are the observed data to occur purely by
chance? If they are too unlikely given chance alone, you reject the “null hypothesis” that
the data came about by chance alone. That is—in a nutshell—the fundamental logic of test-
ing for the statistical significance of most experimental data since Fisher introduced and
popularized the concept in the 1920s (Fisher, 1925).

But how unlikely is too unlikely? Again, we face the fundamental signal detection
dilemma, as illustrated in Table 10.2.

In science, the criterion level is conventionally set at 5%. This is called the significance
level. If a certain pattern of data is less likely than 0.05 to have come about by chance, then
you reject the null hypothesis and accept that the effect exists. Implicitly, you also accept
that—at this level—5% of the published results will not hold up to replication (as they
don’t actually exist). It is debatable how conservative this standard is or should be. For
extraordinary claims, a significance level of 1% or even less is typically required. What
should be apparent is that the significance level is a social convention. It can be set accord-
ing to the perceived consequences of thinking there is an effect when there is none (alpha
error) or failing to discover a genuine effect (beta error), particularly in the medical commu-
nity. The failure to find the (side-) effect of certain medications has cost certain companies
(and patients) dearly. For a dissenting view on why the business of significance testing is
a bad idea in the first place, see for example Ziliak and McCloskey (2008).

Regardless of this controversy, one can argue that any organism is—curiously—in a
quite similar position. You will learn more about this in Chapters 21, “Neural Decoding;
Discrete Variables,” and 22, “Neural Decoding: Continuous Variables.” For now, let us dis-
cuss the fundamental situation as it pertains to the nervous system (particularly the brain)

TABLE 10.2  Alpha and Beta Errors in Experimental Judgment

Effect exists (HO false) Effect does not exist (HO true)
We conclude it exists Discovery of effect Alpha error (false rejection of HO)
We conclude it doesn’t exist Beta error (false retention of HO) Failure to reject the null hypothesis
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of the organism. Interestingly, based on everything we currently assume to be true, the
brain has no direct access to the status of the environment around it—as manifested in
the values of physical parameters such as energy or matter. It learns about them solely by
the pattern of activity within the sensory apparatus itself. In other words, the brain
deduces the structure of the external world by observing the structural regularities of its
own activity in response to the conditions in the outside world. For example, the firing of
a certain group of neurons might be associated with the presence of a specific object in the
environment. This has profound philosophical implications. Among them is the notion
that the brain decodes its own activity in meaningful ways, as they were established by
interactions with the environment and represent meaningful associations between firing
patterns and states in the environment. In other words, the brain makes actionable infer-
ences about the state of the external world by cues that are provided by activity levels of
its own neurons. Of course, these cues are rarely perfectly reliable. In addition, there is
also a certain level of “internal noise,” as the brain computes with components that are not
perfectly reliable either. This discussion should make it clear how the considerations about
stochastic decision making introduced previously directly apply to the epistemological sit-
uation in which the brain finds itself. We will elaborate on this theme in several subse-
quent chapters. It should already be readily apparent that this is not trivial for the
organism, as it has to identify predator and prey, along with other biologically relevant
hazards and opportunities in the environment. In this sense, errors can be quite costly.

SUGGESTION FOR EXPLORATION

The basic signal detection situation test for an arbitrary disease in these terms
seems to reappear in different guises over  (which here appear as false positive and false
and over again. What we call the two funda-  negative). Also, try to model a case in the
mental errors varies from situation to situa-  criminal justice system in this way.
tion. Try framing the results of a diagnostic

10.3 EXERCISES

With this background in mind, it is now time to go back to MATLAB®. Let us discuss
how you can use MATLAB to apply signal detection theory to the data generated in
behavioral experiments.

Consider this situation. You run an experiment with 2000 trials. While running these
trials, you record the firing rate from a single neuron in the visual cortex. In 1000 of the
trials, you present a very faint dot. In the other 1000, you just present the dark back-
ground, without an added visual stimulus.

Let’s plot the (hypothetical) firing rates in this experiment. To do so, you use the normpdf
function. It creates a normal distribution. Normal distributions occur in nature when a large
number of independent factors combine to yield a certain parameter. A normal distribution
is completely characterized by just two parameters: its mean and variance.

Now, let us create a plausible distribution of firing rates. There is evidence that the
baseline firing rate of many neurons in visual cortex in the absence of visual stimulation
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hovers around 5 impulses/second (Adrians). Moreover, firing rates cannot be negative.
This makes our choice of a normal distribution somewhat artificial, as it does—of course—
yield negative values.

With that in mind, the following code will produce a somewhat plausible distribution
of firing rates for background firing in the absence of a visual stimulus:

x = 0:0.01:10;
y = normpdf(x,5,1.5)
plot(x,y)

The third parameter of normpdf specifies the variance. In this case, we just pick an arbi-
trary, yet reasonable value—for neurons in many visual areas, the variance of the neural
firing rate scales with and is close to the mean. Other values would also have been possi-
ble. Note that strictly speaking, it would make more sense to consider only integral firing
rates, but for didactic reasons, we will illustrate the continuous case. This will not make a
difference for the sake of our argument, and it is the more general case.

Now consider the distribution where the stimulus is in fact present. However, it is very
faint. It is sensible to assume that this will change the firing rate of an individual neuron
only very modestly (as the neuron needs the rest of the firing range to represent the remain-
ing luminance range). This assumes that the neuron changes its firing rate in response to
luminance changes in the first place. Many—even in visual cortex—do not but are lumi-
nance invariant. Most do—however—modulate their firing in response to contrast. None of
this is important for our didactic “toy” case. A plausible distribution will be created by:

z = (normpdf(x,6,1.5));
plot(x,z)

In other words, we assume that adding the stimulus to the background adds only—on
average—one spike per stimulus in this hypothetical example. For the sake of simplicity,
we keep the variance of the distribution the same, in reality it would likely scale with the
increased mean.

SUGGESTION FOR EXPLORATION

MATLAB has a large library of probabil-  values, as is the case with integral neural
ity density functions. Try another one to  firing rates. MATLAB offers the Poisson
model neural responses. A plausible start-  probability density function under the com-
ing point would be the Poisson distribution, =~ mand poisspdf.
as it yields only discrete and positive

On a side note, this is a good point to introduce another class of MATLAB functions,
namely cumulative distribution functions. They integrate the probability density of a given
distribution function (e.g., the normal distribution).

These are used for many calculations, as they provide an easy way to determine the
integrated probability density of a given distribution at a certain cutoff point.

For example, normcdf is often used to determine IQ-percentiles.
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As IQ in the general population is distributed with a mean of 100 and a standard devia-
tion of 15, we can type:

normcdf£(100,100,15)
to get the unsurprising answer:

ans =
0.5000

If we want to find out the percentile of someone with an IQ of 127, we simply type:

>> normcdf(127,100,15)
ans =
0.9641

In other words, the person has an IQ higher than 96.41% of the population.

Back to SDT. If you did everything right, you can now cast the problem in terms of sig-
nal detection theory. It should look something like Figure 10.1.

The plot in Figure 10.1 contrasts the case of stimulus absence versus stimulus presence;
firing rate in impulses per second is plotted on the x-axis, whereas probability or frequency
is plotted on the y-axis. The thick vertical black line represents the criterion level we chose.
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FIGURE 10.1  Signal absent versus signal present—two different distributions.
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The upper panel represents the case of an absent stimulus. For the cases to the right of
the black line, the neuron concluded “stimulus present,” even in the absence of a stimulus.
Hence, they are false alarms. Cases to the left of the black line are correct rejections. As
you can see, at a criterion level of 7.5 impulses per second, the majority of the cases are
correct rejections.

The lower panel represents the case of a present stimulus. For the cases to the left of the
black line, the neuron concluded “stimulus absent,” even in the presence of a stimulus.
Hence, they are misses. Cases to the right of the black line represent hits. At a criterion
level of 7.5 impulses per second, the majority of the cases are misses.

We are now in a position to discuss and calculate the receiver operating characteristic
(ROC) curve for this situation, defined by the difference in mean firing rate, variance, and
shape of the distribution. The exotic-sounding term receiver operating characteristic origi-
nated in engineering, in particular the study of radar signals and their interpretation.

Generally speaking, an ROC curve is a plot of the false alarms (undesirable) against hits
(desirable), for a range of criterion levels. “Area under the ROC curve” is a metric of how
sensitive an observer is, as will be discussed later. Given the conditions that you can gen-
erally assume, ROC curves are always monotonically non-decreasing curves. In the context
of tests, you plot the hit rate (or true positive rate or sensitivity) versus the false positive
rate (or 1-specificity) to construct the ROC curve. Keep this in mind for future reference. It
will be important.

First, try to plot the ROC curve:

figure

for ii = 1:1:length(y) % Going through all elements of y

FA(ii) = sum(y(1,ii:length(y))); % Summing from ith element to rest - FA(ii)
HIT(i) = sum(z(1,iizlength(y))); %Summing from ith element to rest — Hit(ii)
end

FA = FA./100; % Converting it to a rate

HIT = HIT./100; % Converting it to a rate

plot(FA HIT) %Plot it

hold on

reference = 0:0.01:1; %reference needed to visualize
plot(reference,reference,'color','k') %Plot the reference

Note: This code could have been written in much more concise and elegant ways, but it
is easier to figure out what is going on in this form.

To get the ROC curve, see Figure 10.2.

Note that the false alarms and hits are divided by 100 to get a false alarm and hit rate.
The black line represents a situation in which hits and false alarms rise at the same rate —
no sensitivity is gained at any point. As you can see, this neuron is slightly more sensitive
than that, as evidenced by the deviation of its ROC curve from the black identity line.
However, it rises rather gently. There is no obvious point where one should set the crite-
rion to get substantially more hits than false alarms. This is largely due to the small differ-
ence in means between the distributions, which is smaller than the variance of the
individual distribution. By experimenting with different mean differences, you can explore
their effect on the ROC curves.
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FIGURE 10.2 The ROC curve.

EXERCISE 10.1

Experiment with mean differences by yourself. The result should look something like
Figure 10.3.

It becomes readily apparent that the ability to choose a criterion level that allows you to
give a high hit rate without also getting a high false alarm rate is dependent on the differ-
ence between the means of the distributions. The larger the difference (relative to the vari-
ance) between the means, the easier it is to set a reasonable criterion level. For example, a
mean difference of 5 allows you to get a hit rate of 0.9 virtually without any false alarms.
This also gives a normative prescription to reduce false alarms: If you want to reduce false
alarms, you should increase the difference in the means of the measured parameter
between conditions of signal present (e.g., a fire) and signal not present (e.g., no fire). The
clearer the parameters you choose to differentiate between these two cases, the better off
you will be. A similar case can be made for the variance of the signals. The less variance
(often noise) there is in the signals, the better off you will be, when you are trying to dis-
tinguish between them. Hence, in order to create highly sensitive tests that discriminate
between two situations, one needs to measure parameters that can be measured reliably
without much noise but which exhibit a large difference in the mean parameter value,
given the different situations in question.
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Mean difference = 0

1

Mean difference = 1
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FIGURE 10.3  The shape of the ROC curve is dependent on the mean difference of the distributions.

SUGGESTION FOR EXPLORATION

How are the ROC curves affected by
increasing the variance of the distribution,

while keeping the absolute mean difference

the same?

The concept of difference (or distance) between means relative to the variance is of cen-
tral importance to signal detection theory. Hence, it received its own name: Discriminability
index (d’ or d prime). d’ is defined as the distance between the means of the two distributions
normalized (divided) by the joint standard deviation of the two distributions.
Conceptually, it is an extension of the signal to noise ratio (SNR)—from means to mean dif-
ferences. Here, it can be interpreted as a representation of signal strength relative to noise.
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Importantly, 4’ determines where an optimal criterion level should be set. For example,
if d’ is very high, you can get 100% hits without any false alarms, by setting the criterion
level properly. The situation is slightly more complicated when d’ is small, but there is a
prescriptive solution for this case as well—it is discussed below.

This point makes intuitive sense. The errors derive from the fact that the “signal-pres-
ent” and “signal-absent” distributions overlap. The more they overlap, the higher the
potential for confusion. If the distributions don’t overlap at all, you can easily draw a
boundary without incurring errors or making mistakes.

EXERCISE 10.2

Consider Figure 10.4. It represents two  the criterion level? Can you plot the corre-
distributions: one for “stimulus absent” on  sponding ROC curve (mean difference =5,
the left and one for “stimulus present” on  variance = 0.5)?
the right. At which x-value would you put

SUGGESTION FOR EXPLORATION

Create a movie that shows the evolution  variance in the distribution). You can also
of the ROC curve as a function of increasing  download this movie from the web site.
d’ (for added insight, try various degrees of

08 FIGURE 10.4 A case of high d'.
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So far, so good. One central concept of signal detection theory that we are still missing is
the notion of a likelihood ratio, or rather the use of likelihood ratios in signal detection theory.

While they sound rather intimidating, likelihood ratios are extremely useful because
they are abstract enough to be powerful and flexible, yet specific enough to be of practical
use. Hence, they are used in many fields, particularly diagnostics, but more generally in
almost all of science. If you want to grasp the core of the concept, it is important to first
strip off all these uses—some of which you might be already familiar with—and under-
stand that it originally comes from statistics, or rather probability theory.

If you happen to appreciate analytical statistics, you might be appalled by the purely
intuitive treatment of the likelihood ratio in this chapter. However, we deem this treat-
ment appropriate for the purposes of our discussion.

Consider a situation in which you throw a fair and unbiased six-sided die. Each side
has a probability of 1/6, which is about 0.1667. In other words, you expect the long-term
frequency of a particular side to be 1 in 6. If you now want to know the probability that
the die is showing one of the three lower numbers, you add the three individual probabili-
ties and arrive at 0.5. Similarly, the probability that the die will show one of the three high-
er numbers is equally 0.5.

In other words, the ratio of the probabilities is 0.5/0.5 = 1.

If you ask what the probability ratio of the upper 4 versus the lower 2 numbers is, you
arrive at (4%0.1667)/(2*0.1667) = 0.666/0.333 =2/1 =2. In other words, the ratio of the
probabilities is 2 and—in principle—you could call this a likelihood ratio.

In practice, however, the term likelihood ratio has a specific meaning, which we will
briefly develop here.

To do so, we have to do some card counting. Let’s say a deck of cards contains eight
cards valued 2 to 9. In each round, the dealer draws two cards from this deck (without
showing them to you). There is an additional, special deck that contains only two cards:
one that is valued 1 and one that is valued 10. In the same round, the dealer draws one
card from this special deck—again without showing it to you. However, the dealer does
inform you of the total point value of all three cards on the table. Your task is to guess
whether the card from the special deck is a 1 or a 10.

While this may sound like a rather complicated affair, the odds are actually hugely in
favor of the player once you do an analysis of the likelihood ratios. So don’t expect to see
this game offered in Vegas any time soon.

Instead, let us analyze this game—we happen to call it Chittagong—for educational
purposes. The highest possible point value in the game is 27, and it can happen only if
you get the 10 in the special deck and the 8 and 9 in the normal deck. So there is only one
way to arrive at this value. Similarly, the lowest possible point value is 6—by getting 1 in
the special deck as well as 2 and 3 in the normal deck. This case is also unique.
Everything else falls somewhere in between. So let us construct a table where we explore
these possibilities (see Table 10.3).

SUGGESTION FOR EXPLORATION
Can you re-create Table 10.3 with MATLAB using the permutation functions?
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TABLE 10.3 Exploring the Likelihood Ratios in the Chittagong Game

Total points Possible cases (=probability) in which Possible cases (=probability) in  Likelihood

(TP) special deck card is 10 which special deck card is 1 ratio (LR)
6 0 1 0

7 0 1 0

8 0 2 0

9 0 2 0

10 0 3 0

11 0 3 0

12 0 4 0

13 0 3 0

14 0 3 0

15 1 2 Y2=0.5
16 1 2 2=0.5
17 2 1 2/1=2
18 2 1 2/1=2
19 3 0 inf

20 3 0 inf

21 4 0 inf

22 3 0 inf

23 3 0 inf

24 2 0 inf

25 2 0 inf

26 1 0 inf

27 1 0 inf

You can immediately see that vast regions of the table are not even in play. If the total
value is below 15, you know that the special card had to be a 1. Moreover, if the total
value is above 18, you know that the special card had to be a 10. Only four values are up
to guessing, and even here, the odds are very good: As the player, you should guess 1 for
15 and 16, but 10 for 17 and 18. This state of affairs is due to the large difference between
1 and 10, relative to the possible range of normal values (5 to 17). In other words, d’ is
very high in this game. This becomes immediately obvious when you plot the frequency
distribution as histograms (10 =blue, 1=black), as shown in Figure 10.5. This
figure should look vaguely familiar (compare it to Figure 6.4).
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FIGURE 10.5 Histogram of fre-
quency distributions.

35} E

25 E

6 8 10 12 14 16 18 20 22 24 26 28

FIGURE 10.6 Histogram of fre-
quency distribution with a smaller
mean differences between the spe-
3.5+ ) cial cards (0 = black, 5 = blue).

251 1

15} 1

0.5 §

Reducing the mean difference by 4 does change the distance between the distribution
as well as the overall range. Suppose the cards in the special deck are replaced with two
cards worth 0 and 5 points, respectively. What does the histogram of the frequency distri-
butions look like now? (See Figure 10.6.)

The table of likelihood ratios, shown in Table 10.4, reflects this change.

As you can see, there is an intuitive and clear connection between likelihood ratio and
d'. Of course, this relationship has been worked out formally. We will forgo the derivation
here in the interest of getting back to neuroscience.
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TABLE 10.4 Revisiting Likelihood Ratios

Possible cases Possible cases

(=probability) in (=probability) in
Total points which special deck card which special deck card Likelihood
(TP) is 5 is 0 ratio (LR)
5 0 1 0
6 0 1 0
7 0 2 0
8 0 2 0
9 0 3 0
10 1 3 1/3=0.33
11 1 4 1/4=025
12 2 3 2/3=0.66
13 2 3 2/3=0.66
14 3 2 3/2=1.33
15 3 2 3/2=1.33
16 4 1 4/1=4
17 3 1 3/1=3
18 3 0 inf
19 2 0 inf
20 2 0 inf
21 1 0 inf
22 1 0 inf

In this simple case, you can just set the criterion at the ratio between the probabilities. If
this ratio is smaller than 1, guess 0. If it is larger, guess 5.

In the technical literature, the likelihood ratio takes more factors into account: the prior
probability as well as payoff consequences. Let us illustrate this case. Suppose there are
not 2, but 10 cards in the special deck: You know that 9 have a value of 5, 1 has a value
of 0. Hence, there is an a priori chance of 9/10 that the card will have a value of 5, and
this does influence the likelihood ratio, as it should. Taking payoff consequences into
account makes good sense because not all outcomes are equally good or bad (see the dis-
cussion at the beginning of the chapter). A casino could still make money off this game by
adjusting the payoff matrix. For example, it could make the wins very small (as they are
expected to happen often in a game like this), but the rare losses could be adjusted such
that they are rather costly. A player has to take these considerations into account when
playing the game and setting an optimal criterion value.
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To make this point more explicit, the likelihood ratio can be defined as follows:

plels;)
plels;)

l,-]'(e) = (10.1)
So the likelihood ratio of an event e is the ratio of two conditional probabilities. One is
the probability of the event given state s;; the other, the probability of the event given state
sj. lij is always a single real number.
Moreover, we already discussed a more general situation where the likelihood ratio
takes prior probabilities and payoffs into account:

stim_frequency . value_of —correct_rejection — value—_of -false_alarm
— stim_frequency value_of _hit — value_of _miss

l,'j(e) = 1 (10.2)

This is particularly important for real life situations, where not all outcomes are equally
valuable or costly.

As we alluded to before, the likelihood ratio is closely linked to ROC curves.
Specifically, it is very important to characterize optimal behavior.

These considerations influence the likelihood ratio at which you should set your deci-
sion criterion. Importantly, there is a direct relationship between likelihood ratio and ROC
curve: The slope of the ROC curve at a given point corresponds to the likelihood ratio cri-
terion which generated the point (Green and Swets, 1966). In other words, an inspection of
the slope can reveal where the criterion should optimally be set.

Let us illustrate these claims by revisiting the distributions introduced at the beginning
of the chapter.

Use this code to plot the slope of the curves, analogous to Figure 10.2.

figure

x = 0:0.01:10;

%Note that x is ordered. If you start with empirical data, you will have to sort them
%first.

y = normpdf£(x,5,1.5)

z = (normpdf£(x,6.5,1.5));

subplot(2,1,1)

for ii = 1:1:length(x)

FA(ii) = sum(y(1,ii:length(y)));

HIT(i) = sum(z(1,ii:length(y)));

end

FA = FA./100;

HIT = HIT./100;

plot(FA,HIT)

hold on

baseline = 0:0.01:1;
plot(baseline,baseline,'color’,'k')
subplot(2,1,2)

for ii = L:length(x)-1

m1(ii) = FA(ii)-FA(ii + 1); %This recalls the
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FIGURE 10.7 ROC curve with
slope.

m2(ii) = HIT(@i)-HIT(i + 1); %equation of a slope

end
m3 = ml./m2; %Dividing them
plot(m3)

The slope of the ROC curve is plotted in the lower panel; see Figure 10.7.

The philosophical implications of signal detection theory are deep. The message is
that—due to the stochastic structure of the real world—infallibility is, in principle, impos-
sible in most cases. In essence, in the presence of uncertainty (read: in all real life situa-
tions), errors are to be expected and cannot be avoided entirely. However, signal detection
theory provides a precise analytical framework for optimal decision making in the face of
uncertainty, while also being able to take into account subjective value judgments (such as
preferring one kind of error over another).

As you might have noticed, we are really only scratching the surface here. Because
situations in which a signal detection theory perspective is useful are truly ubiquitous—
think of any kind of selection and quality control process, such as hiring decisions, admis-
sion decisions, marriage, dating, to say nothing of the myriad applications in materials sci-
ence—signal detection theory has become a bottomless well. This should not be
surprising, as it is arguably at the very heart of cognition itself. Yet, this led to a situation
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in which even specialists can be overwhelmed by the intricacies of the field. Hence, the
point of this brief treatment was to cover the conceptual essentials and their application.
We are confident that it is enough to get you started in applying signal detection theory
with MATLAB to problems in neuroscience.

For further reading, we highly recommend the classical and elaborate Signal Detection
Theory and Psychophysics by Green and Swets (1966); the latest edition is still available in
print. It nicely highlights the role of signal detection theory in modern cognitive science
with many colorful examples.

10.4 PROJECT

The project for this chapter is very straightforward. Many uses of signal detection in
neuroscience involve the measurement of some “internal response” in addition to measur-
ing a behavioral response (e.g., deciding whether a stimulus under the control of the
experimenter is present or not). We assume that you do not currently have access to mea-
sure a “deep” internal response, such as firing rate of certain neurons that are presumably
involved in the task. Instead, we ask you to redo the experiment in Chapter 8, but with a
twist. Instead of just asking whether a faint stimulus is present or not, now elicit 2 judg-
ments per trial: One whether the stimulus is present or not, the other how confident the
observer is that it was present or not, on a scale from 1 (not certain at all) to 9 (very cer-
tain). Replot the data in terms of certainty. Get two distributions of certainty (one for situa-
tions where the stimulus was present, the other where it was not present). After doing so,
please answer and explore the following questions:

Where does the internal criterion of the observer lie?

What is the d’ of the certainty distributions?

Construct the ROC curve for the data (including slope).

How sensitive is the observer? (Compare the area under the ROC curve with the area
under the diagonal reference curve.)

Can you increase d’ by showing a different kind of stimulus?

Can you shift the position of the criterion by biasing the payoff matrix for your
observer (e.g., rewarding the observer for hits)?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

normpdf
normcdf
sum
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Frequency Analysis Part I: Fourier
Decomposition

11.1 GOALS OF THIS CHAPTER

This chapter introduces the most common method of decomposing a time series into
frequency components, Fourier analysis. You will learn about the Fourier transform and
the associated amplitude and phase spectra. The MATLAB® implementation of the fast
Fourier transform (FFT), an efficient algorithm for calculating Fourier transformations, will
be introduced and applied to the analysis of human speech sounds.

11.2 BACKGROUND

Figure 11.1 shows typical recordings of two human vowel sounds. How can you charac-
terize these different sounds? Frequency analysis provides a way to examine the relative
contributions of various frequencies to an overall signal. In the case of an auditory signal,
a given frequency component would be termed pitch.

11.2.1 Real Fourier Series

Take some continuous function f. We can approximate such a function with a weighted
series of sinusoids of various frequencies. Such a series is termed the real Fourier series:

a

ft)= Eo + ;an cos(nt) + ,,z:; b, sin(nt) (11.1)

Here, the coefficients a,, and b, represent the relative strength of each frequency compo-
nent n/2mw. [ag represents the nonoscillatory component of f(t).] So, given f(f), determining the
coefficients a,, and b,, allows for the representation of f(f) as a series sum of sinusoids.

MATLAB® for Newroscientists. 229
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FIGURE 11.1  Acoustic time series representing two different human vowel sounds.

We will exploit two special properties of the sine and cosine functions to find the Fourier
series coefficients a4, and b,,. Over the interval — 7 to 7, cosine and sine functions with differing
frequencies have the special property of orthogonality. The integral of the product of two mutu-
ally orthogonal functions evaluates to zero. So, the integral of the product of cosine or sine
functions with differing frequencies results in zero over this interval. Another interesting prop-
erty of sine and cosine is that the integral of the square of a cosine or sine function over this
integral is 7.

To find the strength, a,,, of a cosine component m, multiply by the corresponding cosine
function and integrate:

J f(t)cos (mt)dt= J %0 cos (mt)dt + i J cos (mt)a, cos (nt)dt + i J cos (mt)b,, sin (nt)dt

n=1 " n=1 "
(11.2)
All terms on the right side except the cosine term where m = n yield zero:
J f(t) cos (mt)dt =ay, J cos?(mt)dt (11.3)
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The right side integral evaluates to one over the integration range, yielding an expres-
sion for the Fourier series term coefficient:

ks

[ f(t) cos (mt)dt = may, (11.4)

-

Ay =

3=

J f(t) cos (mt)dt (11.5)

In general, the interval of f(f) will not be — 7 to 7. For an interval centered on x with
length 2L, the expression becomes

x+L

A = % J £(t) cos (%mt)dt (11.6)
x—L

A similar procedure using sine functions yields the coefficients for the sine terms of the
Fourier series.

11.3 EXERCISES

EXERCISE 11.1

Write a MATLAB function to calculate  interval so that the interval encompasses
coefficients for a real Fourier transform. the entire time series. In other words, x =0
Hint: The function will need to shift the and L = half the range of t.

11.3.1 Complex Fourier Transform
Euler’s identity,
¢ = cos wt + i sin wt (11.7)

provides a straightforward way to formulate complex Fourier series representation for a
given function, f(#):

fHy= i cpe™ (11.8)

n=—oo

Similar to the real transform, coefficients for the complex Fourier transform can be
found by
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=

Cm =

N

m
- J f(t)e ™At (11.9)
=

for a given coefficient m over the interval — 7 to . Over the interval x — L to x + L, this
becomes

x+L

= ;—L J f(t)e i/ (11.10)

x—L

Cin

EXERCISE 11.2

Write a MATLAB function to calculate  where k ranges from 0 to N—1, N is the
coefficients for a complex Fourier transform.  number of points, and f, is the value of the
This is essentially the discrete function at point .

Fourier transform (DFT):

1=
Fo= =Y fae ¥ (11.11)
N n=0

Let’s look at how this method of the Fourier transform scales with N. Given a time
series with N values, this method requires a multiplication of the series and the corre-
sponding Fourier component and subsequent sum for each coefficient. Assuming a num-
ber of coefficients equivalent to N, then you have a process that scales with N*. In other
words, as N increases, the time required to compute the Fourier transform increases as N*.

11.3.2 Fast Fourier Transform

With a few special tricks, a faster algorithm, the fast Fourier transform (FFT) that scales
in N log N time can be formulated. One of these tricks involves taking advantage of data-
sets exactly 2V elements long. The increase in processing speed has made the FFT ubiqui-
tous in signal processing. While a complete derivation of the algorithm is beyond the
scope of this book, invoking the MATLAB implementation of the FFT will be discussed.

MATLAB provides an FFT function fft(X), where X is a vector in time space. fft returns
the frequency space representation of X.

To visualize the importance of the difference in scaling, execute the following code:

figure

hold on

N = 1:10 * 100;
plot(N, N2, 'b")
plot(N, N.*log(N), 't")
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EXERCISE 7.3

If N represents sample size, what can  FFT algorithm benefit most, for large N or
you observe about the benefits of scaling as  small N?
N grows? Where does the efficiency of the

11.3.3 The Inverse DFT

As you might imagine, there is an inverse to the DFT:
N-1
o= Fe v (11.12)
k=0
MATLAB provides ifft() to perform the inverse discrete Fourier transform.

EXERCISE 7.4

Generate a single sine wave. Use fft() to  ifft() to retrieve the original sine wave from
generate the discrete Fourier transform. Use  the DFT.

11.3.4 Amplitude Spectrum

Often when you are using Fourier analysis, the amplitude spectrum is one of the first
analyses performed. The amplitude spectrum graphs amplitude against frequency. In
terms of the Fourier series representation, the amplitude spectrum depicts the magnitude
of the coefficients at various frequencies. As such, it depicts the relative strengths of the
various frequency components.

The following code generates a time series composed of 10 sine waves whose frequen-
cies and amplitudes vary systematically.

L = 1000;

X = zeros(1,L);
sampling_interval =0.1;

t = (1:L) * sampling_interval;

for N = 1:10
X = X+ N * sin (N*pi*t);
end

plot(t, X);
Y = fft(X)/L;

Now, the variable Y contains the normalized FFT of X. Note the normalization factor L.
Displaying the amplitude spectrum of X requires plotting the amplitudes at various
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frequencies. Note that fft returns only a single value, the transform coefficients. Now, how
do you determine the frequency scale?

The return value of the FFT assumes that frequency is evenly spaced, from 0 to a theo-
retical result called the Nyquist limit. Nyquist demonstrated that a discrete sampling of a
continuous process can capture frequencies no higher than half the sampling frequency.
Since the code above has the sampling interval, this Nyquist limit is half the inverse of
the sampling interval.

The following code calculates the Nyquist limit for the time series:

NyLimit = (1 / sampling_interval)/ 2;

When viewing the FFT, it is important to remember that the result is the complex trans-
form. Thus, simply using the result of the FFT as a set of real coefficients can cause a num-
ber of problems. To display the amplitude spectrum, the absolute value of the complex
coefficients will be used. The values returned by fft are the coefficients for frequencies
from the negative Nyquist limit to the positive Nyquist limit. If the time series data are
purely real, then the resultant transform will have even symmetry. That is, the transform
will be symmetrical across the abscissa. So, in this very frequent case, only the first half of
the result of fft is used. The following code employs linspace to generate frequency values
and plots the amplitude spectrum. linspace generates a linearly spaced sequence of values
given initial and final values. Here, the initial and final values are 0 and 1, with a value
count of L/2. The resultant vector is scaled by the Nyquist limit to generate the frequency
vector.

F = linspace(0,1,L/2)*NyLimit;
plot(F, abs(Y(1:L/2)));

11.3.5 Power

Power at a given frequency is defined as
P(w) = |F(w)|* = F(w)F*(w) (11.13)

where F is the complex conjugate of F. To do this in MATLAB, use the function conj to
return the complex conjugate of a series of complex values.

Here is a plot of the power spectrum of the time series generated for the amplitude
spectrum:

plot(F, (Y(1:L/2).*conj(Y(1:L/2)));

11.3.6 Phase Analysis and Coherence

A power spectrum alone is not a complete representation of the information in the orig-
inal signal. The various Fourier components can have various phases relative to one
another, as illustrated in Figure 11.2.

You can plot relative phase by frequency by plotting the inverse tangent of the ratio
between the imaginary component and the real component. Why is this the case? Imagine
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the complex plane, with pure real values along the abscissa (x-axis) and pure imaginary
values along the ordinate (y-axis). Any complex value in your 1D Fourier transform can
be represented with a coordinate pair. The magnitude of the value is simply the distance
from the origin to the coordinates, or the complex modulus. The phase is the angle formed
by the abscissa and the line passing through the origin and the complex point. Thus, using
basic trigonometry, the phase angle is tan™! (2% ).

How can you represent this in MATLAB?

L = 1000;

X = zeros(1,L);
sampling_interval = 0.1;

t = (1:L) * sampling_interval;

for N = 1:10
X =X+ N * sin (N*pi*t);
end

plot(t, X);

Y = fft(X)/L;

phi = atan(imag(Y)./real(Y));
F = linspace(0,1,L/2)*NyLimit;
plot(F, phi(1:L/2));

EXERCISE 11.5

Compare the phase spectrum generated  spectrum of the corresponding cosine func-
in the preceding exercises with the phase tion. Compare their power spectra.
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Average First and Second Formant Frequencies for Selected American
English Vowels

Vowel sound First formant Second formant
Bit 342 2322

But 623 1200

Bat 588 1952

Boot 378 997

(Data from Hillenbrand et al., 1995.)

11.4 PROJECT

In this project, you will be asked to use Fourier decomposition to analyze vowel sounds
produced by human speakers. On the companion website, you will find five examples of
vowel sounds as produced by male American English speakers. Each sound corresponds
to one of the vowel sounds in Table 11.1. The formant frequencies in Table 11.1 note the
average formant frequencies as spoken by a male speaker of American English. You will
use power spectra of these sounds to classify the recordings as one of these vowel sounds
in the table.

To complete this project, you need to understand how formants relate to frequency
analysis. The human vocal tract has multiple cavities in which speech sounds resonate. As
such, most sounds have multiple strong frequency components. In classifying speech
sounds, the lowest strong frequency band is termed the first formant. The next highest is
termed the second formant, and so on.

Vowels lend themselves to a particularly simple characterization through their for-
mants. Typically, vowel sounds have distinguishable first and second formants. Table 11.1
shows first and second formants for four vowel sounds in American English. Thus, the
short “i” sound would have strong frequency representation at 342 Hz and at 2322 Hz.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

fft

ifft
conj
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Frequency Analysis Part II:
Nonstationary Signals and
Spectrograms

12.1 GOAL OF THIS CHAPTER

The goal of this chapter is to extend Fourier analysis as covered in the previous chapter
to nonstationary signals. The short-time Fourier transform will be introduced.
Nonstationary examples will include applications to time-varying auditory signals and the
EEG during sleep.

12.2 BACKGROUND

Figure 12.1 depicts the vocalizations of a zebra finch. How is this dissimilar from the
sound signals you have examined thus far?

Note that different portions of the song have different envelopes with clearly defined
breaks. If they are taken separately, you might imagine these subsections to have different
Fourier spectra. In fact, they do. Figure 12.2 shows the Fourier spectrum for two subsec-
tions of song. The two subsections have very different distributions of power over
frequency.

A Fourier transform of the full song returns the power distribution over the entire song.
Any localization of frequency information to a time point or an interval is lost. Using the
example of the bird song here, a Fourier transform of the entire song would eliminate any
ability to associate frequency components with a given syllable. How, then, can you
extend the techniques discussed earlier to such complex signals?
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FIGURE 12.1  The sound amplitude of a zebra finch vocalization as a function of time.

12.2.1 The Fourier Transform: Stationary and Ergodic

When applied to a signal, the term stationary indicates that certain statistical properties
of the signal are uniform throughout. In other words, a subset of the signal is sufficient for
analysis of the entire signal. The distribution of power over frequency remains the same
over the whole signal.

A similar idea is the concept of ergodicity. Imagine an ensemble of related signals. Going
with the example of zebra finch vocalizations, an appropriate ensemble would be the set
of vocalizations from a set of birds. An ergodic ensemble is one in which each sample and
the ensemble approach the same mean. In other words, analyzing one sample or a subset
of the signals from the group can approximate the analysis of the ensemble. Ergodicity
and stationarity are independent qualities. Neither implies the other.

The Fourier transform assumes a stationary signal. Unfortunately, many biological sig-
nals, including the birdsong in Figure 12.1, are nonstationary.

12.2.2 Windows

How can you employ the Fourier transform to a nonstationary signal? If you assume
that the Fourier spectrum will change relatively little over a small interval of the signal,
you could divide the overall signal into windows and calculate the Fourier transform for
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FIGURE 12.2  The power spectra of two portions of the zebra finch vocalizations depicted in Figure 12.1.

each window separately. If a signal is relatively stationary over short intervals, or quasista-
tionary, this approach will often produce fruitful results. While many biological signals
are not truly stationary, many are quasistationary and amenable to this approach.

However, this approach breaks down somewhat at the interval boundaries, due to the
stationary assumptions of the Fourier transform. Choosing overlapping intervals mitigates
this somewhat. This is the basis for the short-time Fourier transform (STFT).

While a simple flat subset of the original time series might be the most straightforward
window, an appropriate choice of window shape can amplify or minimize characteristics
of the time series. For example, windows with tapered ends are used to minimize artifacts
from the edges of the window. This suggests a generalized window function, w(t), which
returns the value of the window at a given value of t. For values outside the window, w(t)
should return values equal to or close to 0.

Mathematically, the STFT is represented as:

X(r,w) = J x(Hyw(t — 7)e ™t (12.1)
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for a continuous signal. In this case, we are more interested in the discrete STFT,
o0

X(m,w) = Z x(nyw(n — m)e 1" (12.2)
n=-—oo
As mentioned previously, there are many alternatives to the simple squared off window
for calculating an STFT. We will briefly discuss three. The Hamming window function is
commonly used:

2
w(in) = 0.53836 — 0.46164 Cos( ™

o 1) (12.3)

where N is the number of points and # varies over the interval.
The Signal Processing Toolbox of the MATLAB® software provides the function ham-
ming, which returns a Hamming window of the desired length:

L = 100;
w = hamming(L);
plot(1:L, w)

Note that the Hamming window has a high amplitude at the center and low amplitude
at the ends. This attenuation reduces the artifacts from the edge of the window interval.
Another window function is the Hann window, whose functional form is similar to the
Hamming window:

w(n) =05 — 0.5 cos (;m ) (12.4)

Like the Hamming window, the shape of the Hann window is used to reduce artifacts
introduced at the edges of the finite windows from the signal. Gaussian window functions
are often used as well:

wn)=e ™ (12.5)

A short-time Fourier transform using a Gaussian window function is sometimes
denoted as a Gabor transform. A Gabor function is the product of a sinusoid and a
Gaussian function. The Gaussian function causes the amplitude of the sinusoid to dimin-
ish away from the origin, but near the origin, the properties of the sinusoid dominate. By
applying a Gaussian window and a Fourier transform to the time series, you are, in effect,
applying a Gabor function filter to the data.

12.3 EXERCISES

As a part of the Signal Processing Toolbox, MATLAB provides the function spectro-
gram, which calculates a short-time Fourier transform using a Hamming window. The
data for Figure 12.1 is available on the companion web site. Download the file songl.wav,
and load the file with wavread as follows:

[amp, fs, nbits] = wavread('songl.wav');

The function wavread loads a sound file in WAVE format and returns the data as
amplitude information ranging from —1 to +1. Here, you store the amplitude information
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in the variable amp. The sampling rate is returned in fs, and the number of bits per sample
(resolution) is stored in nbits.
Now type

spectrogram(amp, 256, 'yaxis')

You should see something like Figure 12.3. The default operation of spectrogram calcu-
lates power of the signal by dividing the whole signal into eight portions with overlap and
windowing the portion with a Hamming window. Here, the specified window size was
256. The optional parameter ‘yaxis” specifies that frequency should be on the y-axis rather
than x-axis. If no return values are specified, the default operation renders the power spec-
tral density over time using “hotter” colors (red, yellow, etc.) to designate frequency bands
of greater energy.

If a sampling frequency is not specified, the time scale will not be correct. To show the
correct time space for the loaded song, type

>> spectrogram(amp, 256, [ ], [ ], fs, 'yaxis')

Here, the empty brackets signify that the default settings for the window overlap, and
FFT size should remain.
Also, spectrogram can return the power spectral density:

>> [S, F, T, P] = spectrogram(X);
>> mesh(P)

Normalized frequency (>n rad/sample)

1000 2000 3000 4000 5000 6000 7000 8000 9000
Time

FIGURE 12.3  The spectrogram of the bird vocalization using the spectrogram function.

III. DATA ANALYSIS WITH MATLAB



242 12. FREQUENCY ANALYSIS PART II: NONSTATIONARY SIGNALS AND SPECTROGRAMS

The preceding code generates a 3D plot of the spectrogram, where z magnitude, rather
than color, represents power.

EXERCISE 12.1

In the bird song sample, try to determine  series data alone. Do the same with the
where the sound changes using the time  STFT. Do your results agree?

EXERCISE 12.2

Examine the result of the spectrogram Try values ranging from 16 to 1024 for
with varying window sizes for the follow- the Hamming window width. How does
ing time series: the representation change with different

S>> t = 0:0.05:1; Hamming window widths? Why might this

?
>> X = [Sin(s"‘t) sin(so*t) Sin(100*t)]; occur

12.3.1 Limitations of the STFT

The STFT is a fine resolution to the problem of determining the frequency spectrum of
signals with time-varying frequency spectra. There are some limitations. Small frequency
fluctuations are difficult to detect with the STFT because each subset of the signal is
assumed to be stationary. Since the reported frequency distribution at a time point results
from the analysis of the entire window, choosing a smaller window does allow for better
localization in time. However, a smaller window allows for fewer samples in each Fourier
transform, which ultimately reduces frequency resolution, especially for lower frequencies.
In other words, a trade-off exists between frequency and time localization.

The STFT is best employed when the fluctuations in frequency occur over a fairly uni-
form time scale. This allows selecting a single window size without substantial loss of
information.

12.4 PROJECT

Typical sleep in human adults includes the well-known REM sleep as well as four well-
characterized stages of non-REM sleep, or NREM sleep. During wakefulness, alpha waves
dominate the EEG, in the frequency range 8 to 13 Hz. As the person enters the first stage
of non-REM sleep, the dominant wave type transitions from alpha waves to theta waves,
in the range of 4 to 7 Hz. This is the first stage of non-REM sleep.
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The second and third stages of non-REM sleep are characterized by sleep spindles, at 12
to 16 Hz, and the appearance of delta waves, ranging in frequency from 0.5 to 4 Hz. The
fourth stage of sleep is characterized by a majority power distribution in the delta wave
band. The third and fourth stages of NREM sleep are also termed slow wave sleep, to
denote the prevalence of the low frequency delta waves in these two stages.

On the companion web site, you can find three EEGs from patients falling asleep. Using
spectrogram and any other frequency analysis tools learned thus far, try to determine
when the people enter each of the NREM stages of sleep.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

hamming
spectrogram
wavread
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Wavelets

13.1 GOALS OF THIS CHAPTER

In this chapter, you will be introduced to the use of wavelets and wavelet transforms as
an alternative method of spectral analysis. We will discuss a number of common wavelets
and introduce the Wavelet Toolbox of the MATLAB® software.

13.2 BACKGROUND

In Chapter 12, “Frequency Analysis Part II: Nonstationary Signals and Spectrograms,”
introduced the short-time Fourier transform (STFT) to decompose the frequency composi-
tion of nonstationary signals. Under certain situations, though, the STFT results in a less-
than-optimal breakdown of frequency as a function of time. With increased precision in
frequency distribution, localization in time becomes less precise. In other words, there is a
time—frequency precision tradeoff. The reverse is also true: better temporal localization
reduces the precision of the frequency distribution. This may bring to mind the well-
known relationship of position and momentum of the Heisenberg uncertainty principle.

One of the benefits of the STFT is that the transform window can be chosen to optimize
the resolution of frequency or localization of that frequency in time. A larger window
allows for better frequency resolution, and a smaller window allows for better temporal
resolution. However, for the STFT, the window size is constant throughout the algorithm.
So, while the STFT can optimize for frequency or time in a given signal, the choice in the
time-frequency tradeoff holds for the entire signal. This can pose a problem for some non-
stationary signals. The wavelet transform provides an alternative to the STFT that often
provides a better frequency/time representation of the signal.

13.2.1 What is a Wavelet?
A wavelet is a function that satisfies at least the following two criteria:

1. The integral of the function (x) over all x is 0.
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J Px)dx =0 (13.1)

— 0

2. The square of (x) has integral 1. A function adhering to this property is called square-
integrable.

0
J Ylx)dx =1 (13.2)
— 0

Fulfilling the first criterion mandates that the wavelet function has an equal area above
and below zero. Fulfilling the second criterion mandates that the function approach zero
at positive and negative infinity. Because of this second criterion, the function decays
away from the origin, unlike sinusoidal or other infinite waves (thus, wavelet).

13.2.2 The Continuous Wavelet Transform

The continuous wavelet transform (CWT) is analogous to the continuous Fourier transform:
Wi(s,t) = J x(u) s (u)du (13.3)

Here, the parameter t is the typical ¢ in the time series x(t). The parameter s is called
scale and is analogous to frequency for Fourier transforms. The wavelet function itself var-

ies with both s and ¢:
o (?) (13.4)

1
'(/}s,t(x) = 7§

The inclusion of ¢ and s allows the function to be scaled and translated (shifted) for different
values of s and t. The original wavelet function (untranslated and unscaled) is often termed
the mother wavelet, since the set of wavelet functions is generated from that initial function.

The scaling provides a significant benefit over the short-time Fourier transform. The
multiple scales of the wavelet transform permit the equivalent of large- or small-scale
transform windows in the same time series. The preceding transform can be approximated
for a discrete time series.

13.2.3 Choosing a Wavelet

A number of wavelet functions are commonly used in data analysis. Here are two used
primarily for spectral analysis.
Morlet wavelet (for large wy):

Y(F) = 7 ie 2 g0t (13.5)
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The Morlet wavelet was originally developed to analyze signals with short, high-
frequency transients and long, low-frequency transients (see Figure 13.1).
Mexican hat wavelet:

1 £\ 2

The Mexican hat wavelet has poorer frequency resolution than the Morlet wavelet, but
often better temporal resolution.

13.2.4 Scalograms

The scalogram depicts the strength of a particular wavelet transform coefficient at a
point in time. As such, it is the wavelet analog of the spectrogram.

The scalogram in Figure 13.2 shows the continuous wavelet transform of the following
signal with a Morlet wavelet (sigma = 10). This code generates a time series with three
long blocks of time at 100, 500, and 1000 Hz. At every half second, a 0.05 transient at
1000 Hz is inserted.

Scale =1
1 T T T T T T T
0.5 E
0
-0.5F E
_1 1 1 1 1 1 1 1
-20 -15 -10 -5 0 5 10 15 20
Scale =5
1 T T T T T T T
0.5F E
0 _
_05 - -
_1 1 1 1 1 1 1 1
-20 -15 -10 -5 0 5 10 15 20
Scale = 10
1 T T T T T T T
0.5 |
0 "\/\/\/\/\/\/\‘
-0.5F E
_1 1 1 1 1 1 1 1
-20 -15 -10 -5 0 5 10 15 20

Morlet wavelet at various scales
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Scalogram for sinu-
soid + transient signal in text.

Fs = 5000;

total_time = 5;

t = (1/Fs):(1/Fs):(total_time/3);

f =[100 500 1000];

x = [cos(f(1)*2*pi*t) cos(f(2)*2*pi*t) cos(f(3)*2*pi*t)];
t = (1/Fs):(1/Fs):total_time;

%add short transients

trans_time = 0:(1/Fs):0.05;

trans_f = 1000;

for secs = 0.5:0.5:4

trans = cos(trans_f*2*pi*trans_time);
x((secs*Fs):(secs*Fs + length(trans) — 1)) = trans;
end

Be aware that the relationship between scale and frequency is an inverse one and that
frequency increases with decreasing scale. Also, note how the frequency resolution
improves for the higher frequency band in the later third of the series. This corresponds to
the 1000 Hz section of the time series.

The code to generate and plot the CWT follows.

In my_cwt.m:

function coefs = simple_cwt(t, x, mother_wavelet, max_wavelet, scales, params)
% Generates coefs for a continuous wavelet transform

% t, x are time and data points for time series data

% mother_wavelet is a function, taking parameters (t, params),

% where the value of params depends on the specific function used
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% max_wavelet is the maximum range of the wavelet function (beyond which
% the wavelet is essentially zero)

% scales is a vector of desired scales

% params is the parameter for the mother wavelet function
max_t = max(t);

dt = t(2)-t(1);

full_t = — (max_t/2):dt:(max_t/2);

coefs = zeros(length(scales), length(x));

points = length(x);

t_scale = linspace( — max_wavelet, max_wavelet, points);
dt = (max_wavelet*2)/(points — 1);

mom_wavelet = feval(mother_wavelet, t_scale, params);
row = 1;

for scale = scales

time_scale = [1 + floor([0:scale*max_wavelet*2]/(scale*dt))];
wavelet = mom_wavelet(time_scale);

w = conv(x,wavelet)/sqrt(scale);

mid_w = floor(length(w)/2);

mid_x = floor(length(x)/2);

w = W(((— mid_x:mid_x) + mid_w));

scale % print scale to show progress

coefs(row,:) = abs(w);

row = row + 1;

end

In my_morlet.m:

function m = morlet(t, params)
sigma = params(1);
m = pi" — 0.25%exp( — i*sigma.*t — 0.5*t.”2);

In plot_cwt.m:

function plot_cwt(t, coefs, scales)
imagesc(t, scales, coefs);
colormap(hot);

axis xy;

end

Here, imagesc generates an imagemap from two vectors of data. Given parameters x, v,
and ¢, imagesc generates a colored area of color(n,m) centered at x(n) and y(m). So, here in
plot_cwt, at values of t and coefs, the corresponding scales value is used to assign a color.

To generate the scalogram, type:

scales = 1:200;
coefs = my_cwt(t, x, @my_morlet, 10, scales, [10]);
plot_cwt(t, coefs, scales);

III. DATA ANALYSIS WITH MATLAB



250 13. WAVELETS

13.2.5 The Discrete Wavelet Transform

In addition to the continuous wavelet transform, there is a transformation termed the
discrete wavelet transform (DWT). However, the DWT is not merely a discretized continuous
wavelet transform. Instead, the discrete wavelet transform calculates only a subset of the
possible scales, usually dyadic values (successive values in 2", ie., 1, 2, 4, 8, 16, 32, etc.).
Moreover, the DWT is usually calculated using an algorithm called the pyramid algorithm,
in which the data series is recursively split in two and reprocessed.

An exploration of the pyramid algorithm is beyond the scope of this chapter. For a
thorough discussion, see Percival and Walden (2000). The DWT has been used to denoise
signals and to cluster neural spikes for sorting (Quiroga, Nadasdy, and Ben-Shaul, 2004).

13.2.6 Wavelet Toolbox

Wavelet Toolbox provides an implementation of the DWT and a number of appropriate
wavelets. Analyses using the discrete wavelet transform use different wavelets than analy-
ses with the continuous transform. The Haar wavelet and the Daubechies wavelet are
among the most widely used.

In the following commands, ‘wname’ corresponds to the name of a specific wavelet
included in Wavelet Toolbox. Possible choices are ‘dbN’ for Daubechies N, ‘haar’ for Haar,
‘morl” for Morlet, and ‘mexh’ for the Mexican hat. To view all supported wavelets, use help
waveform.

coefs = cwt(S, SCALES, 'wname')

The function cwt performs a continuous wavelet transform on the dataset S. The scales
given as SCALES are used, and the wavelet is given by ‘wname’. The function cwt will also
automatically plot the scalogram if given the parameter ‘plot” at the end:

coefs = cwt(x, 1:200, 'morl', 'plot')
[cA. cD] = dwt(X, 'wname")
X = idwt(cA, cD, 'wname')

The functions dwt and idwt perform a single level decomposition and synthesis given
the wavelet name.

[C, L] = wavedec(X, N, 'wname")
X = waverec(C, L, 'wname')

The functions wavedec and waverec perform multilevel decomposition and synthesis
given wavelet name and level N. Note that N cannot be greater than the exponent of the
largest power of 2 less than the size of X. The C vector contains the transform, and the L
vector contains bookkeeping information used by wavedec and waverec to find the posi-
tion of the parts of the transform in C.

Here is an example plotting scales 2 through 7 for a Debauches 4 wavelet:
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% here size(s) = 128

[C, L] = wavedec(s, 7, 'db4");

for scale = 2:7

subplot(7,1,scale)

c_sub = (2"(scale — 1)):(2"scale);

t_sub = linspace(l, time, time/size(c_sub));
plot(t_sub, C(c_sub))

end

wavedemo

The wavedemo function opens an automated tour of Wavelet Toolbox, showing various
transforms and functions provided by the toolbox.

13.3 EXERCISES

EXERCISE 13.1

Which of the following MATLAB func- end
tions can be wavelet functions? Why or function x = f_three(t)
why not? function x = f_one(t) x = sqrt(2) * t * exp(—t"2/2) / pi’4;
end
x = cos(t);

function x = f_four(t)

x = sqrt(2) * t"2 * exp(—t"2/2) / pi"4;
end

function x = f_five(t)

end
function x = f_two(t)
if (x < 0 or x > pi/2)

:ls=eo; x=x>-1&&x<0*-1+x>0
&& x < 1);

x = cos(t);
end

end

EXERCISE 13.2

Generate the scalogram in Figure 13.2.  clearly does each render the transients? The
Generate a spectrogram and compare. How  primary frequencies?
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EXERCISE 13.3

Write a Mexican hat mother wavelet scalogram of the sinusoid + transient signal
function compatible with the previous con-  used in Figure 13.2. Compare Mexican hat
tinuous wavelet transform code. Generate a  transform to the Morlet transform.

EXERCISE 13.4

Download the EEG signal wavelet, eeg,  wavelet transforms. Compare to a spectro-
from the companion website. Generate sca-  gram generated with spectrogram().
lograms using the Mexican hat and Morlet

13.4 PROJECT

In Chapter 12, “Frequency Analysis Part II: Nonstationary Signals and Spectrograms,”
you used the short-time Fourier transform to look for sleep state transitions. Here, you
will be asked to examine the same data files using the continuous wavelet transform and
Morlet and Mexican hat wavelets. Compare and contrast your findings with what you
found using only the STFT.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

cwt

dwt
idwt
wavedec
waverec
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Introduction to Phase Plane Analysis

14.1 GOAL OF THIS CHAPTER

The goal of this chapter is to examine the cone and horizontal cell system using a quali-
tative visualization technique called phase plane analysis; this system will be discussed fur-
ther in Chapter 28, “Models of the Retina.” The techniques presented here will be used
again in Chapter 15, “Exploring the Fitzhugh-Nagumo Model.”

14.2 BACKGROUND

In this chapter you will be studying a retinal feedback model; this model is described
further in Chapter 28, “Models of the Retina.” The system is represented as follows:

dc _ l(— C — kH) (14.1)
dt TC
i _ l(—H+ C) (14.2)
dt TH

Typical values for these parameters are 7 =0.025sec, 7y =0.08 sec, and k=4. Now
assume that the light intensity is L =10 (i.e., daylight). For your initial conditions, choose
that C(0) = H(0) = 0. Finally, be aware that:

C=C—% and H=H—% (14.3)

For further details of the basic biology of this system, see Chapter 28, “Models of the
Retina.” In that chapter, we will examine in more detail the model of retinal feedback between
cone cells and horizontal cells of the retina, shown in Equations 14.1 and 14.2. Although the
explicit solutions determined in that chapter are more informative, many more complicated
systems (such as the Fitzhugh-Nagumo system presented in Chapter 15, “Exploring the
Fitzhugh-Nagumo Model”) can only be qualitatively described. When we describe a system
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254 14. INTRODUCTION TO PHASE PLANE ANALYSIS

qualitatively, we look for steady-state values of the solutions (often called fixed points) and try
to classify the dynamics of the solution that led to these steady-state values. In Chapter 28,
“Models of the Retina,” we will consider the following system in more detail:

% =x+y (14.4)
dy
i dx +y (14.5)
which has eigenvalues —1 and 3 and has the solution:
x(t) = C1e® + Cre™ (14.6)
y(t) =2C1e* —2Coe”! (14.7)

This solution can be described qualitatively. If you wait long enough, then this system
will approach one of two states. If C; =0, then:

limy, o x(t) = limy_, . y(#) = 0 (14.8)

Therefore, one says that (x, y) = (0, 0) is a steady-state or fixed point of the system. For
C; # 0, then:

lim;, o, x(t) = lim; -, o, y(t) = o (14.9)

Therefore, the only finite steady-state solution to this system is (x, y) = (0, 0). Regardless
of how you choose C; and C,, there are no other steady-state values for this system. Since
the initial conditions determine C; and C,, then those initial conditions that lead to C; =0
will have solutions that steadily tend toward the fixed point (0, 0), while all others will
steadily tend toward infinity (i.e., away from the fixed point at the origin). A fixed point
with this property—that is, with some initial conditions leading to the fixed point and
others leading away from it—is called a saddle point. This simple qualitative description of
identifying the steady state(s) of the solution, the dynamics of what initial conditions lead
to the steady state(s), and how it is reached steadily or in an oscillatory fashion can all be
determined from a phase plane analysis of the system.

The first step in phase plane analysis is to set up a phase plane. The axes for the plane
represent the state variables characterizing the system. In the preceding example, the
phase plane is constructed with y as the ordinate and x as the abscissa. Next, the -x- and
y-nullclines are plotted. The x-nullcline is the curve in the x-y plane, where:

dx
i 0
A similar definition applies for the y-nullcline. Intersections of these nullclines represent

points where:

so x and y are no longer changing with time. In other words, these intersections represent
steady-state values or fixed points of the system. Next, a vector field is constructed by
assigning the following vector to every point on the x-y plane:
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d dy)!
dt dt
Notice that this vector field can be determined without knowing the solution to the sys-
tem. Since the slope of these vectors is:
dy /dx _dy
=2 /=22 14.1
"Tar) @ ax (14.10
by the chain rule, the vector field must be tangent to any solution (x, y) of the system. This
allows you to use the vector field to calculate the solution of the system for any initial con-
dition (x,,y,). Such a solution when plotted on the phase plane is called a trajectory. The
phase plane, nullclines, vector field, and several trajectories are shown in Figure 14.1 for
the system in Equations 14.4 and 14.5.

X' =x+y
y'=4x+y

1 1 1
-10 -8 -6
Cursor position: (1.79, —15.8) X
The backward orbit from (-2.7, —4.8) left the computation window.
Ready.
The forward orbit from (1.9, —5.4) left the computation window.

The backward orbit from (1.9, —5.4) left the computation window.
Ready.

8 10

FIGURE 14.1  Phase plane of a linear system showing saddle node stability.
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In the figure, the nullclines are plotted as dashed lines. Notice that these nullclines
intersect at the point (x, ) = (0, 0) indicating that this is the steady-state of the system in
agreement with what was predicted by considering the explicit solutions (Equations 14.6
and 14.7). Any linear system of ordinary differential equations described by a matrix with
real eigenvalues of opposite sign (recall that the eigenvalues for this system are —1 and 3)
will have a saddle point at the intersection of its nullclines.

If the matrix describing the linear system has real eigenvalues that are both negative,
then the fixed point is called a nodal sink. The classic phase portrait of a nodal sink is
shown in Figure 14.2.

If the matrix describing the linear system has real eigenvalues that are both positive,
then the fixed point is called a nodal source. The classic phase portrait of a nodal source is
shown in Figure 14.3. Notice the difference in the direction of the arrows in the vector field
in this figure.

X =—X
y'=-3y

2t

4

L L L

-10 -8 -6
Cursor position: (-9.75, 12)
The forward orbit from (2.9, —3.8)-> a possible eq. pt. near (-5.6e-014, —5.1e-020).
The backward orbit from (-2.9, —3.8) left the computation window.
The forward orbit from (6.1, —4.1)-> a possible eq. pt. near (-8.4e-014, —2e-020).
The backward orbit from (6.1, —4.1) left the computation window.
Ready.

Phase plane of a linear system showing nodal sink stability.
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-8+

-10 +

1 i I
-10 -8 -6 -4 -2 0
Cursor position: (-9.58, 12.1) X

The backward orbit from (-2.5, =5.1) -> a possible eq. pt. near (—6e-014, 8.1e-019).
Ready.

The forward orbit from (4.3, —4.9) left the computation window.

The backward orbit from (4.3, —4.9) -> a possible eq. pt. near (-7e-014, —3.7e-020).
Ready.

Phase plane of a linear system showing nodal source stability.

If the matrix describing the linear system has imaginary eigenvalues that have negative
real parts, then the fixed point is called a spiral sink. The classic phase portrait of a spiral
sink is shown in Figure 14.4.

If the matrix describing the linear system has imaginary eigenvalues that have positive
real parts, then the fixed point is called a spiral source. The classic phase portrait of a spiral
source is shown in Figure 14.5.

These five types of equilibria are collectively known as the generic equilibria. There are
also five nongeneric equilibria. The most important nongeneric equilibrium is called a cen-
ter. It occurs when the eigenvalues of the matrix are purely imaginary. The classic phase
portrait of a center is shown in Figure 14.6.
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10

10

Il Il Il
-10 -8 )
Cursor position: (-11.3, 12.2) X

The backward orbit from (-0.82, —3.2) left the computation window.

Ready.

The forward orbit from (4.2, —-4.6) - a possible eq. pt. near (1.5e-014, —1e-014).
The backward orbit from (4.2, —4.6) left the computation window.

Ready.

10

Phase plane of a linear system showing spiral sink stability.

14.3 EXERCISES

The phase portraits in the preceding section were drawn using a downloadable M-file
called pplane7.m. The phase plane consists of three basic features: the nullclines intersect-
ing at the fixed point of the system, the vector field showing how the solutions change
over time, and trajectories showing how the solution approaches its steady-state from a
given initial condition. The first exercise of this chapter will involve writing a simple ver-
sion of pplane7. Several functions built into MATLAB will aid in coding each of the basic
features of the phase plane mentioned previously.

Plotting the nullclines of the system requires no more than the basic plotting commands
used throughout previous chapters. Plotting the vector fields can be greatly aided by the
functions meshgrid() and quiver(). The function meshgrid takes two vector arguments x
and y, and returns two square matrices X and Y such that each row of X is a copy of the
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> Pririt.
-10
-10 -8 -6 -4 -2 0 2 4 6 8 10
Cursor position: (-9.28, 12.2) X
The backward orbit from (-1.5, 6.1) ->a possible eq. pt. near (-6.6e-016, —1.7e-014).
Ready.

The forward orbit from (4.7, 4.5) left the computation window.
The backward orbit from (4.7, 4.5) -> a possible eq. pt. near (-6.9e-015, —7.1e-015).
Ready.

Phase plane of a linear system showing spiral source stability.

vector x, and each column of Y is a copy of the vector y. This function is useful for evaluat-
ing functions of two variables. For example, suppose you wanted to evaluate the function
flx,y) = x +y. You could do this using for loops; for example, you could type

>> x =[0:0.1:10];
>>y=x

>> for ii = 1:length(x)
>> for jj =1:length(y)
>> f(ii,jj) = x(ii) + y(j);
>> end;

>> end;

which produces the same results as the commands
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10| ot e ey o i e S e R R

1 1 1 1 1 i 1 1 1 1 1
-10 -8 -6 -4 -2 0 2 4 6 8 10
Cursor position: (-11.1, 12.2) X

The backward orbit from (3, —4.7) -> a nearly closed orbit.
Ready.

The forward orbit from (4.1, —8.6) -»> a nearly closed orbit.
The backward orbit from (4.1, —8.6) - a nearly closed orbit.
Ready.

FIGURE 14.6 Phase plane of a linear system showing center stability

>> x= —10:10;

>>y=x
>> [X, Y] = meshgrid(x,y);
>> f=X+4Y;

Evaluating functions of two variables is important in this chapter because the model you
wish to study (Equations 14.1 and 14.2) expresses the derivatives as functions of the two
variables: C and H. By comparing the matrix f as defined in the preceding code to Equation
dx
dat
could define a matrix g that holds the y-derivative by using the following command:

14.1, you see that f holds the values of the derivative — for several values of x and y. You

>>g=4X+Y;
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10 T T T T T T T T T

-8} 4

-10 ! I I I |
-10 -8 —6 —4 -2 0 2 4 6 8 10

Vector field created by the quiver() command.

Once you have evaluated these derivatives using meshgrid, we can plot a vector field
using the quiver command. If you have the matrices X, Y, f, and g defined as shown here,
then type this command:

>> quiver(X,Y,f,g);

You should get the result shown in Figure 14.7.

The function quiver works by plotting a vector on the plane at points (x, y) with compo-
nents (f, g).

You can plot the trajectory of a system given an initial condition in several ways. One
method is to use a numerical solver such as the ode_euler() or RK4() functions you will write
in Chapter 25, “Voltage-Gated Ion Channels,” to solve for x and y given some initial condition
and then plot x versus y. Another method would be to calculate the derivatives of x and y at
the initial condition, move the system a short distance in the direction indicated by the deriv-
ative, and then repeat over many time steps. Either method will work, and both can be done
with no more than the basic functions introduced in Chapter 2, “MATLAB Tutorial.”

EXERCISE 14.1

Write a function phase_plane(A, init) plane analysis for the linear system,
that takes a matrix and performs a phase u' =Au. The function should plot a phase
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plane with axes x and y, plot the nullclines,
create the vector field, and plot the phase
plane trajectory that passes through the ini-
tial condition. Finally, the program should
output the type of equilibrium point, saddle
point, spiral sink, etc. If the equilibrium
point is nongeneric, then the program can
just output nongeneric as the class type.
This is quite a complicated program, so you

14. INTRODUCTION TO PHASE PLANE ANALYSIS

that can be called within phase_plane—for
example, a separate function that will sim-
ply classify the fixed point and then another
that will create a vector field, etc. Hint: The
Boolean function isreal() will return 0 if the
argument is not a real number and 1 if it is.
This function might be useful for deciding
whether or not the eigenvalues of A are
real, so that the fixed point of the system

may want to write several smaller functions  can be classified.

14.4 PROJECT

Use your phase_plane program to analyze the retinal model described at the beginning
of this chapter. The matrix describing this linear system is:

-1 —k
Tc TC
1 -1
™ TH

Identify what kind of behavior the fixed point exhibits. Repeat using the parameters for
dim light:

7c=0.1 sec, Ty =0.5 sec, and k=0.5

What is the behavior of the fixed point now?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

isreal
quiver
eig
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Exploring the Fitzhugh-Nagumo
Model

15.1 GOAL OF THIS CHAPTER

In this chapter we will use the techniques of phase plane analysis to analyze a simpli-
fied model of action potential generation in neurons known as the Fitzhugh-Nagumo (FN)
model. Unlike the Hodgkin-Huxley model, which has four dynamical variables (see
Chapter 27, “Modeling of a Single Neuron”), the FIN model has only two, so the full
dynamics of the FN model can be explored using phase plane methods.

15.2 BACKGROUND

The FN model can be created from the Hodgkin-Huxley model by combining the vari-
ables V and m into a single variable v and combining the variables # and / into a single
variable r. The four equations of the Hodgkin-Huxley model then become the two-
equation system (Fitzhugh, 1961)

dv 15

—=cv— 0 +r+ _
i c(v 30 r+1) (15.1)
dr 1

—=——(v—a+ _
g7 C(v a+ br) (15.2)

where a, b, ¢, and I are parameters of the model.
In Chapter 14, “Introduction to Phase Plane Analysis,” we analyzed a system of linear
differential equations that had the following general form:

X ax+by (15.3)
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264 15. EXPLORING THE FITZHUGH-NAGUMO MODEL

dy _
dt
In the current chapter we would like you to consider more complicated differential
equations (such as those of the FN model). Suppose that you have a system of differential
equations of the form:

cx +dy (15.4)

o ~few) (155)

dy _
= —8(y). (15.6)

where f and g are more complicated functions of x and y. You begin by plotting the x- and
y-nullclines, which are given by f(x, y) =0 and g(x, y) =0, respectively. These nullclines
may intersect never, once, or more than once. If the nullclines never intersect, then the sys-
tem has no finite steady-state solutions. If there is one point of intersection, then there is
only one steady-state solution. Linear systems have at most one steady-state solution
(unless they are degenerate). Nonlinear systems, however, can have any number of
steady-state values. This will be important in your understanding the trajectories, which
may be seen in nonlinear systems. A vector field and trajectories given initial conditions
can be calculated for nonlinear systems in the exact same manner as calculated for linear
systems. Lastly, you can classify the fixed points (steady-state values) as you did in
Chapter 14, “Introduction to Phase Plane Analysis.” You perform this by linearizing the
functions f and g about each fixed point. You assume that the functions f and g have
Taylor expansions, so:

a]((xss’ Yss)

f6y) = f(xss, yss) + T(x — Xg) + f (s Yss)

3y (y — Yss) + higher order terms, (15.7)

and

0855, Yss) (x — xs) + 08(Xss, Yss) (y — Yss) + higher order terms.  (15.8)

g(xa y) = g(xss, yss) + ax a]/

As you approach the fixed points, the higher order terms tend to zero since x — xg,
Y — VYss << 1. Additionally, f(xss Yss) = §(Xss,Yss) =0, s0O:

SSs Yss a SS» Yss
fle,y) ~ Yt xy )( Xss) + f(xT/y)(y —Yss) and (15.9)
gy~ B V) (o 68(x55’y55) St LY (15.10)

Ox
Substituting these equations into Equations 15.1 and 15.2 yields:

dx  d(x —xs) _ Of(Xss, Yss) af(xSS» Yss)

dt - dt - ox (o = Xss) + ay ———— (Y~ Ys) (15.11)
d_y _ d(y_]/ss) _ 08(Xss, Yss) _ M B
i e R T U (15.12)
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Expressing this system as a matrix equation gives:

af (Xss, ]/ss) 8f (Xss, ]/ss)

[(X - xss)/:| _ Ox ay % |:(x - xss):| (15 13)
Y —Yss) 08(Xss, Yss)  O%(Xss, Yss) W —Yss) | '
0x 0x
If you let:
I o
ox 0
— (x - xss):l _ y
= d J= 15.14
! |:(]/ - yss) an ] 8_g a_g ( )
ox oy
then you can write Equation 15.13 as:
U =Tl ) * U (15.15)

The matrix J is called the Jacobian matrix. It is a very important matrix in the mathemat-
ics of multivariable calculus. Equation 15.15 tells you that to a first-order approximation
the nonlinear system in Equations 15.5 and 15.6 can be approximated by the linear system
of Equation 15.15. The eigenvalues of the Jacobian matrix (evaluated at the fixed point)
allow you to classify the fixed point as a saddle point, spiral sink, etc. Equation 15.15 is an
approximation to the nonlinear system. You might wonder at what point the approxima-
tion breaks down. There is a theorem that we will state without proof which says that
when the dynamics of the fixed point of the linear system in Equation 15.12 is a generic
fixed point, then the fixed point of the nonlinear system in Equations 15.1 and 15.2 has the
same dynamics. If the linear system has a nongeneric fixed point such as a center, then no
conclusion can be drawn about the dynamics of the fixed point of the nonlinear system.
See Chapter 14, “Introduction to Phase Plane Analysis,” for a review of generic and non-
generic equilibria.

Note that information about the dynamics of the fixed point applies only to a limited
neighborhood centered about the fixed point. A spiral source, for example, can spiral out
to infinity or spiral out and approach a circular orbit. The latter case is called a limit cycle.
Nonlinear systems in higher dimensions (three or more) can have even more complicated
dynamics, not all of which have currently been discovered. The best studied dynamics of
higher order nonlinear systems include Lorenz attractors and chaos.

15.3 EXERCISES

In this chapter we will explore the pplane program written by Dr. John C. Polking of
Rice University. This program was used to make the figures in the Background section of
Chapter 14, “Introduction to Phase Plane Analysis,” and the latest version can be
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® OO pplane8 Setup

The diferential equations.

%= [BxyeaweyR e ey
N '= [ Ey - E ey ¢ Bxy

Parameters S B — E—
or = =
expressions =
The display window. The direction field.
The mnmumvakeof x =5 Arr
= @ i Number of
The maximumvakieof x = 21 [ () Lines field points per
: p—4 row or column.
The minimum value of y = | 4 'Q Nulicines
The maximum vakie of y = 2 (Y None ™20 |
o
Quit Revert Proceed

pplane8 Setup window.

downloaded free at http://math.rice.edu/ ~dfield/. After downloading the script, you
can run it by typing the following:

>> pplanes;

Entering this command will open the pplane8 Setup window shown in Figure 15.1.

Set up the FN model by changing the variables x and y to v and r according to
Equations 15.1 and 15.2. The parameter values you can use for now are a 0.7, b 0.8, ¢ 3,
and I 0. Set the display window such that v ranges from —3 to 3 and r ranges from —2 to
4. Leave the other settings the same. If you have done this correctly, the Setup window
will look like the one in Figure 15.2.

Now click the Proceed button, and a pplane8 Display window will come up, as shown
in Figure 15.3.

Next, open the Solutions menu and click Show nullclines. This will display the v-null-
cline in magenta and the r-nullcline in red. The phase plane will now look like the one
shown in Figure 15.4.

Next, open the Option menu, select Solution Direction, and then select Forward. This
will ensure that when an initial condition is provided to the system, the trajectory will be
plotted only as time moves forward. Finally, open the Solutions menu and select Find an
Equilibrium Point. This will turn the mouse pointer into a crosshair. Place the crosshair
near the intersection of the nullclines and click. An Equilibrium point data window will
open, revealing that the equilibrium is located at (v, r) = (1.1994, —0.62426). If you would
like to enter in an initial condition to see a trajectory in the phase plane, you have two
options. First, you can open the Solutions menu and then click Keyboard Input. This will
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e OO0 pplane8 Setup
The differential equations.
’ ¥ = [ v73 v AB+) |
{ = [ic*v-asd'n) |
= 0.7 | | = 0 ]
Parameters
or ' g = 0.8 = '
expressions . . . - ) I .
d = 3 =
The display window. The direction field.
The minimum vakue of v = Arrows
) = @ Number of
The maximum value of v = 3 Q Lines field points per
2 — row or column.
The minimum value of r = ) Q Nulicines
The maximum vake of r = ’ O None 20 |
Quit I Revert I Proceed

FIGURE 15.2  pplane8 Setup window with FN model.

allow you to enter the initial conditions. After you click Compute, a trajectory in blue is
depicted on the phase plane in the pplane8 Display window. Alternatively, you can click
Solutions and then select Plot several solutions. Again, the mouse pointer is converted to a
crosshair. You can now click on the phase plane at the point representing the initial condi-
tion and press Enter. Several trajectories are shown in the phase plane in Figure 15.5.

Finally, you can obtain the voltage trace from the phase plane by opening the Graph
menu and selecting v vs ¢. This will again convert the mouse pointer into a crosshair. Use
the crosshair to select any trajectory on the phase plane. A pplane8 t-plot such as the one
in Figure 15.6 will appear.

The plot in Figure 15.6 shows that if you change the membrane potential of the neuron
to 2.4, it decays back down to the equilibrium value 1.1994 as previously determined. This
is analogous to giving a neuron a subthreshold depolarizing stimulus. After the brief
depolarizing stimulus, the neuron’s membrane potential will exponentially relax back
down to its equilibrium resting potential.

EXERCISE 15.1

Is the equilibrium point in the preceding  attracted to this point or repelled from it)?
model system stable (i.e.,, are trajectories
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® 00 pplane8 Display
v'=c(v- 113y J+r+l) a=07 I=0
t'=-1lc(v-a+br b=08 ¢=3
T T T I I T T
4 e g -
I T Y WERURESPE JIUPYRE s SRR SAPS i
B R R o e TS T ]
R [ S PP PP ‘ ....................................... ,_
| T OO SO PSP PR OUPO SUUTRPPRRPPPROOS AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA o
1| S - SO S O SO S i
SO ... L e S v e e s e s B ................ .................. - ot
1 1 1 1 1 1 1
3 2 1 0 1 2 3
Cursor position: (-0.926, 4.56) v
Computing the field elements.
Ready.

pplane8 Display window.

15.4 PROJECT

In this project, you will explore the Fitzhugh-Nagumo model that you setup with
pplane8 by injecting different levels of current and examining how the behavior of the
model neuron mimics that of a real neuron. Specifically, you should do the following:

Change the injected current value to I = —0.2 in the Setup window and click Proceed.
Follow the previous instructions to display the nullclines. Calculate a trajectory in the
Forward direction with the initial condition (v, ) = (1.1994, —0.62426). Is this point still
stable?

Determine what v versus t looks like for a trajectory on this phase plane. Would

you classify the injected input of — 0.2 as a superthreshold or subthreshold

stimulus? Does this neuron exhibit subthreshold oscillations for this value of injected
current?
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8 00 pplane8 Display
vi=c(v- 13y +r+)) a=0.7 |I=
r'=-1c(v-a+br) b=0.8

Cursor position: (-3.62, -1.14) ¥

Computing the field elements.
Ready.

Phase plane with v- and r-nullclines depicted.

Change the injected current value to I = —0.4 in the Setup window and click Proceed.
Follow the previous instructions to display the nullclines. Calculate a trajectory in the
Forward direction with the initial condition (v, ) = (1.1994, — 0.62426). Is this point still
stable? Plot several trajectories on this phase plane. Since the nullclines intersect at only
a single point, there are no other equilibrium points for this system, but trajectories may
be attracted to some other closed orbit—for example, a circular orbit. Are these
trajectories attracted to a closed orbit?

Determine what v versus t looks like for a trajectory that is attracted to a closed orbit,
also called a limit cycle. Would you classify this injected stimulus as a superthreshold or
subthreshold stimulus?

Finally, repeat the analysis for I = —1.6 and examine v versus t. Does this neuron spike
continuously as it did before? Neurons are known to exhibit a phenomenon called
excitation block, whereby increasing the current injection can often repress repetitive
firing behavior.
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pplane8 Display

v'=cv- 3y J+r+))
r'=-1lc(v-a+br

Stop

Cursor position: (-1.22, -3.88) ¥

Ready.
The forward orbit from (2.3, -0.15) --> a possible eq. pt. near (1.2, -0.62).
The forward orbit from (0.28, -1.7) --> a possible eq. pt. near (1.2, -0.62).

FIGURE 15.5 Phase plane with sample trajectories.

| ©00. . 8 t-plot # 7 : FIGURE 15.6 pplane8 t-plot showing volt-
wi=c(v- 13y J+r+l) a=07 I=0 age over time.
r'=-1flc(v-a+br) b=038 c=3
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MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

pplane8 (free script by John C. Polking available at http://math.rice.edu/ ~ dfield /)
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Convolution

16.1 GOALS OF THIS CHAPTER

The purpose of this chapter is to familiarize you with the convolution operation. You
will use this operation in the context of receptive fields in the early visual system as input
response filters whose convolution with an input image approximates certain aspects of
your perception. Specifically, you will reproduce the Mach band illusion and explore the
Gabor filter as a model for the receptive field of a simple cell in the primary visual cortex.

16.2 BACKGROUND

A convolution is the mathematical operation used to find the output y(¢) of a linear time-
invariant system from some input x(t) using the impulse response function of the system
h(t), where h(t) is defined as the output of a system to a unit impulse input. It is defined as
the following integral:

o0

y(t) = h(t) = x(t) = J h(T)x(t — 7)dr (16.1)

— o0

This can be graphically interpreted as follows. The function h(7) is plotted on the T-axis,
as is the flipped and shifted function x(t — 7), where the shift ¢ is fixed. These two signals
are multiplied, and the signed area under the curve of the resulting function is found to
obtain y(t). This operation is then repeated for every value of ¢ in the domain of y. It turns
out that it doesn’t matter which function is flipped and shifted since & * x =x * h.

You can also define a convolution for data in two dimensions:

y(k, t) = hik, £) * x(k, t) = h(r, K)x(k — K, t — 7)dKdr (16.2)

8_"8
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Basically, you take a convolution in one dimension to establish the k dependence of the
result y and then use that output (which is a function of k, t and 7) to perform another con-
volution in the second dimension. This second convolution provides the ¢t dependence of
the result, y. It is important that you understand how to apply this to a two-dimensional
data function because in this chapter you will be working with two-dimensional images.
In the MATLAB® software, since you are working with discrete datasets, the integral
becomes a summation, so the definition for convolution in 2D at every point becomes

0 0

ym,m) = >y hlkko)x(m — ki, n — ko) (16.3)

k1=*’f;‘ k2=*‘173

Again, this is easier to understand pictorially. What you are doing in this algorithm is
taking the dataset x, which is a matrix; rotating it by 180 degrees; overlaying it at each
point in the matrix h that describes the response filter; multiplying each point with the
underlying point; and summing these points to produce a new point at that position.
You do this for every position to get a new matrix that will represent the convolution of i
and x.

16.2.1 The Visual System and Receptive Fields

In this section we discuss in general the anatomy of the visual system and the input
response functions that explain how different areas of the brain involved in this system
might “perceive” a visual stimulus.

Light information from the outside world is carried by photons that enter the eyes and
cause a series of biochemical cascades to occur in rods and cones of the retina. This bio-
chemical cascade causes channels to close which leads to a decrease in the release of neu-
rotransmitter onto bipolar cells. In general, there are two fundamental varieties of bipolar
cells. On-bipolar cells become depolarized in response to light and off-bipolar cells become
hyperpolarized in response to light. The bipolar cells then project to the ganglion cells
which are the output cells of the retina. The response to light in this main pathway is also
influenced by both the horizontal and amacrine cells in the retina. There are many types
of retinal ganglion cells that respond to different visual stimuli.

A stimulus in the visual field will elicit a cell’s response (above the background firing
rate) only if it lies within a localized region of visual space, denoted by the cell’s classical
receptive field. In general, the ganglion cells have a center-surround receptive field due to
the types of cells that interact to send information to these neurons. That is, the receptive
field is essentially two concentric circles, with the center having an excitatory increase (+)
in neuronal activity in response to light stimulus and the surround having an inhibitory
decrease (—) in neuronal activity in response to light stimulus, or vice versa. The response
function of the ganglion cells can then be modeled using a Mexican hat function, also
sometimes called a difference of Gaussians function.

In the main visual pathway, the ganglion cells send their axons to the lateral geniculate
nucleus (LGN) in the thalamus, which is in charge of regulating information flow to the
cortex. These cells also are thought to have receptive fields with a center-surround archi-
tecture. LGN cells project to the primary visual cortex (V1). In V1, simple cells are thought
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to receive information from LGN neurons in such a way that they respond to bars of light
at certain orientations and spatial frequencies. This can similarly be described as a Gabor
function—a two-dimensional Gaussian filter whose amplitude is modulated by a sinusoi-
dal function along an axis at a given orientation. Thus, different simple cells in V1 respond
to bars of light at specific orientations with specific widths (this represents spatial fre-
quency; see Dayan and Abbott, 2001). These and other cells from V1 project to many other
areas in the cortex thought to represent motion, depth, face recognition, and other fascinat-
ing visual features and perceptions.

16.2.2 The Mach Band Illusion

Using your knowledge of the receptive fields or the response functions of the visual
areas can help you understand why certain optical illusions work. The Mach band illusion
is a perceptual illusion seen when viewing an image that ramps from black to white. Dark
and light bands appear on the image where the brightness ramp meets the black and
white plateau, respectively. These bands are named after Ernst Mach, a German physicist
who first studied them in the 1860s. They can be explained with the center-surround
receptive fields of the ganglion or LGN cells (Ratliff, 1965; Sekuler and Blake, 2002); we
will use this model in this chapter although alternative explanations exist (for example,
see Lotto, Williams, and Purves, 1999).
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FIGURE 16.1  The Mach band illusion. Top of figure: the visual stimulus with various center-surround recep-
tive fields superimposed. Bottom of figure: the actual brightness of the visual stimulus (black solid line) and the
perceived brightness of the optical illusion (blue dotted line).
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The illusion is demonstrated in Figure 16.1. At the initiation of the stimulus brightness
ramp, a dark band, darker than the dark plateau to the left, is usually perceived. At the
termination of the brightness ramp, a light band is perceived brighter than the light pla-
teau to its right. Figure 16.1 shows the center-surround receptive fields of sample neurons,
represented by concentric circles, superimposed on the stimulus image. The center disk is
excitatory, and the surrounding annulus is inhibitory, as indicated by the plus and minus
signs. When the receptive field of a neuron is positioned completely within the areas of
uniform brightness, the center receives nearly the same stimulation as the surround; thus,
the excitation and inhibition are in balance. A receptive field aligned with the dark Mach
band has more of its surround in a brighter area than the center, and the increased inhibi-
tion to the neuron results in the perception of that area as darker. Conversely, the excita-
tion to a neuron whose receptive field is aligned with the bright Mach band is increased,
since more of its center is in a brighter area than the surround. The decreased inhibition to
such a neuron results in a stronger response than that of the neuron whose receptive field
lies in the uniformly bright regime and thus the perception of the area as brighter.

16.3 EXERCISES

The goal for this chapter is to reproduce the Mach band optical illusion. First, you will
create the visual stimulus. Then you will create a center-surround Mexican hat receptive
field. Finally, you will convolve the stimulus with the receptive field filter to produce an
approximation of the perceived brightness.

You begin by creating the M-file named ramp.m that will generate the visual input (see
Figure 16.2). The input will be a 64 X 128 matrix whose values represent the intensity or
brightness of the image. You want the brightness to begin dark, at a value of 10, for the first

The brightness
ramp stimulus used as visual input.

10 E

20 b

40 b

50 b

20 40 60 80 100 120
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32 columns. In the next 65 columns, the value will increase at a rate of one per column, and
the brightness will stay at the constant value of 75 for the rest of the matrix. Open a new
blank file and save it under the name ramp.m. In that file enter the following commands:

Joramp.m
% This script generates the image that creates the Mach band visual illusion.
In = 10*ones(64,128); %initiates the visual stimulus with a constant value of 10
for ii =1:65
In(;,32 +ii) =10 + ii;
%ramps up the value for the middle matrix elements (column 33 to column 97)
end
In(;,98:end) = 75; %sets the last columns of the matrix to the final brightness value of 75
figure
imagesc(In); colormap(bone); set(gca, 'fontsize',20) % view the visual stimulus

Notice how the function imagesc creates an image whose pixel colors correspond to the
values of the input matrix In. You can play with the color representation of the input data
by changing the colormap. Here, you use the colormap bone, since it is the most appropri-
ate one for creating the optical illusion, but there are many more interesting options avail-
able that you can explore by reading the help file for the function colormap.

You've just created an M-file titled ramp that will generate the visual stimulus. Note,
however, that you use a for loop in ramping up the brightness values. Although it doesn’t
make much of a difference in this script, it is good practice to avoid using for loops when
programming in MATLAB if possible, and to take advantage of its efficient matrix manip-
ulation capabilities for faster run times (see Chapter 4.4.5.1, “Vectorizing Matrix
Operations”). How might you eliminate the for loop in this case? One solution is to use
the function cumsum. Let’s see what it can do:

>> z =ones(3,4)

Z i
1111
1111
1111
>> cumsum(z)
ans =
1111
2 2 2 2
3 3 3 3

The function will cumulatively add the elements of the matrix by row, unless you spec-
ify that dimension along which to sum should be the second dimension, or by column:

>> cumsum(z,2)

ans =
1 2 3 4
1 2 3 4
1 2 3 4
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The brightness values in a slice
through the ramp stimulus shown in Figure 16.2.

0 20 40 60 80 100 120

You will want this cumulative sum by columns for this ramp function. Now rewrite the
code in proper style for MATLAB without the for loop:

%ramp.m

% This script generates the image that creates the Mach band visual illusion.

In = 10*ones(64,128); %initiates the visual stimulus with a constant value of 10

% now ramp up the value for the middle matrix elements using cumsum

In(:,33:97) = 10 + cumsum(ones(64,65),2);

In(:,98:end) = 75; %sets the last columns of the matrix to the end value of 75

figure; imagesc(In); colormap(bone); set(gca, 'fontsize',20) %view the visual stimulus

You can look at how the values of the brightness increase from left to right by taking a
slice of the matrix and plotting it, as shown in Figure 16.3. Look at the 32" row in particular.

>> plot(In(32,:),'k','LineWidth',3); axis([0 128 0 85]); set(gca,'fontsize',20)

Next, you will create a script titled mexican_hat.m that will generate a matrix whose
values are a difference of Gaussians. For this exercise, you will make this a 5 X 5 filter, as
shown in Figure 16.4.

% mexican_hat.m

% this script produces an N by N matrix whose values are

% a 2 dimensional Mexican hat or difference of Gaussians

%

N = 5; %matrix size is NXN

IE = 6; %ratio of inhibition to excitation

Se = 2; %variance of the excitation Gaussian

Si = 6; %variance of the inhibition Gaussian

S = 500;%overall strength of Mexican hat connectivity

%o

[X,Y] = meshgrid((1:N)-round(N/2));

% — floor(N/2) to floor(N/2) in the row or column positions (for N odd)
% —N/2+1 to N/2 in the row or column positions (for N even)
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A 5 X5 Mexican hat spatial filter.

Mexican hat “filter”

1 16
4

2
| 2

3
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4
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5
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1
%

[THETA,R] = cart2pol(X,Y);

% Switch from Cartesian to polar coordinates

% R is an N*N grid of lattice distances from the center pixel

% i.e. R =sqrt((X).*2 + (Y).~2) + eps;

EGauss = 1/(2*pi*Se”2)*exp(-R.A2/(2*Se”2)); % create the excitatory Gaussian
IGauss = 1/(2*pi*Sif2)*exp(-R.A2/(2¥Si*2)); % create the inhibitory Gaussian
%

MH = S*(EGauss-IE*IGauss); %create the Mexican hat filter

figure; imagesc(MH) %visualize the filter
title('mexican hat "filter'"','fontsize',22)
colormap(bone); colorbar

axis square; set(gca,'fontsize',20)

Now take a second look at some of the components of this script. The function
meshgrid is used to generate the X and Y matrices whose values contained the x and y
Cartesian coordinate values for the Gaussians:

>> X

X =
-2 -1 01 2
-2 -1 01 2
-2 -1 01 2
-2 -1 01 2
-2 -1 01 2

>>Y

Y =
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The function cart2pol converts the Cartesian coordinates X and Y into the polar coordi-
nates R and THETA. You use this function to create the 5X5 matrix R whose values are
the radial distance from the center pixel:

>> R

R =
2.8284 2.2361 2.0000 2.2361 2.8284
2.2361 1.4142 1.0000 1.4142 2.2361
2.0000 1.0000 0 1.0000 2.0000
2.2361 1.4142 1.0000 1.4142 2.2361
2.8284 2.2361 2.0000 2.2361 2.8284

The THETA variable is never used; however, it gives the polar angle in radians:

>> THETA
THETA =
—2.3562 —2.0344 —1.5708 —1.1071 —0.7854
—2.6779 —2.3562 —1.5708 —0.7854 —0.4636
3.1416 3.1416 0 0 0
2.6779 2.3562 1.5708 0.7854 0.4636
2.3562 2.0344 1.5708 1.1071 0.7854

Finally, you're ready to generate the main script called mach_illusion.m to visualize
how the Mexican hat function/center-surround receptive field of the neurons in the early
visual system could affect your perception. In this simple model, the two-dimensional con-
volution of the input image matrix (generated by the ramp.m M-file) with the receptive
field filter (generated by the mexican_hat.m M-file) gives an approximation to how the
brightness of the image is perceived when filtered through the early visual system. This
operation should result in a dip in the brightness perceived at the point where the bright-
ness of the input just begins to increase and a peak in the brightness perceived at the point

— Input brightness h

80 1| -.- perceived brightness | i,

0 20 40 60 80 100 120

The Mach band illusion generated using the Mexican hat filter on the ramp input.
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where the brightness of the input just stops increasing and returns to a steady value, con-
sistent with the perception of Mach bands (see Figure 16.5). For a first pass, use the two-
dimensional convolution function, conv2, that is built into MATLAB. As described in
detail in the help section, this function will output a matrix whose size in each dimension
is equal to the sum of the corresponding dimensions of the input matrices minus one. The
edges of the output matrix are usually not considered valid because the value of those
points have some terms contributing to the convolution sum which involved zeros padded
to the edges of the input matrix. One way to deal with the problem of such edge effects is
to reduce the size of the output image by trimming the invalid pixels off the border. You
accomplish this by including the option 'valid' when calling the conv2 function:

% mach_illusion.m

clear all; close all

mexican_hat %creates the Mexican hat matrix, MH, & plots

ramp %creates image with ramp from dark to light, In, & plots

A = conv2(In,MH,'valid'); %convolve image and Mexican hat

figure; imagesc(A); colormap(bone) %visualize the "perceived" brightness
%create plot showing the profile of both the input and the perceived brightness
figure; plot(In(32,:),'k','LineWidth',5); axis([0 128 —10 95])

hold on; plot(A(32,:),'b-.",'LineWidth',2); set(gca,'fontsize',20)

lh =legend('input brightness','perceived brightness',2); set(lh,'fontsize',20)

Make sure that the mexican_hat.m and ramp.m M-files are in the same directory as the
mach_illusion.m M-file. Note that the size of the output is indeed smaller than the input:

>> size(A)
ans =
60 124

For fun, you can learn more about how the convolution works by changing the 'valid'
option in the conv2 function call to either 'full' or 'same' and see how the output matrix A
changes. One way to minimize the edge effects of convolution is to pad the input matrix
with values that mirror the edges of the input matrix before performing the two-
dimensional convolution and returning only the valid part of the output, which will now
be the size of the original input matrix. The function conv2mirrored.m will do just this
trick. It has been written in a generic form to accept matrices of any size:

% conv2_mirrored.m

function sp = conv2_mirrored(s,c)

% 2D convolution with mirrored edges to reduce edge effects
% output of convolution is same size as leading input matrix
[N,M] = size(s);

[n,m] =size(c); % % both n & m should be odd

%

% enlarge matrix s in preparation for convolution with matrix c
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%via mirroring edges to reduce edge effects.

padn = round(n/2) - 1;
padm = round(m/2) - 1;

sp = [zeros(padn,M + (2*padm)); zeros(N,padm) s zeros(N,padm); zeros(padn,M +

(2*padm))];

sp(1:padn,:) = flipud(sp(padn + 1:2*padn,:));

sp(padn + N + 1:N + 2*padn,:) = flipud(sp(N + 1:N + padn,:));
sp(:,1:padm) = fliplr(sp(:,padm + 1:2*padm));

sp(:,;padm + M + 1:M + 2*padm) = fliplr(sp(:; M + 1:M + padm));

%
% perform 2D convolution
sp = conv2(sp,c,'valid");

EXERCISE 16.1

Put the figures generated by the mach_
illusion.m script into a document, explain
each figure, and give a short summary of

the Mach band illusion as you understand
it.

EXERCISE 16.2

Rather than cumsum, you could have
also used the function meshgrid to effi-
ciently ramp up the brightness values from
dark to light when creating the matrix In.

Read the help file for meshgrid and rewrite
the ramp.m script using meshgrid rather
than cumsum.

EXERCISE 16.3

Create the function conv2_mirrored.m
using the code provided previously and
place it in the same directory as your other
files. Learn how the mirroring of the edges
of the input matrix is accomplished by
reviewing the help files on the functions
flipud and fliplr. What determines the size

of the mirrored-edge padding necessary
and why? Rewrite your main script
mach_illusion.m to use this convolution
function rather than the conv2 function.
Check that your output matrix A is now the
same size as the input matrix In.
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EXERCISE 16.4

Change the slope of the ramp without ramp that will go from 10 to 75 in, say, 30
changing the beginning or ending values of  steps rather than 65: linspace(10,75,30).]
the input image. [Hint: The command lin- How does increasing or decreasing the
space can be useful to find values of the slope affect the strength of the illusion?

EXERCISE 16.5

Convert the M-file named mexican_hat.  inhibitory Gaussians, and the overall
m into a function where the inputs are the  strength of the filter. Also make the appro-
size of the matrix, the ratio of excitation to  priate changes to the main script that calls
inhibition, the variance of excitatory and  this function, mach_illusion.m.

16.4 PROJECT

The receptive fields of simple cells in V1 reflect the orientation and spatial frequency
preference of the neurons. One way to model this is to use the Gabor function, which is
basically a two-dimensional Gaussian modulated by a sinusoid, as shown in Figure 16.6.

1. Observe how the receptive fields of simple cells in V1 modeled as Gabor functions with
various spatial frequency and orientation preferences filter an image of a rose, which

FIGURE 16.6 A Gabor function modeling the ori-
ented receptive field of a V1 neuron.
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can be downloaded from the companion web site. Create two files, the gabor_filter.m
function and the gabor_conv.m script (using the following code), in the same directory
as the conv2_mirrored.m file. Also, place the rose.jpg image file in the same directory.
Now, run the gabor_conv.m script. It will take a convolution between the rose image
with a Gabor function of a given orientation (OR) and spatial frequency (SF). The input
parameters OR and SF will determine the orientation and spatial frequency of the filter.
Thus, you will essentially “see” how simple cells in V1 with a given orientation and
spatial frequency preference perceive an image. Try values of SF = 0.01, 0.05, and 0.1,
and OR =0, pi/4, and pi/2. Put the resulting figures into a document and explain the
results. Try changing the Gabor filter from an odd filter to an even filter by using cos
instead of sin. How does this affect the output?

% gabor_filter.m

function f = gabor_filter(OR, SF)

% Creates a Gabor filter for orientation and spatial frequency
% selectivity of orientation OR (in radians) and spatial frequency SF.
%

% set parameters

sigma_x = 7;% standard deviation of 2D Gaussian along x-dir
sigma_y = 17;% standard deviation of 2D Gaussian along y-dir
%o

% create filter

[x,y] = meshgrid(-20:20);

X =x*cos(OR) + y*sin(OR); %rotate axes

Y = -x*sin(OR) + y*cos(OR);

f = (1/(2*pi*sigma_x*sigma_y)).*exp(-(1/2)*(((X/sigma_x)."2) + ...
((Y/sigma_y).A2))).*sin(2*pi*SF*X);

%gabor_conv.m

clear all; close all

I =imread('rose.jpg');

OR =0; SF=.01;

G = gabor_filter(OR,SF);

figure

subplot(1,3,1); imagesc(G); axis square; colorbar; title ('Gabor function')
subplot(1,3,2); imagesc(l); title('original image")

subplot(1,3,3); imagesc(conv2_mirrored(double(]),G));

colormap(bone); title(['Convolved image OR =',num2str(OR),' SF =", num2str(SF)])

2. Now you can have some fun times with image processing and convolutions. Choose any
image and convolve it with a function or filter of your choosing. To avoid edge problems,
you can use the conv2_mirrored function provided, the conv2 function with the 'valid'
option (as in the exercises), or you can use the function imfilter from the Image Processing
Toolbox built into MATLAB, which does an operation similar to convolution. You can
create your own filter or choose a predesigned filter in MATLAB using the fspecial
function, also from the Image Processing Toolbox. You can learn more about these
functions through the online help. Hand in your code and picture of before and after the
filtering, along with an image of the filter used in the convolution.
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imagesc
colormap
cumsum
meshgrid
cart2pol
conv2
flipud
fliplr
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17

Neural Data Analysis I: Encoding

17.1 GOALS OF THIS CHAPTER

The primary goal of this chapter is to introduce you to the fundamental methods of ana-
lyzing spike trains of single neurons used to characterize their encoding properties: raster
plots, peri-event time histograms, and tuning curves. While there are prepackaged tools
available for these methods, in this chapter you will program these tools yourself and use
them to analyze behavioral data recorded from a motor area of a macaque monkey.

17.2 BACKGROUND

In general, neuroscientists are interested in knowing what neurons are doing. More spe-
cifically, neuroscientists are often interested in neural encoding—how neurons represent sti-
muli from the outside world with changes in their firing properties. Let's say you are
studying a neuron from a visual area. You would first present a research participant with
controlled visual stimuli with a number of known properties—orientation, luminance, con-
trast, etc. Using standard electrophysiological techniques, you then record the response of
the neuron to each stimulus. You can repeat the presentation of a given stimulus and then
see how similar (or different) the neuronal responses are. A raster plot is a simple method
to visually examine the trial-by-trial variability of these responses. You can examine what
features these responses have in common by averaging over all responses to create a peri-
event time histogram. Finally, to capture how the average response of the neuron varies
with some sensory feature, you can generate a tuning curve that maps the feature value
onto the average response of the neuron.
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17.3 EXERCISES
17.3.1 Raster Plot

Because action potentials are stereotyped events, the most important information they
carry is in their timing, as opposed to their size or shape. A raster plot replaces each action
potential with a tick mark that corresponds to the time where the raw voltage trace crosses
some threshold.

Load the dataset for this chapter from the companion web site. Contained within that
dataset is a variable spike, which contains the firing times (in seconds) of a single neuron
for 47 trials of the same behavioral task. Here, you are examining a recording from a cell
in the motor cortex, and the task involves moving the hand from the same starting posi-
tion to the same ending position. For each trial, the spike times are centered so that the
start of movement coincides with a timestamp of 0 seconds. Because the neuron did not
fire the same number of times for each trial, the data are stored in a struct, which is a data
structure that can bundle vectors (or matrices) of different lengths. To access the spike
times for the first and second trials, type

t1 = spike(1).times;

t2 = spike(2).times;

If you look at the workspace, you can verify that the vectors {1 and {2 are not the same
length. Now plot the first trial as a raster (remember, you don’t have to type the comments
marked with "%"):

figure %Create a new figure
hold on % Allow multiple plots on the same graph
for ii = 1:length(t1) %Loop through each spike time
line([t1(ii) t1(ii)], [0 1]) %Create a tick mark at x = t1(ii) with height of 1
end
ylim([0 5]) %Reformat y-axis for legibility

xlabel('Time (sec)'); ylabel('Trial #')

Even when you're looking at one trial, it appears that the neuron fires sparsely at first
but then ramps up its firing rate a few hundred milliseconds before the start of movement.
Now plot the next trial:

for ii = L:length(t2)

line([t2(ii) t2Gi)], [1 2])
end

Your results should look like those in Figure 17.1.

The relationship between the firing rate and start of movement is not nearly as clear in
the second trial as in the first trial. However, in this chapter’s final project, you will want
to visualize data from all trials at once. One way is to simply write a loop to plot the raster
for each trial as above. Another way is to take advantage of a built-in MATLAB® function
called histc. This simply computes a histogram, meaning it counts how many values in a
vector fall in within a discrete set of intervals, or bins. If we select a small enough bin
width (say 5 ms), it will be very unlikely that we will have more than one spike in a given
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bin, so we can convert our collection of spikes times into a matrix of zeros and ones, indi-
cating whether or not a spike is present for a given trial in a given time range. We can
then use the image plotting function imagesc (introduced in Chapter 16, “Convolution”)
to plot that matrix. This is less precise than plotting each spike time as a line as before, but
it serves for most purposes. Try the code below:

raster = zeros(47,401); %]Initialize raster matrix
edges =[-1:.005:1]; %Define bin edges
for jj =1:47 %Loop over all trials

% Count # of spikes in each bin
raster(jj,:) = histc(spike(jj).times,edges);

end

figure % Create figure for plotting
imagesc(~raster ) %' ~' inverts Os and 1s
colormap('gray’) %Zero plotted as black, one as white

17.3.2 Peri-Event Time Histogram

The raster shows us the trial to trial variability, but it would also be nice to see what
the response of an “average trial” looks like. This average neural response is captured by
the peri-event time histogram, which is abbreviated PETH. Peri-event means that all the trials
are centered relative to some relevant event—in this case, the start of movement. If our
data were from a sensory array, the relevant event would be whatever stimulus we pre-
sented. This is why a PETH is sometimes also referred to as a peri-stimulus time histogram,
or PSTH. However, in a motor system, where neural firing precedes the event we mea-
sure, this term is a little awkward, so we will stick with the more general term — peri-
event time histogram.
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Time histogram means you divide the time period into a series of bins (0 to 100 ms, 100
to 200 ms, etc.) and count how many spikes fall in each bin for all trials. Luckily, we just
saw that MATLAB has a function that makes this easy: histc. To look at all trials, you will
initialize the PETH with zeros and then sequentially add each trial’s results. Try the
following:

edges = [-1:0.1:1]; %Define the edges of the histogram
eth = zeros(21,1); %]Initialize the PETH with zeros
or jj =1:47 %Loop over all trials

%Add current trial's spike times
peth = peth + histc(spike(jj).times,edges);

end

bar(edges,peth); %Plot PETH as a bar graph
xlim([-1.1 1]) %Set limits of X-axis
xlabel('Time (sec)") %Label x-axis

ylabel('# of spikes') %Label y-axis

Your results should look like those in Figure 17.2.

Now the pattern in neuronal activity is clear: the firing rate begins to increase about
half a second before movement start and returns to baseline by half a second after move-
ment start. Of course, for the y-axis to indicate firing rate in spikes per second, you would
need to divide each bin’s spike count by both the bin width and the number of trials.

17.3.3 Tuning Curves

Many neurons respond preferentially to particular values of a stimulus. Typically, this
activity gradually falls off from a maximum (corresponding to the preferred stimulus)
along some stimulus dimension (e.g., orientation, direction). By plotting the stimulus
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dimension on the x-axis and the neural activity (typically a firing rate) on the y-axis, you
can determine the preferred stimulus of a neuron. Figure 17.3 shows a tuning curve of a
neuron from area MT, which is a part of the visual cortex that aids in the perception of
motion. As you can tell, the neuron prefers upward motion (motion toward 90°).

17.3.4 Curve Fitting

Typically, tuning curves like this are fit to a function such as a Gaussian curve or a
cosine function. Because all measurements made in the real world come with errors, it is
usually impossible to describe empirical data with a perfect functional relationship.
Instead, you fit data with a curve that represents a model of the proposed relationship. If
this curve fits the data well, then you conclude that your model is a good one.

The simplest relationship you will typically look for is a linear one. Many neurons are
thought to encode stimuli linearly. For example, ganglion cells in the limulus (horseshoe
crab) increase their firing rate linearly with luminance of a visual stimulus (Hartline,
1940). You can simulate this relationship as follows:

x = 1:20; % Create a vector with 20 elements

y=x %Make y the same as x

z = randn(1,20); % Create a vector of random numbers
y=y+tz; %Add z to y, introducing random variation
plot(x,y, '.") %Plot the data as a scatter plot

xlabel('Luminance')
ylabel('Firing rate')

MATLAB contains prepackaged tools for fitting linear relationships. Just click on the
figure, select Tools, and then select Basic Fitting. Check the boxes for Linear and Show
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equations, and you will see the line and equation that best fit your data. However, you
might also like to be able to do this yourself. The command in MATLAB to fit data to a
polynomial is polyfit. For example:

p = polyfit(x,y,1) %Fits data to a linear 1°' degree polynomial

The first value in p is the slope and the second value is the y-intercept. If you plot this
fitted line, your result should be similar to Figure 17.4:

hold on % Allows 2 plots of the same graph
yFit = x*p(1) + p(2); %Calculates fitted regression line
plot(x,yFit) %Plots regression

Because MATLAB has a number of curve-fitting functions, there are a number of ways
to perform this regression. One function worth mentioning is the function regress, because
this can perform multiple linear regression, where a dependent variable is a function of a
matrix of multiple independent variables. For this example, we assume the firing rate is a
function of the luminance plus some baseline firing rate. We simply need to bundle the
luminance with a vector of ones (representing the baseline) before performing the regres-
sion. In the code below, note the use of the transpose function (using the apostrophe as a
shortcut) to convert row vectors into column vectors.

predictor = [x' ones(20,1)]; %Bundle predictor variables together into a matrix
p = regress(y,predictor) %Perform regression
yFit = predictor*p; % Calculate fit values

Now you will fit data to a more complicated function—a cosine. First, generate some
new simulated data:

x =0:01:30; %Create a vector from 0 to 10 in steps of 0.1

y = cos (x); %Take the cosine of x, put it into y
z = randn(1,301); %Create random numbers, put it into 301 columns
y=y+z %Add the noise in z to y
figure % Create a new figure
plot (x,y) %Plot it
A linear fit of the relationship
20 o Raw data betweerT the firing rate' of a simulated ganglion cell and
; ) ° the luminance of the stimulus.
Linear fit o

-
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MATLAB does not have a built-in function for fitting this to a cosine-tuning function,
but it does have a nonlinear curve-fitting function: nlinfit. You will need to specify the
details of the fit. Here, you will use a cosine function with the y-offset, amplitude, and
phase as free parameters. You can define this function “inline,” which means it can be
used by other functions in MATLAB in the same session or M-file.

Type this command to define a generic cosine function:

mystring = 'p(1) + p(2) * cos ( theta - p(3) )'; % Cosine function in string form

Here, p(1) represents the y-offset; p(2), the amplitude; and p(3), the phase. You can
assume the frequency is 1. Now enter the following:

|l

myfun = inline ( mystring, 'p', 'theta' ); % Converts string to a function

This function accepts angles theta and parameter vector p and transforms them using
the relationship stored in mystring.

p = nlinfit(x, y, myfun, [1 1 0] ); %Least squares curve fit to inline function "myfun"

The first parameter of nlinfit is a vector of the x-values (the angle theta in radians). The
second parameter is the observed y-values. The third parameter is the name of the func-
tion to fit, and the last parameter is a vector with initial guesses for the three free para-
meters of the cosine function. If the function doesn’t converge, use a different initial guess.
The nlinfit function returns the optimal values of the free parameters (sorted in p) that fit
the data with the cosine function, as determined by a least squares algorithm.

Instead of defining a function inline, you can also save a function in an M-file. In that
case, you will need to include an @ (at) symbol before the function name, which will allow
MATLARB to access the function as if it were defined inline:

p = nlinfit(x, y, @myfun, [1 1 0] ); %Least squares curve fit to function "myfun.m"

You can use the inline function to convert the optimized parameters into the fitted
curve. After plotting this, your result should look similar to Figure 17.5.

hold on % Allows 2 plots of the same graph
yFit = myfun(p,x); %Calculates fitted regression line
plot(x,yFit,'k") %Plots regression

We introduced the nlinfit function because it can be used to fit any arbitrary relation-
ship you are interested in, whether it is linear or not. However, there are a couple of draw-
backs to using to fitting a cosine-tuning function. The preferred direction isn’t necessarily
restricted to a reasonable range (say, from — 7 to 7). Worse, the value may be off by = if
the amplitude is found to be negative. A solution is possible because the cosine-tuning
function can be reformulated as linear regression of the sine and cosine of the movement
direction (review your trigonometric identities to see why). So you can again use the mul-
tiple regression function regress to find the preferred direction:

predictor =[ones(301,1) sin(x)' cos(x)']; %Bundle predictor variables

p = regress(y',predictor) %Linear regression
yFit = predictor*p; % Calculate fit values
theta = atan2(p(2),p(3)); %Find preferred direction from fit weights
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17.4 PROJECT

The data that you will use for your project were recorded from the primary motor cor-
tex (abbreviated MI) of a macaque monkey (data courtesy of the Hatsopoulos laboratory).
MI is so named because movements can be elicited by stimulating this area with a small
amount of electricity. It has also been shown that MI has direct connections to the spinal
cord. MI plays an important role in the control of voluntary movement (as opposed to
reflexive movements). This doesn’t mean that MI directly controls movement, because
other areas in the basal ganglia and the brainstem are important as well. Animals with a
lesioned MI can still make voluntary movements, albeit less dexterously than before.
However, it is clear that MI contains information about voluntary movement, usually a
few hundred milliseconds before it actually happens. There is also a somatotopic map in
MI, meaning that there are separate areas corresponding to face, arm, leg, or hand move-
ments. These data are recorded from the arm area.

The behavioral data were collected using a manipulandum, which is an exoskeleton
that fits over the arm and constrains movement to a 2D plane. Think of the manipulan-
dum as a joystick controlled with the whole arm. The behavioral task was the center-out
paradigm pioneered by Georgopoulos and colleagues (1982). The animal first holds the
cursor over the center target for 500 ms. Then a peripheral target appears at one of eight
locations arranged in circle around the center target. In this task there is an instructed
delay, which means that after the peripheral target appears, the animal must wait
1000—1500 ms for a go cue. After the go cue, the animal moves to and holds on the periph-
eral target for 500 ms, and the trial is completed.

There are two interesting time windows here. Obviously, MI neurons should respond
during a time window centered around the go cue, since this is when voluntary movement
begins. However, MI neurons also respond during the instructed delay. This result is
somewhat surprising because the animal is holding still during this time. The usual inter-
pretation is that the animal is imagining or preparing for movement to the upcoming tar-
get. This means that MI is involved in planning as well as executing movement.

4 T T T T T A nonlinear fit of a simulated, noisy
——— Raw data cosine relationship.

3 |= = Cosine fit
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If you treat the direction to the peripheral target as the “stimulus,” you can arrange the
neuronal responses in a tuning curve. These can be described with the same cosine curve
used before, where the phase of the fitted cosine corresponds to the preferred direction of
the neuron.

In this dataset, the neuronal spiking is stored in a struct called unit. Information for unit
#1 is accessed with unit(1). Spike times are stored in umnit(1).times. There are three more
important variables: the instruction cue times are stored in instruction, the go cue times are
stored in go, and the direction of peripheral target is stored in direction (1 corresponds to 0
degrees, 2 corresponds to 45 degrees, etc.).

In this project, you are asked to do the following:

1. Make raster plots and PETHSs for all the neurons for both time periods: instruction cue
to 1 second afterward, and 500 ms before the movement onset to 500 ms afterward.
Which neurons are the most responsive? Print out a few examples. Do you think the
PETHs are a good summary of the raster plots? How does the time course of the
responses differ between the two time periods?

2. Create tuning curves and fit a cosine tuning curve to the firing rates of all neurons for
each time period. Report the parameters of the fit for each neuron and save this
information for later chapters. How good of a description do you think the cosine curve
is? Do the tuning curves differ between the two time periods? If so, why do you think
this is?

Figures 17.6 and 17.7 show examples of what your results might look like. The locations
of the smaller plots correspond to the locations of their associated peripheral targets. Here,
a timestamp of 0 corresponds to the start of movement. You can use the command subplot
to subdivide the plotting area. For example, the command subplot(3,3,i) makes the ith
square in a 3 X 3 grid the active plotting area.

FIGURE 17.6 An example of a full raster plot for
the first neuronal unit recorded from electrode #117.

Chan 117-1
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FIGURE 17.7 An example of a full peri-event time

50 histogram for the first neuronal unit recorded from elec-
trode #117.
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Neural Data Analysis II:
Binned Spike Data

18.1 GOALS OF THIS CHAPTER

Previously, you used a simple linear encoding model to predict a neuron’s firing rate,
obtained by averaging over many trials for a range of stimuli. However, linear models
have limitations for modeling observed neural data. In this chapter, we will examine a
simple nonlinear encoding model which can model discrete, non-negative data obtained
by counting the number of spikes occurring in a given time bin. Luckily, the nonlinear
encoding model introduced here can be fit using a built-in function available in
MATLAB®.

18.2 BACKGROUND

In the last chapter, you saw that a cosine tuning model does a good job of describing
the firing rate (averaged across many trials) of a neuron as a function of direction. In par-
ticular, you saw that neurons have a baseline firing rate, a preferred direction where the
firing rate is at its maximum, and an anti-preferred direction where the firing is at its min-
imum. When the cosine tuning model is expressed as a sum of a sine and cosine (see the
end of Section 17.3.4), then the model can be fit using linear regression and the MATLAB
function regress. Linear regression may not always be the best choice, as it makes certain
assumptions about the raw data. For example, linear regression assumes data are continu-
ous. However, our data consists of timestamps, and our binned data are counts of the
number of spike timestamps that fall within a given bin. What does this mean? To start
with, we know that a count is always non-negative.

Load the data for this chapter. This data was also collected during the eight-target cen-
ter-out task, and the data is formatted the same as the data from Chapter 17. Start by
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constructing the empirical tuning curve for neuron #2, as we did in Chapter 17, and fit it
to the standard cosine tuning model. If you do this, you will end up with a plot like
Figure 18.1. The interesting thing about this neuron is that it has a lower baseline firing
rate than previous neurons we have examined. The neuron does increase its firing rate for
its preferred direction (around 315 degrees), but because it cannot fire less than zero spikes
per second, it fires minimally for a wide range of directions (90, 135, 180, and 225 degrees).
When the standard cosine tuning model is fit to this data, it does not fit the peak firing
rate well, and it predicts a negative firing for the anti-preferred direction of 135 degrees.
Obviously, this is not an adequate model for this neuron.

18.2.1 Exponential Function

What we need is a function which can only predict nonnegative firing rates. One such
function is the exponential function, e". If x is one, the value of this function is simply e, or
approximately 2.718. If x is zero, the function is 1, and as x becomes more negative, the
function will approach but never reach zero. In MATLAB, the exponential function is exp.
To deal with low-firing neurons, we simply need to apply the exponential function to the
cosine tuning model we used in the last chapter:

mystring = 'exp( p(1) + p(2)*cos(theta/180*pi-p(3)) )';

The mean firing rate can be fit as before, and now the prediction is quite good (see
Figure 18.2).

However, we are doing something a little odd here by averaging the firing rates before
fitting the function. It means that we are weighting data from each direction equally, even
though the number of trials completed in each direction is not exactly equal (there are 71
trials for direction 4, but 48 for direction 5). A better approach would be to fit the raw data
from each single trial, which consists of counts of how many times the neuron spiked in
certain time windows. Thus the raw data is nonnegative and discrete. Using linear regres-
sion on discrete data is usually not appropriate, because linear regression assumes that the
data is continuous, and that the relationship is disturbed by Gaussian noise.
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18.2.2 Poisson Distribution

A better choice is to assume that a discrete count follows a Poisson distribution. This is
a simple but useful discrete distribution, which is good for modeling the number of events
which occur in small amount of time or space. For example, the Poisson distribution might
be used to model how many phone calls a call center might receive in an hour, or the
number of grass seeds which sprout in a small patch of earth. Here, we use it to model the
number of spikes detected in a given time bin. The use of the Poisson distribution for
modeling spike trains is discussed in more detail in Chapter 33. We will compare the dis-
tribution of spikes we actually observe to what is expected with the Poisson distribution.
We first need to collect the raw spike count in a 2-second window centered on the go cue
for each trial:

neuronNum = 2; % Select which neuron we want
numT = length(direction); % Count number of trials
spikeCount = zeros(numT,1); %]Initialize count vector
for ii =1:numT
centerTime = go(ii); %Find go cue for given trial
allTimes = unit(neuronNum).times-centerTime; % Center spike times on go

spikeCount(ii) = sum(allTimes > -1 & allTimes <1); %2 seconds window
end

We now have a vector of the raw spike counts for each trial. Take a look at the distribu-
tion of spike counts for direction two:

dirNum =2; % Select the direction we want
indTemp = find(direction == dirNum); %Find appropriate trials
spikeTemp = spikeCount(indTemp); = %Pick out counts

edges =[0:4]; %Bin edges
b = histc(spikeTemp,edges); %Make histogram
bar(edges,b,'g") %Plot histogram

To compare this to the Poisson distribution, we can use the built-in MATLAB function
poisspdf, which gives the probability mass function for the Poisson distribution. This gives
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the probability that a Poisson random variable is equal to a given count. The Poisson only
takes the mean as a parameter, unlike the Gaussian distribution, which takes the mean and
the variance. This is because the Poisson distribution has the property that its mean is equal
to its variance. To see what the histogram should be if our neural data followed a Poisson
distribution, we evaluate poisspdf with a mean that matches our neural data, and multiply
this by the number of observations to get the expected number of counts.

y = poisspdf(edges,mean(spikeTemp)); %Match mean of Poisson dist. to data
yCount = y*length(indTemp); %Multiply by number of trials
hold on

plot(edges,yCount,'r.-")

As shown in Figure 18.3, the Poisson distribution matches the actual data fairly well.

18.2.3 Log-Linear Models

In linear regression, the assumption is that the dependent variable 4 (the firing rate) is
equal to the linear function of the predictor variables (cosine and sine of direction). In
matrix format, the firing rate is the product of the matrix of predictor variables X and a
vector of coefficients b (see equation below). We previously found this vector of coeffi-
cients using the MATLAB function regress.

= Xb (18.1)

While Poisson-distributed data should not be fit using a linear model, they can be fit
using a generalized linear model (GLM). Luckily, the procedure for fitting a GLM is
already built into MATLAB with the function glmfit. GLM still predicts the firing rate
using a linear function of the predictor variables, but since the mean of the Poisson distri-
bution must be nonnegative, this prediction must be transformed. We have already seen
that this transformation can be accomplished with the exponential function, and in fact in
GLM the mean of Poisson-distributed data are expressed as the exponential of a predictor
matrix X times the coefficients b. Equivalently, the natural logarithm of the firing rate is
expressed as a linear function of predictor variables (see Equation 18.2). Because of this,
the model used in Poisson regression is referred to as a log-linear model. In GLM, the

Unit 2 The Poisson distribution models
50 ' ' A sl sparse spike count data well.
- Clua

40 —— Poisson
3
= 30
o)
&
O 20
£

10

0
0 1 2 3 4
Spike count

IIl. DATA ANALYSIS WITH MATLAB®



18.2 BACKGROUND 301

natural logarithm is known as the “link function,” tying the data to the linear function of
the observed variables. If the data follows a different distribution (such as the binomial
distribution), GLM requires a different link function.

1 =exp(Xb) log(u)=Xb (18.2)

How do we apply this to our data? Instead of fitting the exponential cosine model to
the mean firing rates (as in Section 18.2.1), we will fit a model to the raw spike counts and
matrix of the predictor variables.

rad = [0:pi/4:2*pi-pi/4l'; %Match direction # with radians
%Matrix of predictors variables:

predictor = [ones(numT,1) sin(rad(direction)) cos(rad(direction))];

coeff = glmfit(predictor(:,2:3),spikeCount,'poisson'); %Fit log-linear model

spikeFit = exp(predictor*coeff); %Predict firing rate.

One difference from the regress function is that glmfit will automatically add a coeffi-
cient for a constant term. This means that vector of 1 does not need to be included in
glmfit (which is why the predictors are supplied as “predictor(:;,2:3)”), but it does need to
be included for the prediction of the firing rate.

18.2.4 Predicting the PETH

In this case, the tuning curve obtained by fitting the exponential cosine tuning model
directly to the data is very similar to that fit to the averaged firing rates (shown in
Figure 18.2). That is because the predictor variable was identical across multiple trials,
which meant that averaging first was not a completely unreasonable step. However, if the
predictor variable is different across trials, averaging first may not be appropriate.

For example, the exact path taken by the neuron and the speed it travels will vary
slightly from trial to trial, even for reaches to the same target. Thus far, we have just tried
to predict the activity of the neuron over a large time window. However, in the last chap-
ter, we visualized the peri-event time histograms (PETHSs) of different neurons, and there
was a clear temporal evolution of the neural activity not accounted for in the original
cosine tuning model described by Georgopoulos and colleagues (1982).

This cosine-tuning model was extended by Moran and Schwartz (1999), who said that
the current firing rate of the neuron is related to the sine and cosine of both the direction
and the speed at a fixed time into the future. They used a linear model, but we will use a
log-linear model and simplify their equation to state that the log of the current firing rate
D is a linear function of the X and Y velocity (Vx, Vy) at a fixed time 7 in the future.
Moran and Schwartz also included a non-directional speed term, but that will be covered
in the exercises. Because speed profiles are bell-shaped, this function can capture the grad-
ual rise and fall in activity seen in the example PETH in Figure 17.7.

IOg[D(t - 7')] = bo + b1 Vx(t) + szy(i’) (183)

In the dataset for this chapter, there are new variables which were not present in the
Chapter 17 dataset. First, binned contains the spike count of all 158 neurons in a sequence
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of 50 ms bins. The variable time contains the timestamp in seconds at the end of each bin.
Finally, kin contains a variety of kinematic variables, partitioned in the same 50 ms bins.
For example, kin.x contains the X hand position as a function of time, and kin.xvel con-
tains the X hand velocity.

To fit an encoding model, we just need to pull out a given neuron’s spike count from
the v