

MATLAB® FOR

NEUROSCIENTISTS

SECOND EDITION

http://booksite.elsevier.com/0780123838360

MATLAB® for Neuroscientists: An Introduction to Scientific Computing in MATLAB®, second edition
 by Pascal Wallisch, Michael E. Lusignan, Marc D. Benayoun, Tanya I. Baker, Adam S. Dickey and Nicholas G. Hatsopoulos

• All figures from the book available as PowerPoint slides
• A database of executable code as .m-files
• Exercises and solutions
• All necessary materials to work through the chapters, e.g. data, stimuli

MATLAB® FOR
NEUROSCIENTISTS
An Introduction to Scientific
Computing in MATLAB®

SECOND EDITION

Pascal Wallisch

Michael E. Lusignan

Marc D. Benayoun

Tanya I. Baker

Adam S. Dickey

Nicholas G. Hatsopoulos

AMSTERDAM• BOSTON• HEIDELBERG• LONDON

NEW YORK• OXFORD• PARIS• SAN DIEGO

SAN FRANCISCO• SINGAPORE• SYDNEY• TOKYO

Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier
32 Jamestown Road, London NW1 7BY, UK
225 Wyman Street, Waltham, MA 02451, USA
525 B Street, Suite 1800, San Diego, CA 92101-4495, USA

Copyright r 2014, 2009 Elsevier Inc. All rights reserved

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission.
The MathWorks does not warrant the accuracy of the text or exercises in this book.
This book’s use or discussion of MATLAB® software or related products does not
constitute endorsement or sponsorship by The MathWorks of a particular pedagogical
approach or particular use of the MATLAB® software.

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (144) (0) 1865 843830; fax (144) (0) 1865 853333;
email: permissions@elsevier.com. Alternatively, visit the Science and Technology
Books website at www.elsevierdirect.com/rights for further information.

Notice
No responsibility is assumed by the publisher for any injury and/or damage to
persons or property as a matter of products liability, negligence or otherwise, or from
any use or operation of any methods, products, instructions or ideas contained in
the material herein. Because of rapid advances in the medical sciences, in particular,
independent verification of diagnoses and drug dosages should be made.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-383836-0

For information on all Academic Press publications
visit our website at elsevierdirect.com

Typeset by MPS Limited, Chennai, India
www.adi-mps.com

Printed and bound in United States of America

14 15 16 17 10 9 8 7 6 5 4 3 2 1

mailto:permissions@elsevier.com
http://www.elsevierdirect.com/rights
http://elsevierdirect.com
http://www.adi-mps.com

Preface to the Second Edition

The publication of the first edition of
MATLAB for Neuroscientists was met with
a reception that far exceeded our expecta-
tions, vindicating our intuition that there
was an urgent need for such a text. Cynical
voices often suggest that a new edition of
a textbook is primarily designed to enrich
the publisher. Not so in this case. While the
first edition was widely adopted as a text-
book as well as by individual students and
investigators, several developments made
it prudent to consider a second edition.
First, neuroscience itself has changed, e.g.,
there is now an increased interest in
the exploration of LFP signals. Second,
MATLAB® has evolved, e.g., through the
introduction of parallel computing environ-
ments. Finally, and most importantly, we
received copious feedback in response to
the first edition. For example, there was an
overwhelming consensus that the book
would benefit from an increased number of
basic tutorials in the front matter. Taken
together, all of this suggested to us that
it might be time for an update. Deciding
to release a second edition afforded us the
opportunity to address these issues, and
also to improve upon the first version in
other ways. For instance, we were now able
to introduce full-color figures throughout
the book, something which we think will
improve its usability considerably, given
that data visualization is one of MATLAB’s
greatest strengths.

One thing that has not changed in the
second edition is our philosophy of and
focus on trying to foster behavioral change.

Unless a book somehow leads to a change in
behavior (that is, the way you go about
doing things), it is very likely that you will
forget what you read. We know; it happened
to us countless times. Sometimes, the only
thing one remembers about a book is that
one read it, but nothing else. That’s not what
this book is about. This book is about creat-
ing lasting behavioral change, specifically
allowing you to use MATLAB more effec-
tively, which in turn will (hopefully) make
your research more productive. This requires
more than just reading. It requires interaction
with the content on a deep level. Thus, we
tried to frame the content of this book to
maximize the probability of meaningful
engagement with the material.

The unbroken popularity of MATLAB
among the neurosciences underscores the
need for an accessible and up-to-date guide
to its use. We hope that we succeeded in our
intention to fulfill this need.

Many people helped us in our attempt
to do so, and we thank them here. In addi-
tion to all the people we thanked in the first
edition (on which this second edition is
based), we also would like to thank April
Graham, Mica Haley, Melissa Walker, and
Greg Harris as well as Caroline Johnson and
Melinda Rankin for their almost inexhaust-
ible patience, kindness, and support; Donald
McLaren for helping us with the neuroimag-
ing chapter; and Qian Cheng for educational
advice.

Finally, we also—and in particular—
would like to thank our students and col-
leagues for feedback on the first edition.

xv

In a sense, experts are the last people
who should write a book like this. By their
very experthood, they are often incapable
of appreciating what would be helpful to
someone who is not an expert and is just
beginning to build cognitive structures in
this domain. Therefore, feedback is abso-
lutely crucial to give the experts information

on how to make these materials more
accessible to nonexperts. In a sense, writing a
book like this teaches the authors�through
feedback�how to write a book like this. And
thus, the circle is complete.

The authors

xvi PREFACE TO THE SECOND EDITION

Preface to the First Edition

I hear and I forget.
I see and I remember.
I do and I understand.

Confucius1

The creation of this book stems from a set
of courses offered over the past several years
in quantitative neuroscience, particularly
within the graduate program in computa-
tional neuroscience at the University of
Chicago. This program started in 2001 and is
one of the few programs focused on compu-
tational neuroscience with a complete curric-
ulum including courses in cellular, systems,
behavioral, and cognitive neuroscience;
neuronal modeling; and mathematical foun-
dations in computational neuroscience. Many
of these courses include not only lectures
but also lab sessions in which students get
hands-on experience using the MATLAB®

software to solve various neuroscientific
problems.

The content of our book is oriented along
the philosophy of using MATLAB as a com-
prehensive platform that spans the entire
cycle of experimental neuroscience: stimulus
generation, data collection and experimental
control, data analysis, and finally data model-
ing. We realize that this approach is not
universally followed. Quite a number of labs

use different—and specialized—software for
stimulus generation, data collection, data
analysis, and data modeling, respectively.
Although this alternative is a feasible
strategy, it does introduce a number of
problems: namely, the need to convert data
between different platforms and formats
and to keep up with a wide range of soft-
ware packages as well as the need to learn
ever-new specialized home-cooked “local”
software when entering a new lab. As we
have realized in our own professional life
as scientists, these obstacles can be far
from trivial, constitute a significant detri-
ment to productivity and are the root cause
of many a conniption.

We also believe that our comprehensive
MATLAB “strategy” makes particular sense
for educational purposes, as it empowers
users to progressively solve a wide variety
of computational problems and challenges
within a single programming environment.
It has the added advantage of an elegant
progression within the problem space.
Our experience in teaching has led us to
this approach that focuses on the inherent
structure of MATLAB not as a computer
programming language, but rather as a tool
for solving problems within neuroscience.
In addition, it is well founded in our current

1In the West, this quote is commonly attributed to Confucius. However, in China itself, it is often pointed

out (and it has been brought to our attention by Qian Cheng) that a very similar saying goes back to the

Chinese philosopher Xunzi. While there is some controversy regarding whether similar sayings originated

multiple times, there is no question that Confucius is a quote magnet. In the case of Einstein, this has been

modeled. If current trends continue, it is not unlikely that over time, all quotes will be attributed to him.

Be that as it may, we find the saying to be truthful, regardless of its source. It is an attempt at attribution,

not an implicit argument from authority.

xi

understanding of the learning process.
Constant use of the information forces
the repeated retrieval of the introduced con-
cepts, which—in turn—facilitates learning
(Karpicke and Roediger, 2008).

The book is structured in four parts, each
with several chapters. The first part serves
as a brief introduction to some of the most
commonly used functions of the MATLAB
software, as well as to basic programming
in MATLAB. Users who are already familiar
with MATLAB may skip it. It serves the
important purpose of a friendly invitation to
the power of the MATLAB environment.
It is elementary insofar as it is necessary
to have mastered the content within before
progressing any further. Later parts focus
on the use of MATLAB to solve computa-
tional problems in neuroscience. The second
part focuses on MATLAB as a tool for the
collection of data. For the sake of generality,
we focus on the collection of data from
human subjects in these chapters, although
the user can easily adapt them for the col-
lection of animal data as well. The third
part focuses on MATLAB as a tool for data
analysis and graphing. This part forms the
core of the book, as this is also how
MATLAB is most commonly used. In par-
ticular, we explore the analysis of a variety
of datasets, including “real” data from
electrophysiology as well as neuroimaging.
The fourth part focuses on data modeling
with MATLAB, and appendices address
the philosophy of MATLAB as well as the
underlying mathematics. Each chapter
begins with the goals of the chapter and a
brief background of the problem of interest
(neuroscientific or psychological), followed
by an introduction to the MATLAB con-
cepts necessary to address the problem by
breaking it down into smaller parts and
providing sample code. You are invited to
modify, expand, and improvise on these
examples in a set of exercises. Finally, a

project is assigned at the end of the chapter
which requires integrating the parts into a
coherent whole. Based on our experience,
we believe that these chapters can serve
as self-contained “lab” components of a
course if this book is used in the context
of teaching.

In essence, we strived to write the book
that we wished to have had when first
learning MATLAB ourselves, as well as the
book that we would have liked to have had
when teaching MATLAB to our students in
the past. Our hope is that this is the very
book you are holding in your hands right
now.

We could have not written this book
without the continuous support of a large
number of friends. First and foremost,
we would like to thank our families for their
kind support, their endless patience, as well
as their untiring encouragement. We also
would like to extend thanks to our students
who provided the initial impetus for this
undertaking as well as for providing con-
stant feedback on previous versions of our
manuscript. Steve Shevell deserves thanks
for suggesting that the project is worth
pursuing in the first place. In addition, we
would like to thank everyone at Elsevier
who was involved in the production and
development of this book—in particular our
various editors, Johannes Menzel, Sarah
Hajduk, Clare Caruana, Christie Jozwiak,
Chuck Hutchinson, Megan Wickline, and
Meg Day—their resourcefulness, profession-
alism and patience really did make a big
difference. Curiously, there was another
Meg involved with this project, specifically
Meg Vulliez from The MathWorkst book
program. In addition, we would like to
thank Kori Lusignan and Amber Martell for
help with illustrations, and Wim van
Drongelen for advice and guidance in the
early stages of this project. Moreover, we
thank Armen Kherlopian and Gopathy

xii PREFACE TO THE FIRST EDITION

Purushothaman, who were kind enough to
provide us with valuable insights through-
out our undertaking. We also would like to
thank Kristine Mosier for providing the
finger-tapping functional magnetic imaging
data that we used in the fMRI lab, and
would like to thank Aaron Suminski for his
help in the post-processing of that data.
Importantly, we thank everyone whom

we neglected to name explicitly, but who
deserves our praise. Finally, we would
like to thank you, the reader, for your will-
ingness to join us on this exciting journey.
We sincerely hope that we can help you
reach your desired destination.

The authors

xiiiPREFACE TO THE FIRST EDITION

About the Authors

Pascal Wallisch, PhD, Center for Neural
Science, New York University

Pascal received his PhD from the
University of Chicago and now works as a
research scientist at New York University.
He is currently studying the processing
of visual motion, physiological models of
autism, and neurocinematics. Pascal is pas-
sionate about teaching, including teaching
MATLAB as well as the communication of
scientific concepts to a wider audience. He
was recognized for his distinguished teach-
ing record by the University of Chicago
Booth Prize for excellence in teaching.

Michael Lusignan, PhD, University of
Chicago

Michael received his PhD from the
Committee on Computational Neuroscience
at the University of Chicago, where he
investigated physiological and behavioral
models of song acquisition in birds. During
this time, he served as a teaching assistant
for a large number of courses which offered
many opportunities to teach MATLAB tech-
niques to neuroscience and other biological
science students. Currently, Michael serves
as a compiler and language developer for
CrowdStrike, Inc., a company focusing on
big data approaches to computer security.

Marc Benayoun, MD/PhD, Emory University
Marc is a radiology resident at Emory

University. He is pursuing a combined
radiology and nuclear medicine residency,
with plans to complete a neuroradiology
fellowship and continue as an academic

neuroradiologist. Previously, he was a
teaching assistant for Mathematical Methods
for the Biological Sciences, a course taught at
the University of Chicago.

Marc obtained his MD and PhD from the
University of Chicago, studying stochastic
models of neuronal dynamics with applica-
tions to epilepsy. He was also the recipient
of the University of Chicago Booth Prize for
excellence in teaching.

Marc would like to thank the Frank family
for their financial support during his time
at the University of Chicago.

Tanya I. Baker, PhD, FICO
Tanya is an analytic scientist at FICO

applying neural network and other predictive
analytics algorithms for fraud detection.
Previously she was a junior research fellow
at The Salk Institute for Biological Studies
modeling large-scale neuronal population
dynamics using modern statistical methods.
As a post-doctoral lecturer at the University
of Chicago, she developed and taught
Mathematical Methods for the Biological
Sciences, a new year-long course with a com-
puter lab component. She received her Ph.D
in Physics at the University of Chicago and
her B.S. in Physics and Applied Mathematics
at U.C.L.A.

Adam S. Dickey, PhD, Pritzker School of
Medicine, University of Chicago

Adam is currently finishing medical school
at University of Chicago and plans to com-
plete a neurology residency. He completed
his PhD in the laboratory of Dr. Nicholas G.

xvii

Hatsopoulos, looking at the encoding of cor-
rective movements in motor cortex. Adam is
interested in the clinical application of the
brain-machine interfaces, particularly for
patients with movement disorders.

Nicholas G. Hatsopoulos, PhD, Department
of Organismal Biology and Anatomy &
Department of Neurology, University of
Chicago

Nicholas is Professor and Chairman of
the graduate program on Computational

Neuroscience. He teaches a course in
Cognitive Neuroscience which formed the
basis for some of the chapters in the book.
His research focuses on how ensembles of
cortical neurons work together to control,
coordinate, and learn complex movements
of the arm and hand. He is also developing
brain/machine interfaces by which patients
with severe motor disabilities could acti-
vate large groups of neurons to control
external devices.

xviii ABOUT THE AUTHORS

How to Use this Book

A text of a technical nature tends to be
more readily understood if its design prin-
ciples are clear from the very outset. This
is also the case with this book. Hence, we
will use this space to briefly discuss what
we had in mind when writing the chapters.
Hopefully, this will improve usability and
allow you to get most out of the book.

STRUCTURAL AND
CONCEPTUAL

CONSIDERATIONS

A chapter typically begins with a concise
overview of what material will be covered.
Moreover, we usually put the chapter in
the broader context of practical applica-
tions. This brief introduction is followed
by a discussion of the conceptual and theo-
retical background of the topic in question.
The heart of each chapter is a larger section
in which we introduce relevant MATLAB®

functions that allow you to implement
methods or solve problems that tend to
come up in the context of the chapter topic.
This part of the chapter is enriched by
small exercises and suggestions for explora-
tion. We believe that doing the exercises
is imperative to attain a sufficiently deep
understanding of the function in question,
while the suggestions for exploration are
aimed at readers who are particularly inter-
ested in broadening their understanding of
a given function. In this spirit, the exercises

are usually rather specific, while the
suggestions for exploration tend to be of a
rather sweeping nature. This process of
successive introduction and reinforcement
of functions and concepts culminates in a
“project,” a large programming task that
ties all the material covered in the book
together. This will allow you to put the
learned materials to immediate use in a
larger goal, often utilizing “real” experi-
mental data. Finally, we list the MATLAB
functions introduced in the chapter at the
very end. It almost goes without saying
that you will get the most out of this book
if you have a version of MATLAB open and
running while going through the chapters.
That way, you can just try out the functions
we introduce, try out new code, etc.

Hence, we implicitly assumed this to be
the case when writing the book.

Moreover, we made sure that all the
code works when running the latest ver-
sion of MATLAB (currently 8.1). Don’t
let this concern you too much, though. The
vast majority of code should work if you
use anything above version 7.7. We did
highlight some important changes where
appropriate.

LAYOUTAND STYLE

The reader can utilize not only the con-
ceptual structure of each chapter as outlined
above, but also profit from the fact that we

xix

systematically encoded information about
the function of different text parts in the
layout and style of the book.

The main text is set in 10/12 Palatino-
Roman. In contrast, executable code is bolded
and offset byc, such as this:

c figure
c subplot(2,2,1)
c image(test_disp)

The idea is to type this text (without thec)
directly into MATLAB. Moreover, func-
tions that are first introduced at this
point are bolded in the text. Exercises
and Suggestions for exploration are set in
italics and separated from the main text by
boxes. When referring to directories, we
alternate between the Mac (using a /
slash) and PC (using a \ backslash) format
of addressing. Please always use the

appropriate format�slash or back-
slash�for Mac or PC, respectively.

Equations are set in 10/12 Palatino-
Roman. Sample solutions are in 10/12
Palatino-Bold.

COMPANION WEB SITE

The successful completion of many
chapters of this book depends on addi-
tional material (experimental data, sample
solutions and other supplementary infor-
mation) which is accessible from the web
site that accompanies this book. For exam-
ple, a database of executable code will be
maintained as long as the book is in print.
For information on how to access this
online repository, please see page ii.

xx HOW TO USE THIS BOOK

C H A P T E R

1

Introduction

Neuroscience is at a critical juncture. In the past few decades, the essentially biological
nature of the field has been infused by the tools provided by mathematics. At first, the use
of mathematics was mostly methodological in nature—primarily aiding the analysis of
data. Soon, this influence turned conceptual, framing the very issues that characterize
modern neuroscience today. Naturally, this development has not remained uncontrover-
sial. Some neurobiologists of yore resent what they perceive to be a hostile takeover of the
field, as many quantitative methods applied to neurobiology were pioneered by nonbiolo-
gists with a background in physics, engineering, mathematics, statistics, and computer sci-
ence. Their concerns are not entirely without merit. For example, Hubel and Wiesel (2004)
warn of the faddish nature that the idol of “computation” has taken on, even likening it to
a dangerous disease that has befallen the field that we should overcome quickly in order
to restore its health.

While these concerns are valid to some degree, and while excesses do happen, we
strongly believe that—all in all—the effect of mathematics in the neurosciences has been
very positive. Moreover, we believe that our science is and will continue to be one that is
computational at its very core. The reason for this is that—as pointed out by Konrad Körding
(http://www.nature.com/news/neuroscience-solving-the-brain-1.13382)—the human brain
produces in 30 seconds as much data as the Hubble Space Telescope has produced in its life-
time. That is a staggering number, given that Hubble has been in operation for well over 23
years and generates more than 100 GB of data each week. Eventually, we will develop experi-
mental methods that will fully tap this wellspring of data. We expect that computational
methods to tackle this data will be developed in parallel. Put differently, not only is a compu-
tational perspective on neuroscience here to stay, we are likely only at the very beginning of
this process. Historically, this notion stems in part from the influence that cognitive psychol-
ogy has had in the study of the mind. Cognitive psychology and cognitive science—more
generally—posited that the mind and, by extension, the brain should be viewed as informa-
tion processing devices that receive inputs and transform these inputs into intermediate
representations that ultimately generate observable outputs. At the same time that cognitive
science was taking hold in psychology in the 1950s and 1960s, computer science was develop-
ing beyond mere number crunching and considering the possibility that intelligence could be

3MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00001-1 © 2014 Elsevier Inc. All rights reserved.

http://www.nature.com/news/neuroscience-solving-the-brain-1.13382
http://dx.doi.org/10.1016/B978-0-12-383836-0.00001-1

modeled computationally, leading to the birth of artificial intelligence. The information pro-
cessing perspective, in turn, ultimately influenced the study of the brain, and is best exempli-
fied by an influential book by David Marr titled Vision, published in 1982. In that book, Marr
proposed that vision and, more generally, the brain should be studied at three levels of analy-
sis: the computational, algorithmic, and implementational levels. The challenge at the compu-
tational level is to determine what computational problem a neuron, neural circuit, or part of
the brain is solving. The algorithmic level identifies the inputs, the outputs, their representa-
tional format, and the algorithm that takes the input representation and transforms it into an
output representation. Finally, the implementational level identifies the neural “hardware”
and biophysical mechanisms underlying the algorithm that solves the problem. Today this
perspective has permeated not only cognitive neuroscience, but also systems, cellular, and
even molecular neuroscience.

Importantly, such a conceptualization of our field places chief importance on the issues
surrounding scientific computing. For someone to participate in or even appreciate state of
the art debates in modern neuroscience, that person has to be well-versed in the language
of computation. Of course, it is the task of education—if it is to be truly liberal—to enable
students to do so. Yet, this poses a quite formidable challenge. The point of a truly liberal

FIGURE 1.1 The prisoners in Plato’s cave.
Contemporary neuroscientists without pro-
found scientific computing skills are arguably
in a much more desperate situation, even if it
doesn’t feel like it.

4 1. INTRODUCTION

I. FUNDAMENTALS

education is to free the recipient from the most severe bondage—ignorance and accidents
of birth. The situation is akin to that of the prisoners in Plato’s cave (see Figure 1.1). Those
prisoners are chained to rocks in a cave (in actuality, probably a stone quarry in Syracuse)
and only see the shadows, never the forms. Of course, these prisoners are actually better
off than the ignorant. At least they know that they are prisoners. In contrast, the shackles
of ignorance often seem light, and even quite comfortable. Once freed, the recipient of a
liberal education can walk out of the cave and take part in the life of the mind.

For most students interested in neuroscience, mathematics amounts to what is essen-
tially a foreign language. Similarly, the language of scientific computing is typically as for-
eign to students as it is powerful. The prospects of learning both at the same time can be
daunting and—at times—overwhelming. So what is a student or educator to do? To quote
from Alfred North Whitehead’s Aims of Education essay:

There is only one subject-matter for education, and that is Life in all its manifestations. Instead of this
single unity, we offer children—Algebra, from which nothing follows; Geometry, from which nothing fol-
lows; Science, from which nothing follows; History, from which nothing follows; a Couple of Languages,
never mastered; and lastly, most dreary of all, Literature, represented by plays of Shakespeare, with philo-
logical notes and short analyses of plot and character to be in substance committed to memory.

p. 194

Whitehead makes two points. First, teaching should not be disjointed. It is crucial to
make connections between subjects. Second, teaching “inert ideas” is worse than useless; it
is paralyzing. The tonic is to provide actionable information that allows the pursuit of rele-
vant goals. This will tie the information together and make it come to life.

Immersion has been shown to be a powerful way to learn foreign languages (Genesee,
1985). Hence, it is imperative that students are using these languages as often as possible
when facing a problem in the field. For immersion to work, the learning experience has to
be positive, yielding useful results that solve some real or perceived problem.
Unfortunately, the inherent complexity as well as the seemingly arcane formalisms that
characterize both are usually very off-putting to students, requiring much effort with little
tangible yield and reducing the likelihood of further voluntary immersion.

To break this catch-22, the utility of learning these languages has to be drastically
increased while making the learning process more accessible and manageable at the same
time, even during the learning process itself. As we alluded to previously, this is a tall
order. Fortunately, there is a way out of this conundrum. Recent advances in software as
well as hardware have instantiated scientific computing within the framework of a unified
computational environment. One of these environments is provided by the MATLAB

®

software. For reasons that will become readily apparent in this book, MATLAB fulfills the
requirements that are necessary to meet and overcome the challenges outlined earlier. In
addition—and partly for these reasons—MATLAB has become the de facto standard of
scientific computing in our field. Stated more strongly, MATLAB really has become the
lingua franca that all serious students of neuroscience are expected to understand in the
very near future, if not already today.

This, in turn, introduces a new—albeit more tractable—problem. How does one teach
MATLAB to a useful level of proficiency without making the study of MATLAB itself an

5INTRODUCTION

I. FUNDAMENTALS

additional problem and simply another chore for students? Overcoming this problem as a
key to reaching the deeper goals of fluency in mathematics and scientific computing is a
crucial goal of this book. We reason that a gentle introduction to MATLAB with a special
emphasis on immediate results will computationally empower you to such a degree that
the practice of MATLAB becomes self-sustaining by the end of the book. We carefully
picked the content such that the result constitutes a confluence of ease (gradually increas-
ing sophistication and complexity) and relevance. We are confident that at the end of the
book you will be at a level where you will be able to venture out on your own, convinced
of the utility of MATLAB as a tool and of your ability to harness this power henceforth.
We have tested the various parts of the contents of this book on our students, and believe
that our approach has been successful. It is our sincere wish and hope that the material
contained will be as beneficial to you as it was to those students.

With this in mind, we would like to outline two additional specific goals of this book.
First, the material covered in the chapters to follow gives a MATLAB perspective on many
topics within computational neuroscience across multiple levels of neuroscientific inquiry
from decision-making and attentional mechanisms to retinal circuits and ion channels. It is
well known that an active engagement with new material facilitates both understanding
and long-time retention of said material. The secondary aim of this book is to acquire pro-
ficiency in programming using MATLAB while going through the chapters. If you are
already proficient in MATLAB, you can go right to the chapters following the tutorial. For
the rest, the tutorial chapter will provide a gentle introduction to the empowering qualities
that the mastery of a language of scientific computing affords.

We take a project-based approach in each chapter so that you will be encouraged to
write a MATLAB program that implements the ideas introduced in the chapter. Each
chapter begins with background information related to a particular neuroscientific or psy-
chological problem, followed by an introduction to the MATLAB concepts necessary to
address that problem with sample code and output included in the text. You are invited to
modify, expand, and improvise on these examples in a set of exercises. Finally, the project
assignment introduced at the end of the chapter requires integrating the exercises. Most of
the projects will involve genuine experimental data that are either collected as part of the
project or were collected through experiments in research labs. In rare cases, we use pub-
lished data from classical papers to illustrate important concepts, giving you a computa-
tional understanding of critically important research.

In addition, solutions to exercises and executable code can be found in the online repos-
itory accompanying this book (booksite.elsevier.com/9780123838360).

Finally, we would like to point out that we are well aware that there is more than one
way to teach—and learn—MATLAB in a reasonably successful and efficient manner. This
book represents a manifestation of our approach; it is the path we chose, for the reasons
we outlined here.

6 1. INTRODUCTION

I. FUNDAMENTALS

http://booksite.elsevier.com/9780123838360

C H A P T E R

2

MATLAB Tutorial

2.1 GOAL OF THIS CHAPTER

The primary goal of this chapter is to help you to become familiar with the MATLAB®

software, a powerful tool. It is particularly important to familiarize yourself with the user
interface and some basic functionality of MATLAB. To this end, it is worthwhile to at least
work through the examples in this chapter (actually type them in and see what happens).
Of course, it is even more useful to experiment with the principles discussed in this chap-
ter instead of just sticking to the examples. The chapter is set up in such a way that it
encourages you to do this.

If desired, you can work with a partner, although it is advisable to select a partner of
similar skill to avoid frustrations and maximize your learning. Advanced MATLAB users
can skip this tutorial altogether, while the rest are encouraged to start at a point where
they feel comfortable.

The basic structure of this tutorial is as follows: each new concept is introduced through
an example, an exercise, and some suggestions on how to explore the principles that guide
the implementation of the concept in MATLAB. While working through the examples and
exercises is indispensable, taking the suggestions for exploration seriously is also highly
recommended. It has been shown that negative examples are very conducive to learning;
in other words, it is very important to find out what does not work, in addition to what
does work (the examples and exercises will—we hope—work). Since there are infinite
ways in which something might not work, we can’t spell out exceptions explicitly here.
That’s why the suggestions are formulated very broadly.

2.2 PURPOSE AND PHILOSOPHY OF MATLAB

MATLAB is a high-performance programming environment for numerical and technical
applications. The first version was written at the University of New Mexico in the 1970s.
The “MATrix LABoratory” program was created by Cleve Moler to provide a simple and
interactive way to write programs using the Linpack and Eispack libraries of FORTRAN

7MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00002-3 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00002-3

subroutines for matrix manipulation. MATLAB has since evolved to become an effective
and powerful tool for programming, data visualization and analysis, education, engineer-
ing and research.

The strengths of MATLAB include extensive data handling and graphics capabilities,
powerful programming tools and highly advanced algorithms. Although it specializes
in numerical computation, MATLAB is also capable of performing symbolic computa-
tion by having an interface with Maple (a leading symbolic mathematics computing
environment). Besides fast numerics for linear algebra and the availability of a large
number of domain-specific built-in functions and libraries (e.g., for statistics, optimiza-
tion, image processing, neural networks), another useful feature of MATLAB is its capa-
bility to easily generate various kinds of visualizations of your data and/or simulation
results.

For every MATLAB feature in general, and for graphics in particular, the usefulness
of MATLAB is mainly due to the large number of built-in functions and libraries. The
intention of this tutorial is not to provide a comprehensive coverage of all MATLAB
features but rather to prepare you for your own exploration of its functionality. The
online help system is an immensely powerful tool in explaining the vast collection of
functions and libraries available to you, and should be the most frequently used tool
when programming in MATLAB. Note that this tutorial will not cover any of the func-
tions provided in any of the hundreds of toolboxes, since each toolbox is licensed sepa-
rately. If you have additional toolboxes available to you, we recommend using the
online help system to familiarize yourself with the additional functions provided.
Another tool for help is the Internet. A quick online search will usually bring up
numerous useful web pages designed by other MATLAB users trying to help each other
out. Including on the Mathworks website itself: www.mathworks.com/matlabcentral.

As stated previously, MATLAB is essentially a tool—a sophisticated one, but a tool nev-
ertheless. Used properly, it enables you to express and solve computational and analytic
problems in a wide variety of domains. The MATLAB environment combines computa-
tion, visualization, and programming around the central concept of the matrix. Almost
everything in MATLAB is represented in terms of matrices and matrix-manipulations. If
you would like a refresher on matrix-manipulations, a brief overview of the main linear
algebra concepts needed is given in the next chapter, Chapter 3, “Mathematics and
Statistics Tutorial.” We will start to explore this concept and its power later in this tutorial.
For now, it is important to note that, properly learned, MATLAB will help you get your
job done in a very efficient way. Giving it a serious shot is worth the effort.

2.2.1 Getting Started

You can start MATLAB by simply clicking on the MATLAB icon, the “L-shaped
Membrane” on your desktop or taskbar. The command window will pop up, awaiting
your commands and instructions.

In the context of this tutorial, all commands that are supposed to be typed into the
MATLAB command window, as well as expected MATLAB responses, are typeset in

8 2. MATLAB TUTORIAL

I. FUNDAMENTALS

http://www.mathworks.com/matlabcentral

bold. The beginnings of these commands are indicated by the .. prompt. Press Enter at
the end of this line, after typing the instructions for MATLAB. All instructions discussed
in this tutorial will be in MATLAB notation, to enhance your familiarity with the
MATLAB environment.

Don’t be afraid as you delve into this new programming world. Help is readily at hand.
Using the command help followed by the name of the command (for example, help save)
in the command window gives you a brief overview on how to use the corresponding
command (i.e., the command/function save). You can also easily access these help files for
functions or commands by highlighting the command for which you need assistance in
either the command window or in an M-file and right-clicking to select the Help on
Selection option. Entering the commands helpwin, helpdesk, or helpbrowser will also
open the MATLAB help browser. Another way of accessing a specific function in the help
browser is to use doc save instead of help save. This accesses the entry of “save” in the
help browser, whereas help outputs the help into the command line.

2.2.2 MATLAB as a Calculator

MATLAB implements and affords all the functionality that you have come to expect
from a fine scientific calculator. While MATLAB can, of course, do much more than that,
this is probably a good place to start. This functionality also demonstrates the basic philos-
ophy behind this tutorial—discussing the principles behind MATLAB by showing how
MATLAB can make your life easier, in this case by replicating the functionality of a scien-
tific calculator.

Elementary mathematical operations: Addition, subtraction, multiplication, division.
These operations are straightforward:
Addition:

.. 21 3
ans5

5

Subtraction:

.. 72 5
ans5 2

Multiplication:

.. 17*4
ans5

68

Division:

.. 24/7
ans5

3.4286

92.2 PURPOSE AND PHILOSOPHY OF MATLAB

I. FUNDAMENTALS

Following are some points to note:

1. It doesn’t matter how many spaces are between the numbers and operators, if only
numbers and operators are involved (this does not hold for characters):

.. 51 12
ans5

17
2. Of course, operators can be concatenated, making a statement arbitrarily complex:

.. 21 31 42 7*51 8/91 12 5*6/3
ans5

2 34.1111
3. Parentheses disambiguate statements in the usual way:

.. 51 3*8
ans5 1

29
.. (51 3)*8
ans5 1

64
“Advanced” mathematical operators: Powers, log, exponentials, trigonometry.
Power: x^p is x to the power p:

.. 2^3
ans5

8
Natural logarithm: log:

.. log (2.7183)
ans5

1.0000
.. log(1)
ans5

0
Exponential: exp(x) is ex

.. exp(1)
ans5

2.7183
Trigonometric functions; for example, sine:

.. sin(0)
ans5

0
.. sin(pi/2)
ans5

1
.. sin(3/2*pi)
ans5

2 1

10 2. MATLAB TUTORIAL

I. FUNDAMENTALS

Note: Many of these operations are dependent on the desired accuracy. Internally,
MATLAB works with 16 significant decimal digits (for floating point numbers—see
Chapter 4, “Programming Tutorial”), but you can determine how many should be dis-
played. You do this by using the format command. The format short command displays 4
digits after the decimal point; format long displays 14 or 15 (depending on the version of
Matlab). Example:

.. log(2.7183)
ans5

1.0000
.. format long
.. log(2.7183)
ans5

1.000006684913988
.. format short
.. log(2.7183)
ans5

1.0000

As an exercise, try to “verify” numerically that x*y5 exp(log(x)1 log(y)). A possible exam-
ple follows:

.. 5*7
ans5

35
.. exp(log(5)1 log(7))
ans5

35.0000

Hint: Keep track of the number of your parentheses. This practice will come in handy later.
One of the reasons MATLAB is a good calculator is that—on modern machines—it is

very fast and has a remarkable numeric range.
For example:

.. 2^500
ans5

3.2734e1 150

Note: e is scientific notation for the number of digits of a number.
x e1 y means x*10 ^y.
Example:

.. 2e3
ans5

2000
.. 2*10^3
ans5

2000

112.2 PURPOSE AND PHILOSOPHY OF MATLAB

I. FUNDAMENTALS

Note that in the preceding exercises MATLAB has responded to a command entered by
defining a new variable ans and assigning to it the value of the result of the command.
The variable ans can then be used again:

.. ans1 ans
ans5

4000

The variable ans has now been reassigned to the value 4000. We will explore this idea
of variable assignments in more detail in the next section.

EXERCISE 2.1

Try to find the numeric range of MATLAB.

For which values of x in 2Xx does MATLAB

return a numeric value? For which values

does it return infinity or negative infinity, Inf

or 2 Inf, respectively?

2.2.3 Defining Matrices

Of course, MATLAB can do much more than described in the preceding section. A cen-
tral concept in this regard is that of vectors and matrices—arrays of vectors. Vectors and
matrices are designated by square brackets: []. Everything between the brackets is part of
the vector or matrix.

A simple row vector can be defined as follows:

.. [1 2 3]
ans5

1 2 3

It contains the elements 1, 2, and 3.
A simple matrix can be created as follows:

.. [2 2 2; 3 3 3]
ans5

2 2 2
3 3 3

This matrix contains two rows and three columns. When you are entering the elements
of the matrix, a semicolon separates rows, whereas spaces separate the columns.

Make sure that all rows have the same number of column elements to avoid errors:

.. [2 2 2; 3 3]
??? Error using55 . vertcat
CAT arguments dimensions are not consistent.

In MATLAB, the concept of a variable is closely associated with the concept of matri-
ces. MATLAB stores matrices in variables, and variables typically manifest themselves

12 2. MATLAB TUTORIAL

I. FUNDAMENTALS

as matrices. Caution: This variable is not the same as a mathematical variable, just a place
in memory.

Assigning a particular matrix to a specific variable is straightforward. In practice, you
do this with the equal operator (5). Following are some examples:

.. a5 [1 2 3 4 5]
a5

1 2 3 4 5
.. b5 [6 7 8 9]
b5

6 7 8 9

Once in memory, the matrix can be manipulated, recalled, or deleted.
The process of recalling and displaying the contents of the variable is simple. Just type

its name:

.. a
a5

1 2 3 4 5
.. b
b5

6 7 8 9

Note:

1. Variable names are case-sensitive. Watch out what you assign and recall:
.. A
??? Undefined function or variable 'A'.
In this case, MATLAB—rightfully—complains that there is no such variable, since

you haven’t assigned A yet.
2. Variable names can be of almost arbitrary length. Try to assign meaningful variable

names for matrices:
.. uno5 [1 1 1; 1 1 1; 1 1 1]
uno5

1 1 1
1 1 1
1 1 1

.. thismatrixisreallyempty5 []
thismatrixisreallyempty5
[]

You can easily create some commonly used matrices by using the functions eye, ones,
zeros, rand, and randn. The function eye(n) will create an nxn identity matrix. The func-
tion ones(n,m) will generate an n by m matrix whose elements are all equal to 1, and the
function zeros(n,m) will generate an n by m matrix whose elements are all equal to 0.
When you leave out the second entry, m, in calling those functions, they will generate
square matrices of either zeros or ones. So, for example, the matrix uno could have been
more easily created using the command uno5 ones(3).

132.2 PURPOSE AND PHILOSOPHY OF MATLAB

I. FUNDAMENTALS

In a similar way, MATLAB will generate matrices of random numbers pulled from a
uniform distribution between 0 and 1 through the rand function, and matrices of random
numbers pulled from a normal distribution with zero mean and a variance of one through
the randn function.

MATLAB uses so-called workspaces to store variables. The command who will allow
you to see which variables are in your workspace, and the command whos will return
additional information regarding the dimensions (“size”), size in memory (“bytes”), and
type (“class”) of the variables stored in the active workspace.

Now create two variables, x and y, and assign to them the values 23 and 57, respectively:

.. x5 23; y5 57;

Note that when you add a semicolon to the end of your statement, MATLAB sup-
presses the display of the result of that statement. Next, create a third variable, z, and
assign to it the value of x1 y.

.. z5 x1 y
z5 80

Let’s see what’s in the working memory, i.e., the workspace:

.. who
Your variables are:
a ans b thismatrixisreallyempty uno x y z
.. whos

Name Size Bytes Class

a 13 5 40 double

ans 23 3 48 double

b 13 4 32 double

thismatrixisreallyempty 03 0 0 double

uno 33 3 72 double

x 13 1 8 double

y 13 1 8 double

z 13 1 8 double

When you use the command save, all the variables in your workspace can be saved
into a file. MATLAB data files have a .mat ending. The command save is followed by the
filename and a list of the variables to be saved in the file. If no variables are listed after the
filename, then the entire workspace is saved. For example,

save my_workspace x y z

14 2. MATLAB TUTORIAL

I. FUNDAMENTALS

will create a file named my_workspace.mat that contains the variables x, y, and z. Now
rewrite that file with one that includes all the variables in the workspace. Again, you do
this by omitting a list of the variables to be saved:

.. save my_workspace

You can now clear the workspace using the command clear all:

.. clear all

.. who

.. x
??? Undefined function or variable 'x'.

Note that nothing is returned by the command who, as is expected because all the vari-
ables and their corresponding values have been removed from memory. For the same reason,
MATLAB complains that there is no variable named x because it has been cleared from the
workspace. You can now reload the workspace with the variables using the command load:

.. load my_workspace

.. who
Your variables are:
a ans b thismatrixisreallyempty uno x y z

If they are no longer needed, specific variables and their corresponding values can be
removed from memory. The command clear followed by specific variable names will
delete only those variables:

.. clear x y z

.. who
Your variables are:
a ans b thismatrixisreallyempty uno

Try using the command help (i.e., via help save, help load, and help clear) in the com-
mand window to learn about some of the additional options these functions provide.

The size of the matrix assigned to a given variable can be obtained by using the func-
tion size. The function length is also useful when only the size of the largest dimension of
a matrix is desired:

.. size(a)
ans5

1 5
.. length(a)
ans5

5

The content of matrices and variables in your workspace can be reassigned and
changed on the fly, as follows:

.. thismatrixisreallyempty5 [5]
thismatrixisreallyempty5

5

152.2 PURPOSE AND PHILOSOPHY OF MATLAB

I. FUNDAMENTALS

It is very common to have MATLAB create long vectors of incremental elements just by
specifying a start and end element:

.. thisiscool5 4:18
thisiscool5

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

The size of the increment of the vector can be changed by specifying the step size in
between the start and end element:

.. thisiscool5 4:2:18
thisiscool5

4 6 8 10 12 14 16 18

Two convenient functions that MATLAB has for creating vectors are linspace and log-
space. The command linspace(a,b,n) will create a vector of n evenly spaced elements
whose first value is a and whose last value is b. Similarly, logspace(a,b,n) will generate a
vector of n equally spaced elements between decades 10a and 10b:

.. v5 logspace(1,5,5)
v5

10 100 1000 10000 100000

Transposing a matrix or a vector is quite simple: It’s done with the '(apostrophe) command:

.. a
a5

1 2 3 4 5
.. a'
ans5

1
2
3
4
5

Variables can be copied into each other, using the5 command. In this case, the right
side is assigned to the left side. What was on the left side before is overwritten and lost, as
shown here:

.. b
b5

6 7 8 9
.. b5 a
b5

1 2 3 4 5

16 2. MATLAB TUTORIAL

I. FUNDAMENTALS

Note: Don’t confuse the5 (equal) sign with its mathematical meaning. In MATLAB,
this symbol does not denote the equality of terms, but is an assignment instruction.
Again, the right side of the5will be assigned to the left side, while the left side
will be lost. This is the source of many errors and misunderstandings which is why
this is emphasized again here. The conceptual difference is nowhere clearer than in the
case of “self-assignment”:

.. a
a5
1 2 3 4 5
.. a5 a'
a5

1
2
3
4
5

.. a
a5

1
2
3
4
5

The assignment of the transpose eliminates the original row vector and renders a as a
column vector.

This reassignment also works for elements of matrices and vectors:

.. a(2,1)5 9
a5

1
9
3
4
5

Generally, you can access a particular element of a two-dimensional matrix with the
indices i and j, where i denotes the row and j denotes the column. Specifying a single
index i accesses the ith element of the array counted column-wise:

.. a(2)
ans5

9

We will explore indexing further in Section 2.2.6.

172.2 PURPOSE AND PHILOSOPHY OF MATLAB

I. FUNDAMENTALS

EXERCISE 2.2

Clear the workspace. Create a variable A

and assign to it the following matrix value:

A5
7 5
2 3
1 8

0
@

1
A:

Access the element i5 2, j5 1, and

change it to a number twice its original

value. Create a variable B and assign to it

the transpose of A. Verify that the fifth ele-

ment of the matrix B counted column-wise

is the same as the i5 1, j5 3 element.

EXERCISE 2.3

Using the function linspace generates a

row vector v1 with seven elements which

uniformly cover the interval between 0 and

1. Now generate a vector v2 which also

covers the interval between 0 and 1, but

with a fixed discretization of 0.1. Use either

the function length or size to determine

how many elements the vector v2 has.

What is the value of the third element of

the vector v2?

Solutions to exercises are available on the companion website.

2.2.4 Basic Matrix Algebra

Almost everything that you learned in the previous section on mathematical operators
in MATLAB can now be applied to what you just learned about matrices and variables. In
this section we explore how this synthesis is accomplished—with the necessary
modifications.

First, define a simple matrix and then add 2 to all elements of the matrix, like this:

.. p5 [1 2; 3 4]
p5

1 2
3 4

.. p5p1 2
p5

3 4
5 6

As a quick exercise, check whether this principle extends to the other basic arithmetic
operations such as subtraction, division, or multiplication.

What if you want to add a different number to each element in the matrix? It is not
inconceivable that this operation could be very useful in practice. Of course, you could do

18 2. MATLAB TUTORIAL

I. FUNDAMENTALS

it element by element, as in the end of the preceding section. But doing this would be very
tedious and time-consuming. One of the strengths of MATLAB is its matrix operations,
allowing you to do many things at once.

Here, you will define a new matrix with the elements that will be added to the old
matrix and assign the result to a new matrix to preserve the original matrices:

.. q5 [2 1; 1 1]
q5

2 1
1 1

.. m5p1q
m5

5 5
6 7

Note: The number of elements has to be the same for this element-wise addition to
work. Specifically, the matrices that are added to each other must have the same number
of rows and columns. Otherwise, nothing is added, and the new matrix is not created.
Instead, MATLAB reports an error and gives a brief hint what went wrong:

.. r5 [2 1; 1 1; 1 1]
r5

2 1
1 1
1 1

.. n5p1 r
??? Error using55 . plus
Matrix dimensions must agree.

As a quick exercise, see whether this method of simultaneous, element-wise addition
generalizes to other basic operations such as subtraction, multiplication, and division.

Note: It is advisable to assign a variable to the result of a computation, if the result is
needed later. If this is not done, the result will be assigned to the MATLAB default vari-
able ans, which is overwritten every time a new calculation without explicit assignment of
a variable is performed. Hence, ans is at best a temporary storage.

Note that in the preceding exercise, you get consistent results for addition and subtrac-
tion, but not for multiplication and division. The reason is that * and/really symbolize a
different level of operations than1 or 2. Specifically, they refer to matrix multiplication
and division, respectively, which can be used to calculate outer products, etc. Refer to the
next chapter for a refresher if necessary. If you want an analogous operation to1 and 2 ,
you have to preface the * or/with a dot (.). This is known as element-wise operations:

.. p
p5

3 4
5 6

.. q

192.2 PURPOSE AND PHILOSOPHY OF MATLAB

I. FUNDAMENTALS

q5
2 1
1 1

.. p*q
ans5

10 7
16 11

.. p.*q
ans5

6 4
5 6

Due to the nature of outer products, this effect is even more dramatic if you want to
multiply or divide a vector by another vector:

.. a5 [1 2 3 4 5]
a5

1 2 3 4 5
.. b5 [5 4 5 4 5]
b5

5 4 5 4 5
.. c5 a.*b
c5

5 8 15 16 25
.. c5 a*b
??? Error using55 . mtimes
Inner matrix dimensions must agree.

Raising a matrix to a power is similar to matrix multiplication; thus, if you wish to raise
each element of a matrix to a given power, the dot (.) must be included in the command.
Therefore, to generate a vector c having the same length as the vector a, but for each ele-
ment i in c, it holds that c(i)5 [a(i)]^2, you use the following command:

.. c5 a.^2
c5

1 4 9 16 25

As you might expect, there exists a function sqrt that will raise every element of its
input to the power 0.5. Note that the omission of the dot (.) to indicate element-wise opera-
tions when it is intended is one of the most common errors when beginning to program in
MATLAB. Keep this point in mind when troubleshooting your code.

Of course, you do not have to use matrix algebra to manipulate the content of a matrix.
Instead, you can “manually” manipulate individual elements of the matrix. For example,
if A is a matrix with four rows and three columns, you can permanently add 5 to the element
in the third row and second column of this matrix by using the following command:

.. A(3,2)5 51A(3,2);

20 2. MATLAB TUTORIAL

I. FUNDAMENTALS

We will explore indexing further in the next section.
Earlier, we rather casually introduced matrix operations like outer products versus

element-wise operations. Now, we will briefly take the liberty to rectify this state of affairs
in a systematic way. MATLAB is built around the concept of the matrix. As such, it is
ideally suited to implement mathematical operations from linear algebra. MATLAB distin-
guishes between matrix operations and array operations. Basically, the former are the subject
of linear algebra and denoted in MATLAB with symbols such as 1 , 2 , *, /, or ^. These
operators typically involve the entire matrix. Array operations, are indicated by the same
symbols prefaced by a dot, such as .*, ./, or .^. Array operators operate element-wise, or one
by one. The rest of the sections will mostly deal with array operations. Hence, we will give
the more arcane matrix operations—and the linear algebra that is tied to it—a brief intro-
duction here. Linear algebra has many useful applications, most of which are beyond the
scope of this tutorial. One of its uses is the elegant and painless (particularly with
MATLAB) solution of systems of equations. Consider, for example, the system

x 1 y 1 2z5 9
2x1 4y2 3z5 1
3x1 6y2 5z5 0

You can solve this system with the operations you learned in middle school, or you can
represent the preceding system with a matrix and use a MATLAB function that produces
the reduced row echelon form of A to solve it, as follows:

.. A5 [1 1 2 9; 2 4 2 3 1; 3 6 2 5 0]
A5

1 1 2 9
2 4 2 3 1
3 6 2 5 0

.. rref(A)
ans5

1 0 0 1
0 1 0 2
0 0 1 3

From the preceding, it is now obvious that x5 1, y5 2, z5 3. As you can see, tackling
algebraic problems with MATLAB is quick and painless—at least for you.

Similarly, matrix multiplication can be used for quick calculations. Suppose you sell five
items, with five different prices, and you sell them in five different quantities. This can be
represented in terms of matrices. The revenue can be calculated using a matrix operation:

.. Prices5 [10 20 30 40 50];

.. Sales5 [50; 30; 20; 10; 1];

.. Revenue5Prices*Sales
Revenue5

2150

Note: Due to the way in which matrix multiplication is defined, one of the vectors
(Prices) has to be a row vector, while the other (Sales) is a column vector.

212.2 PURPOSE AND PHILOSOPHY OF MATLAB

I. FUNDAMENTALS

EXERCISE 2.4

Double-check whether the matrix multiplication accurately determined revenue.

EXERCISE 2.5

Which set of array operations achieves the same effect as this simple matrix multiplication?

Exploration: As opposed to array multiplication (.*), matrix multiplication is NOT com-
mutative. In other words, Prices * Sales 6¼Sales * Prices. Try it by typing the latter. What
does the result represent?

EXERCISE 2.6

Create a variable C and assign to it a

53 5 identity matrix using the function eye.

Create a variable D and assign to it a 53 5

matrix of ones using the function ones.

Create a third variable E and assign to it the

square of the sum of C and D.

EXERCISE 2.7

Clear your workspace. Create the following variables and assign to them the given matrix

values (superscript T indicates transpose):

ðaÞ x5
�
2
1

�
ðbÞ y5 xTU17

1 0
0 1

� �
ðcÞ A5

3 7
2 1

� �

ðdÞ b5 yA ðeÞ c5 xTA21bT ðfÞ E5 cAT

EXERCISE 2.8

Create a time vector t that goes from 0

to 100 in increments of 5. Now create a

vector q whose length is that of t and

each element of q is equal to 21 5 times

the corresponding element of t raised to

the power of 1.7.

22 2. MATLAB TUTORIAL

I. FUNDAMENTALS

2.2.5 Indexing

Individual elements of a matrix can be identified and manipulated by the explicit use of
their index values. When indexing a matrix, A, you may identify an element with two
numbers using the format A(row, column). You could also identify an element with a single
number, A(num), where the elements of the matrix are counted columnwise. Let’s explore
this a bit through a series of exercises. First, remove all variables from the workspace (use
the command clear all) and create a variable A:

A5

1 2 3 4
5 6 7 8

10 20 30 40
50 60 70 80

0
BB@

1
CCA:

.. clear all

.. A5 [1 2 3 4; 5 6 7 8; 10 20 30 40; 50 60 70 80];

Now assign the value 23 to each entry in the first row:

.. A(1,:)5 23
A5

23 23 23 23
5 6 7 8

10 20 30 40
50 60 70 80

The colon (:) in the col position indicates all column values. Similarly, you can assign
the value 23 to each entry in the first column:

.. A(:,1)5 23
A5

23 23 23 23
23 6 7 8
23 20 30 40
23 60 70 80

Suppose you didn’t know the index values for the elements that you wanted to change.
For example, presume you wanted to assign the value 57 to each entry of A that is equal
or larger than 7 in the second row. What are the column indices for the elements of the
second row of the matrix A [i.e., A(2,:)] which satisfy the criteria to change? For this task,
the find function comes in handy:

.. find(A(2,:).5 7)
ans5

1 3 4

232.2 PURPOSE AND PHILOSOPHY OF MATLAB

I. FUNDAMENTALS

Thus, the following command will produce the desired result:

.. A(2,find(A(2,:).5 7))5 57
A5

23 23 23 23
57 6 57 57
23 20 30 40
23 60 70 80

To further illustrate the use of the function find and indexing, consider the following task.
Assign the value 7 to each entry in the fourth column of the matrix A that is equal or larger
than 40 and lower than 60. For this example, it is clearer to split this operation into two lines:

.. i5 find((A(:,4).5 40)&(A(:,4), 60))
i5

2
3

.. A(i,4)5 7
A5

23 23 23 23
57 6 57 7
23 20 30 7
23 60 70 80

Back to a nice and simple task, assign the value 15 to the entry in the third row, second
column:

.. A(3,2)5 15
A5

23 23 23 23
57 6 57 7
23 15 30 7
23 60 70 80

Similarly, you could have used the command A(7)5 15. If you try entering the com-
mand find(A55 15), you will get the answer 7. The reason is that MATLAB stores the ele-
ments of a matrix column after column, so 15 is stored in the seventh element of the
matrix when counted this way. Had you entered the command [r,c]5 find(A55 15); you
would see that r is now assigned the row index value and c the column index value of the
element whose value is 15; that is, r5 3, c5 2.

.. [r,c]5 find(A55 15)
r5

3
c5

2

24 2. MATLAB TUTORIAL

I. FUNDAMENTALS

The find function is often used with relational and logical operators. We used a few of
these in the preceding examples and will summarize them all here. The relational opera-
tors are as follows:

55 (equal to)
B5 (not equal to)
, (less than)
. (greater than)
,5 (less than or equal to)
.5 (greater than or equal to)

MATLAB also uses the following syntax for logical operators:

& (AND)
j (OR)
B (NOT)
xor (EXCLUSIVE OR)
any (true if any element is nonzero)
all (true if all elements are nonzero).

EXERCISE 2.9

Find the row and column indices of the

matrix elements of A whose values are less

than 20. Set all elements of the third row

equal to the value 17. Assign the value 2 to

each of the last three entries in the second

column.

2.3 GRAPHICS AND VISUALIZATION

Whereas we re-created the functionality of a scientific calculator in the previous sec-
tions, here we will explore MATLAB as a graphing calculator. As you will see, visualiza-
tion of data and data structures is one of the great strengths of MATLAB.

2.3.1 Basic Visualization

In this section, it will be particularly valuable to experiment with possibilities other
than the ones suggested in the examples, since the examples can cover only a very small
number of possibilities that will have a profound impact on the graphs produced.

For aesthetic purposes, start with a trigonometric function, which was introduced
before—sine. First, generate a vector x, take the sine of that vector, and then plot the result:

.. x5 0:10
x5

0 1 2 3 4 5 6 7 8 9 10
.. y5 sin(x)

252.3 GRAPHICS AND VISUALIZATION

I. FUNDAMENTALS

y5
0 0.8415 0.9093 0.1411 2 0.7568 2 0.9589 2 0.2794 0.6570 0.9894 0.4121 2 0.5440

.. plot(x,y)

The result of this series of commands will look something like Figure 2.1.
A quick result was reached, but the graphic produced is admittedly rather crude, albeit

sinusoidal in nature. Note the values on the x-axis (0 to 10), as desired, and the values on
the y-axis, between �1 and 1, as it’s supposed to be, for a sine function. The problem
seems to be with sampling. So let’s redraw the sine wave with a finer mesh.

Recall that a third parameter in the quick generation of vectors indicates the step size. If
nothing is indicated, MATLAB assumes 1 by default. This time, you will make the mesh
10 times finer, with a step size of 0.1.

EXERCISE 2.10

Use .. x5 0:0.1:10 to create the finer mesh.

Notice that MATLAB displays a long series of incremental elements in a vector that
is 101 elements long. MATLAB did exactly what you told it to do, but you don’t necessar-
ily want to see all that. Recall that the ; (semicolon) command at the end of a command
suppresses the “echo,” the display of all elements of the vector, while the vector is still
created in memory. You can operate on it and display it later, like any other vector.

So try this:

.. x5 0:0.1:10;

.. y5 sin(x);

.. plot(x,y)

This yields something like that shown in Figure 2.2, which is arguably much smoother.

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 FIGURE 2.1 Crude sinusoid.

26 2. MATLAB TUTORIAL

I. FUNDAMENTALS

EXERCISE 2.11

Plot the sine wave on the interval from 0 to 20, in 0.1 steps.

Upon completing Exercise 2.11, enter the following commands:

.. hold on

.. z5 cos(x);

.. plot(x,z,'color','k')

The result should look something like that shown in Figure 2.3.

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 FIGURE 2.2 Smooth sinusoid.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 FIGURE 2.3 Sine vs. cosine.

272.3 GRAPHICS AND VISUALIZATION

I. FUNDAMENTALS

Now you have two plots on the canvas, the sine and cosine from 0 to 20, in different colors.
The command hold on is responsible for the fact that the drawing of the sine wave didn’t just
vanish when you drew the cosine function. If youwant to erase your drawing board, type hold
off and start from scratch. Alternatively, you can draw to a new figure, by typing figure, but be
careful. Only a limited number of figures can be opened, since every single one will draw on
the memory the resources of your computer. Under normal circumstances, you should not
havemore than about 30 figures open—if that. The command close all closes all the figures.

EXERCISE 2.12

Draw different functions with different

colors into the same figure. Things will start

to look interesting very soon. MATLAB can

draw lines in a large number of colors,

eight of which are predefined: r for red,

k for black, w for white, g for green, b for

blue, y for yellow, c for cyan, and m for

magenta.

Give your drawing an appropriate name. Type something like the following:

.. title('My trigonometric functions')

Now watch the title appear in the top of the figure.
Of course, you don’t just want to draw lines. Say there is an election and you want to

quickly visualize the results. You could create a quick matrix with the hypothetical results
for the respective candidates and then make a bar graph, like this:

.. results5 [55 30 10 5]
results5

55 30 10 5
.. bar(results)

The result should look something like that shown in Figure 2.4.

1 2 3 4
0

10

20

30

40

50

60 FIGURE 2.4 Lowering the bar.

28 2. MATLAB TUTORIAL

I. FUNDAMENTALS

EXERCISE 2.13

To get control over the properties of

your graph, you will have to assign a han-

dle to the drawing object. This can be an

arbitrary variable, for example, h:

.. h5bar(results)

h5 298.0027

.. set(h,'linewidth', 3)

.. set(h,'FaceColor', [1 1 1])

The result should be white bars with thick

lines. Try get(h) to see more properties of the

bar graph. Then try manipulating them with

set(h, 'Propertyname',Propertyvalue).

Finally, let’s consider histograms. Say you have a suspicion that the random number
generator of MATLAB is not working that well. You can test this hunch by visual
inspection.

First, you generate a large number of random numbers from a normal distribution, say
100,000. Don’t forget the ; (semicolon). Then you draw a histogram with 100 bins, and
you’re done. Try this, for example:

.. suspicious5 randn(100000,1);

.. figure

.. hist(suspicious, 100)

The result should look something like that shown in Figure 2.5. No systematic devia-
tions from the normal distribution are readily apparent. Of course, statistical tests could
yield a more conclusive evaluation of your hypothesis.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000 FIGURE 2.5 Gaussian normal distribution.

292.3 GRAPHICS AND VISUALIZATION

I. FUNDAMENTALS

EXERCISE 2.14

You might want to run this test a couple

of times to convince yourself that the devia-

tions from a normal distribution are truly

random and inconsistent from trial to trial.

A final remark on the display outputs: most of the commands that affect the display of
the output are permanent. In other words, the output stays like that until another com-
mand down the road changes it again. Examples are the hold command and format com-
mand. Typing hold will hold plot and allow something else to be plotted on it. Typing
hold again toggles hold and releases the plot. This is similarly true for the format com-
mands, which keep the format of the output in a certain way.

We have thus far introduced only a small number of the many visualization tools that
give MATLAB its strength. In addition to the functions plot, bar, and hist, you can explore
other plotting commands and get a feel for more display options by viewing the help files
for the following plotting commands that you might find useful: loglog, semilogx, semil-
ogy, stairs, and pie.

Want to know what your data sounds like? MATLAB can send your data to the compu-
ter’s speakers, allowing you to visually manipulate your data and listen to it at the same
time. To hear an example, load the built-in chirp.mat data file by typing load chirp. Use
plot(y) to see these data and sound(y) to listen to the data.

We will cover more advanced plotting methods in the following section as well as in
future chapters.

2.4 FUNCTION AND SCRIPTS

Until now, we have driven MATLAB by typing commands directly in the command
window. This is fine for simple tasks, but for more complex ones you can store the typed
input commands into a file and tell MATLAB to get its input commands from the file.
Such files must have the extension .m and are thus called M-files. If an M-file contains
statements just as you would type them into the MATLAB command window, they are
called scripts. If, however, they accept input arguments and produce output arguments,
they are called functions.

The primary goal of this section is to help you become familiar with M-files within
MATLAB. M-files are the primary vehicle to implement programming in MATLAB. So
while the previous sections showed how MATLAB can double as a scientific calculator
and as a calculator with graphing functions, this section will introduce you to a high-level
programming language that should be able to satisfy most of your programming needs if
you are a casual user. It will become apparent in this section of the tutorial how MATLAB
can aid the researcher in all stages of an experiment or study. By no means is this tutorial
the last word on M-files and programming. Later we will elaborate on all concepts

30 2. MATLAB TUTORIAL

I. FUNDAMENTALS

introduced in this section—particularly in terms of improving efficiency and performance
of the programs you are writing. One final goal of this tutorial is to demonstrate the
remarkable versatility of MATLAB—and don’t worry, we’ll move on to neuroscience-
heavy topics soon enough.

2.4.1 Scripts

Scripts typically contain a sequence of commands to be executed by MATLAB when the
filename of the M-file is typed into the command window.

M-files are at the heart of programming in MATLAB. Hence, most of our future exam-
ples will take place in the context of M-files. You can work on M-files with the M-file edi-
tor, which comes with MATLAB. To go to the editor, open the File menu (top left), select
New, and then select M-File (see Figure 2.6). In recent versions of MATLAB, there is now
a distinction between “Script” and “Function.” Open a new “Script” here. The most recent
versions of MATLAB don’t even have a File menu any more, but rather a number of icons
in the home tab. They are still on the upper left. The functionality of the menu—and
more—has now been put into a toolbar. The layout of the user interface will likely con-
tinue to change in future versions of MATLAB, so do not get too attached to it. However,
the core functionality can be expected to say the same. Figure 2.6 shows a screenshot from
the distant past. That’s why it is in black and white.

The first thing to do after a new M-file is created is to name it. For this purpose, you
have to save it to the hard disk. There are several ways of doing this. The most common is
to click the editor’s File menu and then click Save As. Recent versions of Matlab feature a
toolbar that replaces the menu, see figure 2.7. To save, click on the floppy disk (never
mind that no one has used a floppy disk in over a decade and that the pictured 3.5v disk
wasn’t actually floppy). You can then save the file with a certain name. Using myfirstm-
file.m would probably be appropriate for the occasion.

As a script, an M-file is just a repository for a sequence of commands that you want to
execute repeatedly. Putting them in an M-file can save you the effort of typing the com-
mands anew every time. This is the first purpose for which you will use M-files.

FIGURE 2.6 Creating a new M-File.

FIGURE 2.7

312.4 FUNCTION AND SCRIPTS

I. FUNDAMENTALS

Type the commands into your M-file editor as they appear in Figure 2.8. Make sure to
save your work after you are done (by pressing Ctrl1 S), if you already named it. If you
now type myfirstmfile into the MATLAB command window (not the editor), this
sequence will be executed by MATLAB. You can do this repeatedly, tweaking things as
you go along (don’t forget to save).

2.4.2 Functions

We have already been using many of the functions built into MATLAB, such as sin and
plot. You can extend the MATLAB language by writing your own functions. MATLAB
has a very specific syntax for declaring and defining a function. Function M-files must
start with the word function, followed by the output variable(s) within square brackets,
the equal sign, the name of the function, and the input variable(s) in parenthesis, in that
order. Functions do not have to have input or output arguments. The following is a valid
function definition line for a function named flower that has three inputs, a, b, and c, and
two outputs, out_1 and out_2:

function [out_1, out_2]5 flower(a,b,c)

To demonstrate this further, you will write a function named triple that computes and
returns three times the input, i.e., triple(2)5 6, triple(3)5 9, etc. First, type the following
two lines into an M-file and save it as triple.m:

function r5 triple(i)
r5 3*i;

If you want to avoid confusion, it is strongly advised to match the name of the M-file
with the name of the function. The input to the function is i and the output is r. You can
now test this function:

.. a5 triple(7)
a5

21
.. b5 triple([10 20 30])
b5

30 60 90

Note: This function is trivial. Here, however, you should learn to apply the syntax only
for defining and calling functions. Also note that function variables do not appear in the
main workspace; rather their scope is limited to themselves. For instance, you do not have
access to the variable “r” from the main workspace.

FIGURE 2.8 The editor.

32 2. MATLAB TUTORIAL

I. FUNDAMENTALS

2.4.3 Control Structures

Of course, what you just saw is only the most primitive way of using M-files. M-files
will allow you to harness the full power of MATLAB as a programming language. For this
to happen, you need to familiarize yourself with loops and conditionals—in other words,
with statements that allow you to control the flow of your program.

Loops: The two most common statements to implement loops in MATLAB are for and
while.

The structure of all loops is as follows (in terms of a while loop):

while certain-conditions-are-true
Statements
. . .
Statements
end

All statements between while and end are executed repeatedly until the conditions that
are checked in while are no longer the case. This is best demonstrated with a simple
example: open a new M-file in the editor and give it a name. Then type the following code
and save. Finally, type the name of the M-file in the command window (not the editor) to
execute the loop.

This is a good place to introduce comments. As your programs become more complex,
it is highly recommended that you add comments. After a week or two, you will not nec-
essarily remember what a particular variable represents or how a particular computation
was done. Comments can help, and MATLAB affords functionality for it. Specifically, it
ignores everything that is written after the percent sign (%) in a line. In the editor itself,
comments are represented in green. So here is the program that you should write now,
implementing a simple while loop. If you want to, you can save yourself the comments
(everything after % in each line). We placed them here to explain the program flow (what
the program will do) to you:

%A simple counter

ii5 1 %Initializing our counter as 1

while ii , 6 %While ii is smaller than 6, statements are executed

ii5 ii1 1 %Incrementing the counter and displaying new value

end %Ending the loop, it contains only one statement

What happened after you executed the program? Did it count from 1 to 6?
Note that we use the variable ii, not i as a counter here. This has several major advan-

tages. The first one is that “i” and “j” are already predefined in MATLAB. They both rep-
resent the imaginary part of a complex number (1i). Try it. Clear the workspace if you
defined i and j before (we did above, in the indexing section), then type i and j, respec-
tively. It is generally a bad idea to overwrite something that is already predefined in
MATLAB and can lead to puzzling and counterintuitive error messages later on. We did it

332.4 FUNCTION AND SCRIPTS

I. FUNDAMENTALS

in the section on indexing for didactic purposes only (mathematicians like to use i and j as
indices). Another reason is that people tend to confuse i and 1 when coding. This is empir-
ically true. So a for loop that would be defined as for i5 1:10 is often written as i5 i:10. It
might sound preposterous, but happens surprisingly often. Good luck finding the error
later on. It is better to use for ii5 1:10 instead. One is much less likely to make this mis-
take. Programming is challenging work, as one has to constantly juggle objectives (what
the code is supposed to do) with implementation (how the code does it). Keeping all of
that in working memory is hard and the literature is full of examples of how quickly per-
formance can break down, particularly if there are added problems like sleep deprivation
or distractions. Better to play it safe and stay away from i and j altogether. This goes for
all functions. A prominent example is “size.” People often call the variable with which
they represent the size of something “size,” e.g. the size of the population under study. If
you do this, you basically broke your code if it invokes “size” to refer to the function at
some other point in the code. MATLAB will throw an error message at that point and it
will surprise you. So use more specific names, like pop_size for your variables instead. We
use ii instead i in the same spirit.

EXERCISE 2.15

Let your program count from 50 to

1050. Then redo this with a for loop for

practice.

If you execute this program on a slow

machine, chances are that this operation

will take a while.

EXERCISE 2.16

Let your program count from 1 to

1,000,000.

If you did everything right, you will be

sitting for at least a minute, watching the

numbers go by. While we set up this exer-

cise deliberately, chances are that you will

underestimate the time it takes to execute a

given loop sometime in the future. Instead

of just biding your time, you have several

options at your disposal to terminate run-

away computations. The most benign of

these options is pressing Ctrl1C in the

MATLAB command window. That shortcut

should stop a process that hasn’t yet

completely taken over the resources of your

machine. Try it.

Note: The display of the numbers takes most of the time. The computation itself is rela-
tively quick. Make the following modifications to your program; then save and run it:

%A silent counter

ii5 1 %Initializing our counter as 1

34 2. MATLAB TUTORIAL

I. FUNDAMENTALS

while ii , 1000000

ii5 ii1 1; %Incrementing the counter without displaying new value

end %Ending the loop, it contains only one statement

ii %Displaying the final value of ii

Note: One of the most typical ways to get logical errors in complex programs is to forget
to initialize the counter (after doing something else with the variable). This is particularly
likely if you reuse the same few variable names (ii, jj, etc.) throughout the program. In this
case, it would not execute the loop, since the conditions are not met. Hence, you should
make sure to always initialize the variables that you use in the loop *before* the loop. As a
cautionary exercise, reduce your program to the following:

%A simple counter, without initialisation

while ii , 1000000 %While ii is smaller than 1M, statements are executed

ii5 ii1 1 %Incrementing the counter and displaying new value

end %Ending the loop, it contains only one statement

Save and run this new program. If you ran one of the previous versions, nothing will
happen. The reason is that the loop won’t be entered because the condition is not met; i is
already larger than 1,000,000 before the first loop is executed.

Of course, the most common way to get runaway computations is to create infinite
loops—in other words, loops with conditions that are always true after they are entered. If
that is the case, they will never be exited. A simple case of such an infinite loop is a modi-
fied version of the initial loop program—one without an increment of the counter; hence,
ii will always be smaller than the conditional value and never exit.

Try this, save, and run:

%An infinite loop

ii5 1 %Initializing our counter as 1

while ii , 6 %While ii is smaller than 6, statements are executed

ii5 ii %NOT incrementing the counter, yet displaying its value

end %Ending the loop, it contains only one statement

If you’re lucky, you can also exit this process by pressing Ctrl1C. If you’re not quick
enough or if the process already consumed too many resources—this is particularly likely for
loops with many statements, not necessarily this one—your best bet is to summon the Task
Manager by pressing Ctrl1Alt1Delete simultaneously in Windows (for a Mac, the corre-
sponding key press is Command1Option1Escape to call the Force Quit menu). There, you
can kill your running version of MATLAB. The drawbacks of this method are that you have
to restart MATLAB and your unsaved work will be lost. So beware the infinite loop.

352.4 FUNCTION AND SCRIPTS

I. FUNDAMENTALS

If statements: In a way, if statements are pure conditionals. Statements within if state-
ments are either executed once (if the conditions are met) or not (if they are not met).
Their syntax is similar to loops:

if these-conditions-are-met
Execute-these-Statements
else
Execute-these-Statements
end

It is hard to create a good example consisting solely of if statements. They are typically
used in conjunction with loops: the program loops through several cases, and when it hits
a special case, the if statement kicks in and does something special. We will see instances
of this in later examples. For now, it is enough to note the syntax.

Fun with loops—How to make an American quilt

This is a rather baroque but nevertheless valid exercise on how to simply save time
writing all the statements explicitly by using nested loops. If you want to, you can try rep-
licating all the effects without the use of loops. It’s definitely possible—just very tedious.

Open a new window in the editor, name it, type the following statements (without com-
ments if you prefer), save it, and see what happens when you run it:

figure %Open a new figure

x5 0:0.1:20; %Have an x-vector with 201 elements

y5 sin(x); %Take the sine of x, put it in y

k5 1; %Initialize our counter variable k with 1

while k , 3; %For k5 1 and 2

QUILT1(1,:)5 x; %Put x into row 1 of the matrix QUILT1

QUILT2(1,:)5 y; %Put y into row 1 of the matrix QUILT2

QUILT1(2,:)5 x; %Put x into row 2 of the matrix QUILT1

QUILT2(2,:)52y; %Put �y into row 2 of the matrix QUILT2

QUILT1(3,:)52x; %Put �x into row 3 of the matrix QUILT1

QUILT2(3,:)5 y; %Put y into row 3 of the matrix QUILT2

QUILT1(4,:)52x; %Put 2 x into row 4 of the matrix QUILT1

QUILT2(4,:)52y; %Put �y into row 4 of the matrix QUILT2

hold on %Always plot into the same figure

for ii5 1:4 %A nested loop, with ii as counter, from 1 to 4

plot(QUILT1(ii,:),QUILT2(ii,:)) %Plot the iith row of QUILT1 vs. QUILT2

36 2. MATLAB TUTORIAL

I. FUNDAMENTALS

pause %Waiting for user input (key press)

end %End of ii-loop

for ii5 1:4 %Another nested loop, with ii as counter, from 1 to 4

plot(QUILT2(ii,:),QUILT1(ii,:)) %Plot the iith row of QUILT2 vs. QUILT1

pause %Waiting for user input (key press)

end %End of ii-loop

y5 y1 19; %Incrementing y by 19 (for every increment of k)

k5k1 1; %Incrementing k by 1

end %End of k-loop

Note: This program is the first time we use the pause function. If the program pauses
after encountering a pause statement, press a key to continue until the program is done.
This is also the first time that we wrote a program that depends on user input—albeit in a
very small and limited form—to execute its flow. We will expand on this later.

Note: This program used both for and while loops. The for loops increment their counter
automatically, whereas thewhile loops must have their counter incremented explicitly.

Now that you know what the program does and how it operates, you might want to
take out the two pause functions to complete the following exercises more smoothly.

EXERCISE 2.17

What happens if you allow the conditional for k to assume values larger than 1 or 2?

EXERCISE 2.18

Do you know why the program incre-

ments y by 19 at the end of the k loop? What

happens if you make that increment smaller

or larger than 19?

EXERCISE 2.19

Do you remember how to color your quilt? Try it.

372.4 FUNCTION AND SCRIPTS

I. FUNDAMENTALS

2.4.4 Advanced Plotting

We introduced basic plotting of two-dimensional figures previously. This time, our
plotting section will deal with subplots and three-dimensional figures. Subplots are an effi-
cient way to present data. You probably have seen the use of the subplot function in pub-
lished papers. The syntax of the subplot command is simply subplot(a,b,c), where a is the
number of rows the subplots are arranged in, b is the number of columns, and c is the par-
ticular subplot you are drawing to. It’s probably best to illustrate this command in terms
of an example. This requires you to open a new program, name it, etc.

Then type the following:

figure %Open a new figure

for ii5 1:9 %Start loop, have counter ii run from 1 to 9

subplot(3,3,ii) %Draw into the subplot ii, arranged in 3 rows, 3 columns

h5bar(1,1); %This is just going to fill the plot with a uniform color

set(h,'FaceColor',[0 0 ii/9]); %Draw each in a slightly different color

end %End loop

This program will draw nine colored squares in subplots in a single figure, specifically, dif-
ferent shades of blue (from dark blue to light blue) and should look something like Figure 2.9.

Note: The three numbers within the square brackets in the set(h,'FaceColor',[0 0 ii/9]);
statement represent the red, green, and blue color components of the bar that is plotted. Each
color component can take on a value between 0 and 1. A bar whose color components are

1
0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

1 1

1 1 1

1 1 1

FIGURE 2.9 Color gradient subplots.

38 2. MATLAB TUTORIAL

I. FUNDAMENTALS

[0 0 0] is displayed black and [1 1 1] is white. By setting the color components of the pixels of
your image to different combinations of values, you can create virtually any color you desire.

EXERCISE 2.20

Make the blocks go from black to red instead of black to blue.

EXERCISE 2.21

Make the blocks go from black to white (via gray). Try 49 shades.

SUGGEST ION FOR EXPLORAT ION

Can you create more complex gradations?

It is possible, given this simple program and

your recently established knowledge about

RGB values in MATLAB as a basis.

Three-dimensional plotting is a simple extension of two-dimensional plotting. To appreci-
ate this, we will introduce a classic example: drawing a two-dimensional exponential func-
tion. The two most common three-dimensional plotting functions in MATLAB are probably
surf and mesh. They operate on a grid. Magnitudes of values are represented by different
heights and colors. These concepts are probably best understood through an example.

Open a new program in the MATLAB editor, name it, and type the following; then save
and run the program:

a522:0.2:2; %Creating a vector a with 21 elements

[x, y]5meshgrid(a, a); %Creating x and y as a meshgrid of a

z5 exp (2 x.^22 y.^2); %Take the 2-dimensional exponential of x and y

figure %Open a new figure

subplot(1,2,1) %Create a left subplot

mesh(z) %Draw a wire mesh plot of the data in z

subplot(1,2,2) %Create a right subplot

surf(z) %Draw a surface plot of the data in z

392.4 FUNCTION AND SCRIPTS

I. FUNDAMENTALS

After running this program, you probably need to maximize the figure to be able to see
it properly. To do this, click the maximize icon in the upper right of your figure (see
Figure 2.10; or if using a Mac, click on the green button in the upper left corner). Both the
left and right figures illustrate the same data, but in different manners. On the left is a
wire mesh; on the right, a surface plot.

If you did everything right, you should see something like that shown in Figure 2.11.

EXERCISE 2.22

Improve the resolution of the meshgrid. Then redraw.

FIGURE 2.10 Maximizing a figure.

FIGURE 2.11 Three-dimensional plotting of a Gaussian.

40 2. MATLAB TUTORIAL

I. FUNDAMENTALS

EXERCISE 2.23

Can you improve the look of your fig-

ure? Try shading it in different ways by

using the following:

shading interp

Now try the following:

colormap hot

SUGGEST ION FOR EXPLORAT ION

As you can see, meshgrid is extremely

powerful. With its help, you can visualize

any quantity as a function of several inde-

pendent variables. This capability is at the

very heart of what makes MATLAB so

powerful and appealing. Some say that one

is not using MATLAB unless one is using

meshgrid. While this statement is certainly

rather strong, it does capture the central

importance of the meshgrid function. We

recommend trying to visualize a large num-

ber of functions to try and get a good han-

dle on it. Start with something simple, such

as a variable that is the result of the addi-

tion of a sine wave and a quadratic func-

tion. Use meshgrid, then surf to visualize

it. This makes for a lot of very appealing

graphs.

2.4.5 Interactive Programs

Many programs that are actually useful crucially depend on user input. This input
comes mostly in one of two forms: from the mouse or from the keyboard. We will explore
both forms in this section.

First, create a program that allows you to draw lines. Open a new program in the edi-
tor, write the following code, then save and run the program:

figure %Opens a new figure

hold on; %Make sure to draw all lines in same figure

xlim([0 1]) %Establish x-limits

ylim([0 1]) %Establish y-limits

for ii5 1:5 %Start for-loop. Allow to draw 5 lines

a5 ginput(2); %Get user input for 2 points

plot(a(:,1),a(:,2)); %Draw the line

end %End the loop

The program will open a new figure and then allow you to draw five lines. When the
cross-hairs appear, click the start point of your line and then on the end point of your line.
Repeat until you’re done. The result should look something like that shown in Figure 2.12.

412.4 FUNCTION AND SCRIPTS

I. FUNDAMENTALS

EXERCISE 2.24

Allow the program’s user to draw 10 lines, instead of five.

EXERCISE 2.25

Allow the user to draw “lines” that are defined by three points instead of two.

Remember to use close all if you opened too many figures.
Most user input will likely come from the keyboard, not the mouse. So let’s create a lit-

tle program that exemplifies user input very well. In effect, we are striving to re-create
the “sugar factory” experiment by Berry and Broadbent (1984). In this experiment,
research participant were told that they are the manager of a sugar factory and instructed
to keep sugar output at 12,000 tons per month. They were also told that their main
instrument of steering the output is to determine the number of workers per month. The
experiment showed that participants are particularly bad at controlling recursive sys-
tems. Try this exercise on a friend or classmate (after you’re done programming it). Each
month, you ask the participant to indicate the number of workers, and each month, you
give feedback on the production so far.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 FIGURE 2.12 The luck of the draw.

42 2. MATLAB TUTORIAL

I. FUNDAMENTALS

Here is the code:

P5 []; %Assigning an empty matrix. Making P empty.

a05 6000; %a0 is 6000;

m05 0; %m0 is 0;

w05 300; %w0 is 300;

P(1,:)5 [m0, w0, a0]; %First production values

figure %Open a new figure

plot(0,a0,'.', 'markersize', 24); %Plot the first value

hold on; %Make sure that the plot is held

xlim([0 25]) %Indicate the right x-limits

ii5 1; %Initialize our counter

while ii , 25 %The participant is in charge for 24 months5 2 years.

P %Show the production values thus far

a5 input('How many workers this month?') %Get the user input

b5 20 * a2 a0 %This is the engine. Determines how much sugar is produced

a05b; %Assign a new a0

plot (ii,a0,'.', 'markersize', 24); %Plot it in the big figure

P(ii1 1,:)5 [ii, a, b]; %Assign a new row in the P(roduction) matrix

plot (P(:,1),P(:,3),'color','k'); %Connect the dots

ii5 ii1 1; %Increment counter

end %End loop

The result (of a successful participant) should look something like that shown in
Figure 2.13.

EXERCISE 2.26

Add more components to the production

term, like a trend that tends to increase

production over time (efficiency) or decrease

production over time (attrition).

432.4 FUNCTION AND SCRIPTS

I. FUNDAMENTALS

EXERCISE 2.27

Add another plot (a subplot) that tracks

the development of the workforce (in addition

to the development of production; refer to

Figure 2.13).

2.5 DATA ANALYSIS

Section 2.4.5 described a good way to get data into MATLAB: via user input.
Conversely, this section is concerned with data analysis after you already have data. One
of the primary uses of MATLAB in experimental neuroscience is the analysis of data.

2.5.1 Importing and Storing Data

Of course, data analysis is fun only if you already have large amounts of data. Cases in
which you will have to manually enter the data before analyzing them will (we hope) be rare.
For this scenario, suppose that you are in the marketing department of a major motion picture
studio. You just produced a series of movies and asked people how they like these movies.

Specifically, the movies are Matrix I, Matrix II: Matrix Reloaded, and Matrix III: Matrix
Revolutions. You asked 1603 people how much they liked any of these movies. They were
instructed to use a nine-point scale (0 for awful, 4 for great and everything in between, in 0.5
steps). Also, they were instructed to abstain from giving a rating if they hadn’t seen the
movie. Now you will construct a program that analyzes these data, piece by piece. So open a
new program in the editor and then add commands as we add them in our discussion here.

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

14000 FIGURE 2.13 Game over.

44 2. MATLAB TUTORIAL

I. FUNDAMENTALS

Data import: Download the data from the companion website to a suitable directory
in your hard disk. Try using a directory that MATLAB will read without additional speci-
fications of a path (file location) in the following code. First, import the data into
MATLAB. To do this, add the following pieces of code to your new analysis program:

%Data import

M15 xlsread('Matrix1.xls') %Importing data for Matrix I

M25 xlsread('Matrix2.xls') %Importing data for Matrix II

These commands will create two matrices, M1 and M2, containing the ratings of the
participants for the respective movies (contained in Excel files). Type M1 and M2 to
inspect the matrices. You can also click on them in the workspace to get a spreadsheet
view. One of the things that you will notice quickly is cells that contain “NaN.” These are
responders that didn’t see the movie or didn’t give a rating for this movie for other rea-
sons. In any case, you don’t have ratings for these and MATLAB indicates “NaN,” which
means “not a number”—or empty, in our case. The problem is that retaining this entry
will defeat all attempts at data analysis if you don’t get rid of these missing values. For
example, try a correlation:

.. corrcoef(M1,M2)
ans5

NaN NaN
NaN NaN

You want to know how much an average person likes Matrix II if he or she saw Matrix
I and vice versa. Correlating the two matrices is a good start to answering this question.
However, the correlation function (corrcoef) in MATLAB assumes two vectors that consist
only of numbers, not NaNs. A single NaN somewhere in the two vectors will render the
entire answer NaN. This result is not very useful. So the first thing you need to do is to
prune the data and retain only those people that gave ratings for both movies.

Data pruning: There are many ways of pruning data, and the way that we’re suggesting
here is certainly not the most efficient one. It does, however, require the least amount of
introduction of new concepts and is based on what you already know, namely loops. As a
side note, loops are generally slow (compared to matrix operations); therefore, it is almost
always more efficient to substitute the loop with such an operation, particularly when calcu-
lating things that take too long with loops. We’ll discuss this issue more later. For now, you
should be fine if you add the following code to the program you already started:

%Data pruning
Movies5 []; %New Movies variable. Initializing it as empty.
temp5 [M1 M2]; %Create a joint temporary Matrix, consisting of two long vectors
k5 1; %Initializing index k as 1
for ii5 1:length(temp) %Could have said 1603, this is flexible. Start ii loop
if isnan(temp(ii,1))55 0 & isnan(temp(ii,2))55 0 %If both are numbers (5valid)
Movies(k,:)5 temp(ii,:); %Fill with valid entries only

452.5 DATA ANALYSIS

I. FUNDAMENTALS

k5k1 1; %Update k index only in this case
end %End if clause
end %End for loop

The isnan function tests the elements of its input. It returns 1 if the element is not a
number and returns 0 if the element is a number. By inspecting M1, you can verify visu-
ally that M1(2,1) is a number but that M1(3,1) is not. So you can test the function by typing
the following in the command window:

.. isnan(M1(2,1))
ans5

0
.. isnan(M1(3,1))
ans5

1

Recall that & is the MATLAB symbol for logical AND. The symbol for logical OR is j.
So you are effectively telling MATLAB in the if statement that you want to execute the
statements it contains only if both vectors contain numbers at that row using isnan in
combination with &.

EXERCISE 2.28

What would have happened if you had

made everything contingent on the index

ii, instead of declaring another specialized

and independent index k? Would the

program have worked?

It’s time to look at the result. In fact, it seems to have worked: There is a new matrix,
“Movies,” which is 805 entries long. In other words, about half the people in the survey
report to have seen both movies.

After these preliminaries (data import and data pruning), you’re ready to move to data
analysis and the presentation of the results. The next step is to calculate the correlation
you were looking for before, so add that to the code:

corrcoef(Movies(:,1),Movies(:,2)) %Correlation between Matrix I and Matrix II

The correlation is 0.503. That’s not substantial, but not bad, either. The good news is
that it’s positive (if you like one, you tend to like the other) and that it’s moderately large
(definitely not 0). To get a better idea of what the correlation means, use a scatterplot to
visualize it:

figure %Create a new figure
plot(Movies(:,1), Movies(:,2),'.', 'markersize', 24) %Plot ratings vs. each other

46 2. MATLAB TUTORIAL

I. FUNDAMENTALS

The result looks something like that shown in Figure 2.14.
The problem is that the space is very coarse. You have only nine steps per dimension—

or 81 cells overall. Since you have 805 ratings it is not surprising that almost every cell is
taken by at least one rating. This plot is clearly not satisfactory. We will improve on it
later. The white space on the top left of the figure is, however, significant. It means that
there was no one in the sample who disliked the first Matrix movie but liked the second
one. The opposite seems to be very common.

Let’s look at this in more detail and add the following line to the code:

averages5mean(Movies) %Take the average of the Movie matrix

mean is a MATLAB function that takes the average of a vector. It is not the opposite of
the “nice” function, which is undefined. The averages variable contains both means.

As it turns out, the average rating for Matrix I is 3.26 (out of 4), while the average rating
for Matrix II is only about 2.28. Figure 2.14 makes sense in light of these data. This can be
further impressively illustrated in a bar graph, as shown in Figure 2.15.

However, this graph doesn’t tell about the variance among the means. Let’s rectify this
in a quick histogram. Now add the following code:

figure %Open new figure
subplot(1,2,1) %Open new subplot
hold on; %Hold the plot
hist(Movies(:,1),9) %Matrix I data. 9 bins is enough, since we only have 9 ratings
histfit(Movies(:,1),9) %Let's fit a gaussian
xlim([0 4]); %Let's make sure that plotting range is fine
title('Matrix I') %Add a title
subplot(1,2,2) %Open new subplot

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4 FIGURE 2.14 Low resolution.

472.5 DATA ANALYSIS

I. FUNDAMENTALS

hold on; %Hold the plot
hist(Movies(:,2),9) %Matrix II data. 9 bins is enough, since we only have 9 ratings
histfit(Movies(:,2),9) %Let's fit a gaussian
xlim([0 4]); %Let's make sure that plotting range is fine
title('Matrix II: reloaded') %Add a title

As you can see in Figure 2.16, it looks as though almost everyone really liked the first
Matrix movie, but the second one was just okay (with a wide spread of opinion). Plus,
fewer people actually report having seen the second movie.

The last thing to do—for now—is to fix the scatterplot that you obtained in Figure 2.14.
You will do that by using what you learned about surface plots, keeping in mind that you
will have only a very coarse plot (93 9 cells).

1 2
0

0.5

1

1.5

2

2.5

3

3.5 FIGURE 2.15 Means.

0 1 2 3 4
0

50

100

150

200

250

300
Matrix I

0 1 2 3 4
0

50

100

150
Matrix II: reloaded FIGURE 2.16 Variation.

48 2. MATLAB TUTORIAL

I. FUNDAMENTALS

Nevertheless, add the following code to the program:

MT15 (Movies(:,1)*2)1 1; % Assign a temporary matrix, multiplying ratings by 2 to get
MT25 (Movies(:,2)*2)1 1; %integral steps and adding 1 matrix indices start w/1, not 0.
c5 zeros(9,9); %Creates a matrix “c” filled with zeros with the indicated dimensions
ii5 1; %Initialize index
for ii5 1:length(Movies) %Start ii loop. This loop fills c matrix with movie rating counts
c(10-MT1(ii,1),MT2(ii,1))5 c(10-MT1(ii,1),MT2(ii,1))1 1; %Adding one in the cell count
end %End loop
figure %New figure
surf(c) %Create a surface
shading interp %Interpolate the shading
xlabel('Ratings for matrix I') %Label for the x-axis
ylabel('Ratings for matrix II: reloaded') %Label for the y-axis
zlabel('Frequency') %Get in the habit of labeling your axes.

The result looks rather appealing—something like that shown in Figure 2.17. It gives
much more information than the simple scatterplot shown previously—namely, how often
a given cell was filled and how often a given combination of ratings was given.

FIGURE 2.17 The real deal.

492.5 DATA ANALYSIS

I. FUNDAMENTALS

EXERCISE 2.29

Import the data for the thirdMatrixmovie,

prune it, and include it in the analysis. In par-

ticular, explore the relations between Matrix I

and Matrix III and between Matrix II and

Matrix III. The plots between Matrix II

andMatrix III are particularly nice.

Can you now predict how much someone will like Matrix II, given how much he or
she liked Matrix I? It looks as though you can. But the relationship is much stronger for
Matrix II�III.

2.6 AWORD ON FUNCTION HANDLES

Before we conclude, it is worthwhile to mention function handles, as you will likely
need them—either in your own code or when interpreting the code of others.

In this tutorial, we talked a lot about functions. Mostly, we did so in the context of the
arguments they take. Up to this point, the arguments have been numbers—sometimes
individual numbers, sometimes sequences of numbers—but they were always numbers.

However, there are quite a few functions in MATLAB that expect other *functions* as
part of their input arguments. This concept will take a while to get used to if it is unfamil-
iar from your previous programming experience, but once you have used it a couple of
times, the power and flexibility of this hierarchical nestedness will be obvious.

There are several ways to pass a function as an argument to another function. A
straightforward and commonly used approach is to declare a function handle. Let’s
explore this concept in the light of specific examples. Say you would like to evaluate the
sine function at different points. As you saw previously, you could do this by just typing

sin(x)

where x is the value of interest.
For example, type

sin([0 pi/2 pi 3/2*pi 2*pi])

to evaluate the sine function at some significant points of interest.
Predictably, the result is

ans5
0 1.0000 0.0000 2 1.0000 2 0.0000

Now, you can do this with function handles. To do so, type

h5@sin

You now have a function handle h in your workspace. It represents the sine function.
As you can see in your workspace, it takes memory and should be considered analogous
to other handles that you have already encountered, namely figure handles.

50 2. MATLAB TUTORIAL

I. FUNDAMENTALS

The function feval evaluates a function at certain values. It expects a function as its first
input and the values to-be-evaluated as the second. For example, typing

feval(h,[0 pi/2 pi 3/2*pi 2*pi])

yields

ans5
0 1.0000 0.0000 2 1.0000 2 0.0000

Comparing this with the previous result illustrates that passing the function handle
worked as expected.

You might wonder what the big deal is. It is arguably as easy—if not easier—to just
type the values directly into the sin function than to formally declare a function handle.

Of course, you would be right to be skeptical. However—at the very least—you will save
time typing when you use the same function over and over again—given that you use func-
tion handles that are shorter than the function itself. Moreover, you can create more suc-
cinct code, which is always a concern as your programs get longer and more intricate.

More importantly, there are functions that actually do useful stuff with function han-
dles. For example, fplot plots a given function over a specified range. Typing

fplot(h,[0 2*pi])

should give you a result that looks something like that shown in Figure 2.18.
Now let’s consider another function that expects a function as input. The function quad

performs numeric integration of a given function over a certain interval. You need a way
to tell quad which function you want to integrate. This makes quad very powerful

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 FIGURE 2.18 fplot in action.

512.6 A WORD ON FUNCTION HANDLES

I. FUNDAMENTALS

because it can integrate any number of functions (as opposed to your writing a whole
library of specific integrated functions).

Now integrate the sine function numerically. Conveniently, you already have the func-
tion handle h in memory. Then type

.. quad(h,0,pi)
ans5

2.0000
.. quad(h,0,2*pi)
ans5

0
.. quad(h,0,pi/2)
ans5

1.0000

After visually inspecting the graph in Figure 2.18 and recalling high school calculus,
you can appreciate that the quad function works on the function handle as intended.

In addition, you can not only tag pre-existing MATLAB functions, but also declare your
own functions and tag them with a function handle, as follows:

.. q5@(x) x.^52 9.* x^41 8 .* x^32 2.* x.^21 x1 500;

Now you have a rather imposing polynomial all wrapped up and neatly tucked away
in the function handle q. You can do whatever you want with it. For example, you could
plot it as follows:

.. fplot(q,[0 10])

The result is shown in Figure 2.19.

0 1 2 3 4 5 6 7 8 9 10
−5000

0

5000

10000

15000

20000 FIGURE 2.19 A polynomial in q,
plotted from 0-10.

52 2. MATLAB TUTORIAL

I. FUNDAMENTALS

EXERCISE 2.30

Try integrating a value of the polynomial. Does the result make sense?

EXERCISE 2.31

Do everything you just did, but using

your own functions and function handles.

Try declaring your own functions and eval-

uating them, e.g. “vice” or “virtue”.

SUGGEST ION FOR EXPLORAT ION

Find another function that takes a

function handle as input by using the

MATLAB help function. See what it

does.

Finally, you can save your function handles as a workspace. This way, you can build
your own library of functions for specific purposes.

As usual, there are many ways to do the same thing in MATLAB. As should be clear by
now, function handles are a convenient and robust way to pass functions to other func-
tions that expect functions as an input.

2.7 THE FUNCTION BROWSER

Since release 2008b (7.7), MATLAB contains a function browser. This helps the user to
quickly find—and appropriately use—MATLAB functions. The introduction of this feature
is timely. MATLAB now contains thousands of functions, most of which are rarely used.
Moreover, the number of functions is still growing at a rapid pace, particularly with the
introduction of new toolboxes. Finally, the syntax and usage of any given function may
change in subtle ways from one version to the next.

In other words—and to summarize—even experts can’t be expected to be aware of all
available MATLAB functions as well as their current usage and correct syntax. A crude
but workable solution up to this date has been to constantly keep the MATLAB “Help
Navigator” open at all times. This approach has several tangible drawbacks. First, it takes
up valuable screen real estate. Second, it necessitates switching back and forth between
what are essentially different programs, breaking up the workflow. Finally, the Help
Navigator window requires lots of clicking, copying and pasting and the like. It is not as
well integrated in the MATLAB software as one would otherwise like.

532.7 THE FUNCTION BROWSER

I. FUNDAMENTALS

The new “function browser” is designed to do away with these drawbacks. It is directly
integrated into MATLAB. You can now see this in the form of a little fx that is placed just to
the left of the command prompt, at the far left edge of the command window. Clicking on it
(or pressing Shift and F1 at the same time) opens up the browser. Importantly, the functions
are grouped in hierarchical categories, allowing you to find particular functions even if you
are not aware of their name (such as plotting functions). The hierarchical trees can be rather
deep, first distinguishing between MATLAB and its Toolboxes, then between different func-
tion types (e.g., Mathematics vs. Graphics) and then particular subfields thereof. Of course,
the function browser also allows to search for functions by name. Type something in the
search function field provides a quick list of functions that match the string that was input-
ted in the field. The list of functions also gives a very succinct but appropriate short descrip-
tion of what the function does. Hovering over a given entry with the cursor brings up a
popup window with a more elaborate description of the function and its usage.

Finally, the function browser allows to drag and drop a given function from the
browser into the command window.

Figure 2.20 illustrates the use of the function browser for a function introduced in this
chapter, isnan.

FIGURE 2.20 The function browser.

54 2. MATLAB TUTORIAL

I. FUNDAMENTALS

2.8 SUMMARY

This tutorial introduced you to the functionality and power of MATLAB. MATLAB con-
tains a large number of diverse operators and functions, covering virtually all applied
mathematics, with particularly powerful functions in calculus and linear algebra. If you
would like to explore these functions, the MATLAB help function provides an excellent
starting point. You can summon the help with the help command. Of course, you will
encounter many useful functions in the sections to follow. Before we move on, a brief
word on errors. You have probably encountered your fair share of errors at this point. Try
to embrace them. Errors are not mistakes. Errors are just MATLAB’s way of saying that it
did not understand a particular input. It is doing you a favor by pointing out what is
wrong (even if some error messages can be quite cryptic). While this can be a trying expe-
rience, error messages help to improve the code. The same is not the case for mistakes. If
you make a mistake in the program (if there is logical problem), MATLAB won’t say any-
thing, but the program won’t be doing what you think it is doing. This is a real problem.
To put this differently: Mistakes are errors that are not caught. Having MATLAB throw
errors is frustrating, but it is better than the alternative. Speaking of frustration. . .

Try not to get too frustrated with MATLAB while learning the program and working
on the exercises. If things get rough and the commands you entered don’t produce the
expected results, know that MATLAB is able to provide much needed humor and a suc-
cinct answer to why that is. Just type in the command why.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED
IN THIS CHAPTER

help load cos

helpwin clear close

helpdesk length title

helpbrowser size set

1 linspace FaceColor

2 logspace linewidth

* ' rref

/ . / loglog

() . * semilogx

^ .^ semilogy

log find stairs

exp 55 pie

55MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

I. FUNDAMENTALS

sin B5 sound

pi , function

format . for

e ,5 while

[] .5 end

: & %

; j if

5 B else

eye xor pause

ones any subplot

zeros all surf

rand plot mesh

randn bar meshgrid

who hist shading

whos figure colormap

save hold xlim

ylim isnan @

ginput histfit quad

markersize xlabel why

corrcoef feval doc

xlsread fplot

56 2. MATLAB TUTORIAL

I. FUNDAMENTALS

C H A P T E R

3

Mathematics and Statistics Tutorial

3.1 INTRODUCTION

Not everyone who intends to start practicing the neurosciences can be expected to do
so with a perfect knowledge of mathematics. As a matter of fact, due to the inherently
interdisciplinary nature of the field, it would be quite surprising if this were the case.
Educational backgrounds are diverse, and not everyone is privileged enough to hail from
a “math-heavy” one as afforded by physics, computer science, or engineering (to be sure,
plenty do, but they tend to be similarly challenged by a lack of prior exposure to biological
concepts). This state of affairs can usually be traced to the quality and style of the typical
high school and college education in mathematics, which tends to be heavy on proofs and
rote memorization of formulae, but falls short on good explanations that could foster con-
ceptual understanding, visualization, and establishing a working knowledge that allows
problem solving. In reality, the only thingk most people actually learn (in terms of long
term retention) from their high school education in mathematics is that the field is deeply
foreign and full of alien and intimidating topics that can trigger deep-seated insecurities.
But people do learn, so most usually stay clear of math-heavy fields after an initial nega-
tive exposure if they can help it, further solidifying the deficiency. Worse than just the
absence of knowledge, many people are actively avoiding math. In our information-based
society, few admissions of ignorance are received with such impunity and, indeed, acclaim
as that of “not getting math.” Math phobia has swept wide parts of the population and is
flaunted as a badge of honor. The biological sciences are not immune from this; citations
of a paper drop 35% for every additional equation per page (Fawcett et al., 2009). Yet a
solid and workable knowledge of some key mathematical concepts is absolutely indispens-
able if one is to follow and partake in contemporary neuroscience research. There is no
question that not overcoming the acquired fear of math will be severely limiting if not
debilitating to the budding researcher, a state of affairs that will only get more severe as
the mathematization of neuroscience progresses relentlessly. Such self-limitation is need-
less, and it is a shame that droves of budding researchers trying to uncover answers to

57MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00003-5 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00003-5

questions they care about passionately find themselves in this situation without any fault
of their own.

Thus, the purpose of this tutorial is largely therapeutic in nature. We will focus on
introducing a few key concepts in linear algebra and statistics that are central to neurosci-
ence research. We will do so in the most gentle and affirming way possible. In the process,
the reader will (hopefully) realize how MATLAB® itself can be used to help overcome
math anxiety. One piece of advice upfront: If you know that looking at an equation raises
your blood pressure, there is a straightforward trick to calm the nerves. Simply translate
the equation into a series of MATLAB commands. Every equation ultimately corresponds
to a couple of lines of code. Once you get familiar with MATLAB, even the most intimidat-
ing looking equation will lose its sting.

In addition to this primary goal, we will also set up the mathematical groundwork for
the math that is used in the rest of the chapters, so that there are no bad surprises later on.

If you feel already sufficiently steeled in the art and practice of mathematics, you can
safely skip this tutorial. If you are on the fence, you probably need the reminder (in spite
of the central importance of explanations, math is effectively a motor skill; it benefits tre-
mendously from practice).

We explicitly focus on a gentle introduction here, as it serves our purposes. If you are in
need of a more rigorous or comprehensive treatment, we refer you to Mathematics for
Neuroscientists by Gabbiani and Cox. If you want to see what math education could be like,
centered on great explanations that build intuition, we recommend Math, Better Explained
by Kalid Azad.

3.2 LINEAR ALGEBRA

Linear algebra is as fitting a topic as any with which to start this tutorial. As it so hap-
pens, the central concept of linear algebra, the matrix, is also the principal data structure
underlying MATLAB itself. MATLAB is at its best when it comes to the manipulation of
matrices. Linear algebra is, broadly speaking, the study of matrix manipulations.

But what is a matrix and why is it so central? Didn’t we get in enough trouble when we
started to mix the alphabet into equations back in middle school? What does the concept
buy us? Why is it a suitable representation, and of what exactly?

We will discuss these issues in turn.

3.2.1 Matrices, Vectors, and Arrays

To avoid confusion, we need to clarify some concepts and the terms we use to reference
these concepts. In linear algebra, the term scalar refers to a nondimensional quantity,
whereas values commonly refers to vectors, matrices, or arrays. Informally, the terms
matrix, vector, and array are sometimes used interchangeably, but more formally, an array
is a set of numbers organized by a finite number of fixed sized dimensions. Within
MATLAB, the term array can also denote a data structure, a set of numeric values.
However, in this tutorial, we will use “array” in its mathematical sense.

A matrix is a two-dimensional array of numbers or variables. Matrices are usually
depicted as a rectangular group of numbers, with rows and columns corresponding to the

58 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

two dimensions. If there are more than two dimensions, we would call it a “tensor,” but
let’s not get into that at this point. The sizes of the two dimensions of a matrix are often
written as m3 n, where m indicates the number of rows and n indicates the number of col-
umns. Here is an example of a 23 3 matrix, A:

A5
2 4 8
1 7 3

� �
In MATLAB, we use square brackets for defining a matrix. The following MATLAB

code defines a matrix A with the above values. The matrix name is usually capitalized.

.. A 5 [2 4 8; 1 7 3]
A 5

2 4 8
1 7 3

The entire content of the matrix is contained by the square brackets, and a semicolon is
used to separate the rows.

In contrast to a matrix, a vector is a one-dimensional array of numbers or variables. An
individual row or column of a matrix can be identified as a row vector or a column vector.
Here is an example row vector B from matrix A, above:

B5 ð 2 4 8 Þ
Just like matrices, vectors are also entered into MATLAB with square brackets.

B 5 [2 4 8];

Note that no semicolons appeared within the square brackets for the definition of B.
This was because B has only a single row.

You can refer to a particular element in a matrix by its row and column placement. So,
for the matrix A, the element in the first row and third column is the number 8. These two
values identifying an element within the matrix are called indices. Likewise, an element of
a vector can be identified with a single index.

In MATLAB, indices can be specified using parentheses to select elements from matri-
ces or vectors. For example,

A(1,3)

A vector would need only one index.

B(2)

Some matrices are special and can be categorized further. We will refer to these defini-
tions in the following sections.

Square matrices are those matrices where both dimensions are equal. Square matrices in
which only the values along the main diagonal are non-zero are called diagonal matrices.
Here is an example:

C5
3 0 0
0 7 0
0 0 1

0
@

1
A

593.2 LINEAR ALGEBRA

I. FUNDAMENTALS

Finally, diagonal matrices where all the non-zero values are 1 are termed identity matri-
ces. The capital letter I is usually reserved in linear algebra for representing identity matri-
ces. Here is an example of a 43 4 identity matrix:

I5

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA

Often in linear algebra, an identity matrix is referred to as “the identity matrix,” with
dimension inferred from context, and subsequent sections will adhere to this convention.
MATLAB has a special function for creating an identity matrix of any desired size: eye(n),
where n is the dimension desired.

.. eye(3)
ans 5

1 0 0
0 1 0
0 0 1

There is a reason MATLAB has its own function for the identity matrix. It plays a cen-
tral role in linear algebra, as will become clear in the rest of this tutorial.

3.2.2 Transposition

One common operation on matrices is transposition. Transposition flips rows and col-
umns; each row of the original matrix becomes the corresponding column of the new
matrix. In mathematical notation, transposition is usually indicated with the superscript t.
Here is how we would write the transposition of the matrix A defined in the previous
section.

At 5
1 2
7 4
3 8

0
@

1
A

You carry out this operation in MATLAB by using the punctuation ' after the matrix
name: In this case, A'.

.. A'
ans 5

1 2
7 4
3 8

These preliminaries might seem excessive, but a precise nomenclature of operations
matters a lot in linear algebra. It will soon become obvious why.

60 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

3.2.3 Addition

Addition is an operation that is defined for two matrices or two vectors of the same
dimensionality. Adding matrices algebraically is adding corresponding components to
form a new matrix. Thus, each of the two matrices or two vectors being added must con-
tain only elements that correspond with those in the other. Because addition is defined
only for cases where the two values being added have the same dimensionality, cases
where the dimensionality differ, such as adding A from the previous section with its trans-
pose, would be termed undefined or meaningless. But you don’t actually have to worry
about this. MATLAB will literally not let you add matrices with differing dimensionalities;
it will complain that there has been an error and that “Matrix dimensions must agree,” all
red and bothered (unless you changed the color preferences).

Here is an example of matrix addition. We define the matrix F as

F5
10 20 30
5 10 15

� �

A1 F5
2 4 8
1 7 3

� �
1

10 20 30
5 10 15

� �
5

12 24 38
6 17 18

� �

EXERCISE 3.1

Add A1A in MATLAB.

Add A1 F in MATLAB.

Add F1F’ in MATLAB.

3.2.4 Scalar Multiplication

If this is starting to look to you like we are retracing our steps from elementary school,
you would be right. All operations you learned in first grade for actual numbers have their
corresponding operation for arrays in linear algebra (except for transpose; that wouldn’t
make any sense for scalars, as each scalar is its own transpose, so we mercifully skipped
that in elementary school; now you know). Note that if you add A to itself, as in Exercise
3.1, the resulting matrix has values double to those of the corresponding values in A. This
suggests a simple definition for the scalar multiplication of a matrix. Indeed, when a
matrix is multiplied by a scalar value, each element of the matrix is simply multiplied by
that number.

5A5 5
2 4 8
1 7 3

� �
5

5 � 2 5 � 4 5 � 8
5 � 1 5 � 7 5 � 3

� �
5

10 20 40
5 35 15

� �

In MATLAB, a scalar multiplication is performed with an asterisk, if one of the multipli-
cants is a scalar number.

613.2 LINEAR ALGEBRA

I. FUNDAMENTALS

.. 5*A
ans 5

10 20 40
5 35 15

EXERCISE 3.2

Evaluate 7F in MATLAB, using the matrices A and F defined in the previous section.

Evaluate 2A1 3F in MATLAB.

3.2.5 Matrix Multiplication

So far, so simple. But this is the precise point where things get hairy and the majority of
students get lost with linear algebra. This is because matrix multiplication is the first point
where the analogy to elementary school math starts to break down. As you already learned
elementary school math, this highly practiced cognitive template will start to interfere with
learning this crucial step. We urge you to pay extreme attention to matrix multiplication and
practice it as much as you can to override your strong cognitive priors. As most of linear
algebra crucially hinges on matrix multiplication, this dire warning is not overstated. This is
the point where you most likely will get lost, if you get lost. So proceed with the utmost care.

Multiplication can also be defined for two matrices or for two vectors. When you multi-
ply two matrices together, AB, each element of the resulting matrix, C, is the sum of the
corresponding row elements of A times the corresponding column elements of B. In other
words, all elements of C may be obtained by using the following simple but perhaps coun-
terintuitive rule (we are not big fans of rote memorization, but it pays to memorize this
one by heart; otherwise, it will haunt you forever):

The element in row i and column j of the product matrix AB is equal to the row i of A
times the column j of B, added.

Here is an example with two square matrices C and D.

CD5
1 2

3 4

� �
5 6

7 8

� �
5

1 � 51 2 � 7 1 � 61 2 � 8
3 � 51 4 � 7 3 � 61 4 � 8

� �

CD5
19 22

43 50

� �

This definition constrains the dimensionality of the two matrices or vectors in a matrix
multiplication. For two matrices A and B, the number of columns in A must match the
number of rows in B for the product AB to be defined. Also, the dimensions of the product
are m3 n, where m is the number of rows in A and n is the number of columns in B.
If you try to multiply “incompatible” matrices (in terms of dimensionality), MATLAB
won’t let you do it and will inform you of this fact.

62 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

Matrix multiplication can occur between a vector and a matrix, provided that both meet
the dimensionality constraints.

AB5
2 4 8
1 7 3

� � 5
6
3

0
@

1
A5

2:51 4:61 8:3
1:51 7:61 3:3

� �
5

58
56

� �

Observe that AB is not the same as BA, throwing off elementary school intuitions.
Unlike scalar multiplication, matrix multiplication is not commutative; in general, matrices
do not commute under multiplication. In the mathematical sense, commuting has nothing
to do with traveling to your place of business. It simply means, as stated above, that AB is
not the same as BA. It is extremely important to keep this property in mind when manipu-
lating non-scalar values in algebraic equations.

In MATLAB, matrix multiplication also uses the asterisk like scalar multiplication, but
both multiplicants are now non-scalars:

.. B 5 [1;6;3];

.. A*B
ans 5

58
56

EXERCISE 3.3

Verify the matrix product CD above in MATLAB.

Much like in non-matrix multiplication where every number N has a reciprocal such
that NU 1

N 5 1, matrix multiplication defines the concept of an inverse. However, unlike
with scalar multiplication, only some matrices have inverses. We were not kidding when
we mentioned that matrix multiplication is where the vanilla world of elementary school
scalar multiplication is shattered.

The inverse of a matrix D, D21, is the matrix that, when multiplied with the original
matrix, equals the identity matrix:

DD21 5 I

Note that this definition requires that the matrix D be square. This falls out from
the constraints of matrix multiplication and the definition of the identity matrix as a
square matrix.

So, for example, if we define D as

D5
2 3
5 7

� �

then its inverse D21 is

633.2 LINEAR ALGEBRA

I. FUNDAMENTALS

D21 5
27 3
5 22

� �

EXERCISE 3.4

Use MATLAB to demonstrate in an example that the matrix product DD21 is indeed the

identity matrix.

For your convenience, MATLAB provides a function inv(A), which calculates the
inverse of a matrix.

.. inv(D)
ans 5

27 3
5 22

As mentioned above, only square matrices have a defined inverse. Even among square
matrices, not all have inverses. The MATLAB function inv() returns Inf in such cases. For
instance, the matrix X below looks completely innocent, but alas, it does not have an inverse.

.. X 5 [2 3; 1/3 1/2]
X 5

2 3
0.3333 0.5

.. inv(X)
Warning: Matrix is singular to working precision.
ans 5

Inf Inf
Inf Inf

As MATLAB’s warning implies, such square matrices without inverses are termed sin-
gular. We will discuss criteria for assessing when a matrix has a defined inverse when we
discuss determinants, in Section 3.2.6.

3.2.6 Geometrical Interpretation of Matrix Multiplication

In addition to linear algebra, there is also a corresponding geometrical interpretation of
matrix-vector multiplication that can be extremely useful. First, see what happens when a
vector is multiplied by a scalar. Suppose that

B5
3
4

� �

You can plot the vector B on the Cartesian plane if you assume that the x-component of
the vector is the element in the first row and the y-component of the vector is the element

64 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

in the second row. In such cases, we can define unit vectors x̂5
1
0

� �
and ŷ5

0
1

� �
.

Therefore, the vector B can be written in terms of simple and elementary unit-length com-

ponent vectors as B5 3x̂1 4ŷ5 3
1
0

� �
1 4

0
1

� �
. This can be readily seen by substituting the

definitions for x
_
and y

_
into the equation for B:

B5 3x̂1 4ŷ

B5 3
1

0

 !
1 4

0

1

 !

B5
3

0

 !
1

0

4

 !

B5
3

4

 !

This decomposition in terms can be demonstrated in MATLAB as well.

.. x 5 [1; 0];

.. y 5 [0; 1];

.. 3*x1 4*y
ans 5

3
4

.. B 5 3*x1 4*y
B 5

3
4

This results in the graph shown in Figure 3.1.

FIGURE 3.1 This figure shows the vector B plot-
ted in the x,y coordinate space.

653.2 LINEAR ALGEBRA

I. FUNDAMENTALS

Next, you can multiply the vector B by a scalar, 2, to get:

.. 2*B
ans 5

6
8

If you plot this new vector alongside B, then you get the graph shown in Figure 3.2.
Notice that multiplying a vector by a scalar changes only its length. It does not

change the direction of the vector. Now see what happens when a vector is multiplied by
a matrix.

A5
1 1
4 1

� �

EXERCISE 3.5

What is the product A times B? Use MATLAB to calculate this product. Is it the same as

B times A?

Since the matrix A is square, the product of A and B has the same dimensions as the
vector B (in this case, both are 23 1). Therefore, you can plot the vectors A * B and B on
the same graph to obtain the result shown in Figure 3.3.

Here, you can see that multiplication of vector B by the matrix A has resulted in rotating B
counterclockwise and stretching it out. Now, try another example, where A is the same, but:

B5
1
2

� �

FIGURE 3.2 This graph shows the result of multi-
plying the vector B by a scalar (the value 2).

66 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

EXERCISE 3.6

What is the product A times B? Plot the

product in MATLAB and B on the same

graph. What do you notice about the

direction of the product, relative to the

vector B? Can you express the product in

terms of B alone?

If you plot B and AB on the same graph, then you get the result shown in Figure 3.4.
In this case, multiplication of the vector B by the matrix A is equivalent to multiplica-

tion of B by a scalar—in this case 3. It turns out that this scenario is a general one. For
many square matrices A, there exist corresponding vectors B such that

FIGURE 3.3 Multiplying the vector B (blue) by the
matrix produces the rotated and rescaled vector in red.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6 FIGURE 3.4 Multiplying the matrix A by the vector
B5 (1 2) (in blue) produces a vector with the same
direction but different magnitude (in red).

673.2 LINEAR ALGEBRA

I. FUNDAMENTALS

AB5λB

where λ is a scalar constant. (So, in the previous example, λ5 3.)
Geometrically, this means that for a given matrix A, there is a vector B that does not

rotate when multiplied by A. The scalar λ is called an eigenvalue of the matrix A. The
invariant vector B is called an eigenvector of the matrix A, and each eigenvector B is associ-
ated with a particular eigenvalue λ.

While we mentioned this concept in passing, it pays to do a full stop and truly appreci-
ate the concept. It is even more fundamental to linear algebra than matrix multiplication
itself. There are quite a few people who spend their days calculating eigenvalues of sys-
tems (represented by matrices). Even worse, there are plenty of intellectual posers who fail
this basic academic shibboleth; they tellingly refer to them as “Igon values” instead
(Gladwell, 2009). You don’t want to be that guy. Seriously, throwing buzzwords around is
all fun and games, but we want you to actually understand them. Only if you understand
these concepts can you meaningfully work with them, and we assure you that you will be
dealing with eigenvalues and eigenvectors as long as you do linear algebra. And you will
probably be doing linear algebra as long as you are doing science. As for how long you
want to do science, that’s up to you.

Back to eigenvectors, there is actually a relatively simple visual interpretation. Imagine
rotating a globe around its axis (or imagine the actual planet earth spinning around its
axis on a daily basis). The values on this axis are rotation invariant: They do not change
when the system is rotated. You can imagine that these are special values and it is impor-
tant to know them, as they characterize in a way what the system as a whole (the spinning
earth) is doing. If the system was doing something else, the values would be different.

We do believe that in addition to this visual you get the best appreciation for eigenvec-
tors and eigenvalues not by reading or writing about them, but by working with them,
which is exactly what we will do in the next few sections, where we will discuss how to
determine eigenvectors/eigenvalue pairs for square matrices and their applications.
However, before we can cover eigenvectors and eigenvalues, we need to discuss the deter-
minants of matrices.

3.2.7 The Determinant

As discussed earlier, only some square matrices actually have defined inverses. The
determinant is a value (defined only for square matrices) that aids in determining whether
a matrix has a defined inverse or not. In addition, the determinant aids in identifying
whether a matrix has eigenvectors as well.

The definition of the determinant for larger matrices is complex, and, for completeness,
we refer the reader to a suitable reference. For 23 2 matrices, however, the determinant is
a relatively simple expression. Defining the matrix A as

A5
a b
c d

� �

the determinant is defined as ad2 bc, multiplying then subtracting the values on the two
diagonals of the matrix. The determinant is written in linear algebra as det() around a

68 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

matrix or as vertical bars. The following equation shows the two notations and the value
of the determinant for 23 2 square matrices.

det
a b
c d

� �
5

a b
c d

����
����5 ad2 bc

MATLAB provides a function det() that calculates the determinant of a matrix for you.

EXERCISE 3.7

Use MATLAB to calculate the determinant of the matrix D5
2 3
5 7

� �
.

Now you know how to calculate it. But why would you want to? The value of the deter-
minant can be used to determine (hence the name: It actually determines a range of other
matrix properties as well) whether a square matrix has a defined inverse. A square matrix
has a defined inverse if and only if the determinant of that matrix is nonzero (As we saw
earlier that such matrices with zero valued determinants and no inverse are called singular.)
This can be seen by attempting to determine the value of a matrix inverse analytically.

Let the matrices A and A21 be defined as

A5
a b
c d

� �
; A21 5

e f
g h

� �

For A21 to be the inverse of A, AA21 must equal the identity matrix. This generates a
set of equations in the elements of both matrices:

ae1 bg5 1
fa1 bh5 0
ce1 gd5 0
fc1 hd5 1

Ideally, we would want to represent the elements of A21 in terms of a,b,c,d; the elements
of A. Starting with ce1 gd5 0, the value of e is

ce1 gd5 0
ce52 gd

e52
d

c
g

Substituting this value for e into the equation ae1 bg5 1 results in an equation using
only one term from A21, g:

ae1 bg5 1

a

�
2
d

c
g

�
1 bg5 1

693.2 LINEAR ALGEBRA

I. FUNDAMENTALS

�
2
ad

c
1 b

�
g5 1

�
2
ad

c
1

bc

c

�
g5 1

�
bc2 ad

c

�
g5 1

g5
c

bc2 ad

This yields an expression for the element g of A21 solely in terms of elements of the
original matrix A, and this process can be repeated for the other three elements of A21.
However, in rearranging terms, the equation was divided by the term bc2 ad, implying
that this term must not be zero (as no one can divide by zero). You may recognize this
term as the negative of the 23 2 determinant defined above, bc2 ad. Thus, if the determi-
nant is zero, the system of equations identified by the inverse has no solution. QED.

3.2.8 Eigenvalues and Eigenvectors

Recall that finding the eigenvalues and corresponding eigenvectors of a square matrix
A is equivalent to solving for scalar λ and vector B such that

AB5λB

One valid but obviously degenerate solution to this equation is the zero vector,

B5
0
0

� �
;

regardless of the matrix A, as long as A is a 23 2 matrix. The zero-vector solution is called
the trivial solution and will not be of interest here (it is rather of interest to philosophical
discussions of mathematical conceptualizations of death). Thus, to limit solutions to the
non-trivial solutions, we will require that any solutions for B not be zero vectors.

The eigenvector equation is AB5λIB, where I is the identity matrix. This can be rear-
ranged as:

AB5λIB
AB2λIB5 0

ðA2λIÞB5 0

If the matrix ðA2λIÞ has an inverse, then multiplying through this equation by the
inverse gives:

ðA2λIÞ21ðA2λIÞB5 0

70 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

Because a matrix multiplied by its inverse is the identity, this would imply that

ðA2λIÞ21ðA2λIÞB5 0

IB5 0

IB5 0

which is exactly the trivial solution that you do NOT want, which means that ðA2λIÞ
must not have an inverse if nontrivial solutions for B exist. Recall from the previous sec-
tion that a matrix has no inverse if its determinant equals zero. So, for ðA2λIÞ, nontrivial
solutions for B exist only if detðA2λIÞ5 0. QED, yet again. This equation is called the
characteristic equation of the matrix A. It is the only equation you need to calculate the
eigenvalues and eigenvectors of a matrix.

Through the characteristic equation, we can solve for the eigenvalues of A, λ, and then
we can use the values of λ to determine the corresponding eigenvectors of A.

We use this now in an example calculation of eigenvectors and eigenvalues for the matrix

A5
1 1

4 1

 !

A2λI5
1 1

4 1

 !
2λ

1 0

0 1

 !

A2λI5
12λ 1

4 12λ

 !

detðA2λIÞ5
12λ 1

4 12 2

�����
�����5 0

ð12λÞ2 2 45 0

You can solve the quadratic equation for λ to get λ5 f2 1; 3g. These are the eigenvalues
of the matrix A! You can solve for the corresponding eigenvectors as follows. For λ5 3,
the equation becomes

AB5 3B

Substitute A into the preceding equation and let:

B5
x
y

� �

The preceding equation becomes:

1 1
4 1

� �
x
y

� �
5 3

x
y

� �
.

x 1 y
4x 1 y

� �
5

3x
3y

� �

713.2 LINEAR ALGEBRA

I. FUNDAMENTALS

Solving the system of equations gives y5 2x. Thus, any B such that

B5
x
2x

� �

is an eigenvector of the matrix A corresponding to the eigenvalue λ5 3. Note that this
demonstrates that any vector with the same orientation will be invariant to changes in ori-
entation imposed by multiplication by A (recall the spinning globe).

EXERCISE 3.8

Find the eigenvector of A corresponding to the other eigenvalue, λ52 1.

In MATLAB, the command [V,D]5 eig(A) will return two matrices: D and V. The ele-
ments of the diagonal matrix D are the eigenvalues of the square matrix A. The columns
of the matrix V are the corresponding eigenvectors.

EXERCISE 3.9

Use the MATLAB function eig() to calcu-

late the eigenvalues and eigenvectors of

matrix A. Provided that eigenvectors and

eigenvalues exist for some matrix B, the rela-

tionship BV5VD holds for the matrices

returned by eig(B). Demonstrate that this is

the case for the matrix A defined earlier. This

relationship will be explored in depth in the

next section.

3.2.9 Applications of Eigenvectors: Eigendecomposition

Here we will describe a powerful theorem called the eigendecomposition theorem. This
theorem states:

For any n3 n matrix A with distinct eigenvalues you can write:

A5VDV21

where V is the square matrix whose columns are the eigenvectors of A, and D is the square diagonal
matrix formed by placing the eigenvalues of A along the primary diagonal of D.

Powerful stuff indeed. Note that the matrices V and D are exactly those matrices
returned by the MATLAB function eig()!

72 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

This theorem allows any matrix A with distinct eigenvalues to be decomposed into a
diagonal matrix. This decomposition is especially useful in cases where a matrix needs to
be raised to a power:

AN 5 ðVDV21ÞN

AN 5 ðVDV21ÞðVDV21ÞðVDV21Þ. . .ðVDV21Þ
AN 5VDV21VDV21VDV21. . .VDV21

Note here that each pair VV21 between diagonal matrices D is equivalent to the identity
matrix and thus drops out of the equation.

AN 5VDDD. . .DV21

AN 5VDNV21

Only the diagonal matrix D is raised to the power N. Recall that a diagonal matrix
raised to a power N is exceptionally easily calculated (raise each element of the diagonal
to the power N). Thus, raising a matrix with distinct eigenvalues to a large power becomes
a far simpler calculation.

EXERCISE 3.10

Use the eigendecomposition theorem to

calculate A4, where A is the matrix defined in

the previous section. Verify that this is equal

to A4 by calculating the value in MATLAB.

3.2.10 Applications of Eigenvectors: PCA

The eigendecomposition theorem can be used in many remarkable ways. In this section,
we will explore one application, principal component analysis (which we will revisit with
practical examples in Chapter 17 of this book). Principal component analysis provides a
means of identifying the independent axes responsible for major sources of variability in a
multivariate sample. Once these axes are identified, the axes can be used for classification
and simplification of the data. For instance, if two dimensions capture all the variability
inherent in 200 dimensions, the data can be simplified to the “loading” of the data on
those two dimensions. This will become clearer later on.

Let X be a set of data represented as an m3 n matrix X, where m is the number of data
points and n is the number of dimensions in the data set. For this data, we can calculate
an n3 n covariance matrix Σ. According to the eigendecomposition theorem, we can rep-
resent Σ as Σ5VDV21. Under this reformulation, the eigenvectors form a new set of axes
that indicate independent directions of variance. One can see this by a rearrangement of
the equation:

Σ5VDV21

ΣV5VDV21V

733.2 LINEAR ALGEBRA

I. FUNDAMENTALS

ΣV5VD

V21ΣV5V21VD

V21ΣV5D

Thus, through the rotation and scaling of the eigenvector matrix, the original covariance
matrix can be transformed into a diagonal covariance matrix, eliminating covariance
altogether.

Equally significantly, if the eigenvectors are normalized, then the eigenvalues indicate
the relative contribution of each of the eigenvectors to the covariance matrix. For large
datasets, the relative weights provided by the eigenvalues can be used to reduce the
dimensions of the data.

We will use an example.
Load the data file data.mat.
You’ll notice that the included matrix is a 503 3 matrix of data, corresponding to 50

samples of a three-valued vector quantity. Because this data has more than two dimen-
sions, visualizing this data is fairly difficult. We will use PCA to remap the data to new
axes that better represent the variance of the data.

First, we can use the MATLAB cov() function to generate the covariance matrix:

.. cov(M)
C 5

0.8874 1.772 0.054
1.772 3.544 0.114
0.0542 0.114 0.676

Next, we will calculate the eigenvectors of C:

.. [V, D] 5 eig(C);

.. D
D 5

4.435 0 0
0 1.601e2 03 0
0 0 6.720e2 01

The value of D shows the three eigenvalues. Note that one of the eigenvalues is far
smaller than the other two (1.601e2 03). This indicates that the corresponding eigenvector
(column 2 of V) only weakly contributes to the covariance matrix. As a demonstration of
this, we will apply the eigenvector matrix V to the original data and examine the data:

.. V_inv 5 inv(V);

.. m_rot 5 V_inv * m;

.. var(m_rot(:, 1))
ans 5

4.346
.. var(m_rot(:, 2))
ans 5

0.00157

74 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

.. var(m_rot(:, 3))
ans 5

0.659

Note that these variances of the modified data set match the eigenvalues of the original
covariance matrix. Just as important, the variance corresponding to the second axis is sub-
stantially smaller than the other two. Because of this discrepancy, we can omit this axis in
the rotated data set while still preserving the variance of the original data.

3.3 PROBABILITY AND STATISTICS

3.3.1 Introduction

The intent of this section is a brief, rapid introduction to probability and statistics and
their use in MATLAB. This primer cannot hope to replace a good elementary statistics
sequence. That said, those readers with a less extensive background in statistics may find
this section useful. This primer expects a basic understanding of calculus and a passing
familiarity with MATLAB, such as what might be expected by having gone through the
introductory chapters of this very book.

3.3.2 Random Variables

Much of probability is built upon the concept of a random variable. A random variable
is a variable that can take any one of a number of defined values and whose actual value
is determined solely by chance. As a simple example, we will define a random variable X
to represent the outcome of a flip of a coin, where the value 1 denotes an outcome of
“heads” and a value of 0 signifies the outcome “tails.” With a fair coin, the probability of
heads or tails is equal.

Usually, we will represent the probability of an outcome as a rational number, often a frac-
tion. As a fraction, the numerator represents the number of outcomes that yield the event,
and the denominator represents the total number of outcomes in the system. So, in the case of
random variable X, the probability of a tails event is 1=2. There are two possible outcomes,
and the event of getting “tails” is the result of only one. Similarly, the probability of a heads
event is also 1=2. Together, the probability of a heads event or a tails event occurring is 2=2 or
1. This should make sense, as flipping an idealized coin should yield one or the other.

This property of probabilities, summing to one, is a general one, and in a formal treat-
ment of probability is usually defined axiomatically. This usually includes three axioms:

1. Probability is always nonnegative.
2. The probabilities of all possible events sum to one.
3. The probability of any of multiple mutually exclusive (nonoverlapping) events is the

sum of the individual event probabilities.

These three are also known as the “Kolmogorov axioms” and form the traditional axi-
omatic foundation of probability theory.

753.3 PROBABILITY AND STATISTICS

I. FUNDAMENTALS

EXERCISE 3.11

Let Y be a random variable Y whose

result is the roll of a six-sided die. What are

the outcomes? What is the probability of a

5? What is the probability of an even num-

ber? What is the probability of rolling a

number from 1 to 6?

We can generalize the coin flip example by allowing the probabilities of the two out-
comes to differ from 1=2. Under such a generalization, a random variable having two pos-
sible outcomes is called a Bernoulli random variable. Unlike the case of X, where we
modeled a coin flip, a Bernoulli random variable does not necessarily have equal probabil-
ities for the two outcomes. The probabilities for both must, however, sum to one.

Given a Bernoulli random variable Y, with probability p of outcome 1 and probability
(12 p) of outcome 0, we denote the probability of an outcome 1 of Y as Pr(Y5 1). Here,
Pr(Y5 1) would be equal to p. We can define a function f(y)5Pr(Y5 y) such that the value
of f(y) is the probability of value y of random value Y. In other words,

fðy; pÞ5
p; 1
ð12 pÞ; 0
0; y =2 f1; 0g

8<
:

This function is termed the probability mass function (PMF) of random variable Y. It liter-
ally outlines where the mass of the probability of the variable lies.

Thus far, our example has focused on a single Bernoulli variable representing a single
binary outcome. As a more complex example, we can flip a coin multiple times and count
the number of heads. This can be represented as a sum of Bernoulli random variables. We
can also define a new type of random variable, a binomial random variable, to represent
this scenario.

Formally, given a series of n Bernoulli random variables X0;X1 . . .Xn, all with equal prob-
ability p of outcome 1 ðPrðX0 5 1Þ5PrðX1 5 1Þ5 . . . PrðXn 5 1Þ5 pÞ, a binomial random vari-
able Y represents the total number of positive (i.e., 1 valued) outcomes. We say here that n
represents the number of trials. Since each trial must have either a positive or negative (i.e.,
zero-valued) outcome, the total number of positive and negative outcomes must equal the
number of trials, and the number of negative (i.e., zero-valued) outcomes is n2Y.

Much like with Bernoulli random variables, we can define a probability mass function.
However, because a binomial random variable has more outcomes, this case is more com-
plex. Take a series of three coin tosses and a random variable Y representing the total
number of heads the series of flips (see Table 3.1).

There are now eight possible outcomes. This can be calculated quickly from 235 8. (Each
flip occurs independently of the others and doubles the number of outcomes in the series.
Thus, with 3 flips in the series, the total number of outcomes is 23 23 25 8.) Of these 8,
only one outcome involves 0 or 3 heads. 1 or 2 heads both involve 3 outcomes. With this
information and from this table, we can construct a probability mass function for Y.

76 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

fðyÞ5
1=8; y5 0
3=8; y5 1
3=8; y5 2
1=8; y5 3

8>><
>>:

Values below 0 or above 3 were omitted as they are necessarily 0 (these already sum up
to 1). In general, the probability mass function for a binomial random variable can be cal-
culated from the formula

fðk; n; pÞ5 n
k

� �
pkð12pÞn2k

Here, n is the number of trials, p is the probability of a positive outcome on any one

trial, and k is the number of successes or nonzero-valued results. The notation
n
k

� �
might

look scary due to its unfamiliarity, but it is simply the number of combinations, also called

the binomial coefficient, and it can be calculated from
n
k

� �
5 n!

k!ðn2 kÞ!. The MATLAB func-

tion C5nchoosek(n, k) will calculate the number of combinations automatically for you:

.. C 5 nchoosek(3, 1)
C 5

3

EXERCISE 3.12

Use MATLAB and the formula above to

find a probability mass function for a four

coin toss example. Verify these values by

enumerating the possible outcomes.

TABLE 3.1 This table shows the possible outcomes in a three coin flip
experiment and the total number of heads in each outcome.

Flips Number of Heads

TTT 0

TTH 1

THT 1

THH 2

HTT 1

HTH 2

HHT 2

HHH 3

773.3 PROBABILITY AND STATISTICS

I. FUNDAMENTALS

For more complex distributions, a bar graph provides an excellent tool for visualizing a prob-
ability mass function. Figure 3.5 depicts the probability mass function for the probability of the
total number of heads for eight coin flips. With the probabilities in the vector p, the command

.. bar(0:8, p)

produced the plot shown in Figure 3.5. (The expression 0:8 generated the markers for each
bar at the bottom of the plot, denoting the number of successes.)

As n increases, you may notice that the probability mass function acquires a bulging
shape, where success counts near the middle of the possible range have much higher prob-
abilities relative to the probabilities of all heads or all tails. Descriptive statistics provides a
number of standard terms that we can use to characterize the distribution.

We can describe the central tendency of the distribution. We will discuss three common
ways of describing the central tendency of a distribution. The first is the mode. The mode is
defined as the most probable outcome in the distribution. From a bar graph depicting a
probability mass function, the mode is the outcome with the highest probability. The second
central tendency is the median. The median is defined as the outcome corresponding to the
point where the probability masses above or below the outcome are equal. This can also be
stated as the outcome for which the cumulative probability is equal to or exceeds 0.5.

The final central tendency that we will discuss is the mean. Occasionally, the term
expected value is also used to indicate the mean expected value. This term suggests an inter-
pretation for the mean, given a binomial random variable Y drawn from a known distribu-
tion, what value should you expect? We can define the expected value of a function f(x)
relative to a distribution for a random variable X as

EX½fðxÞ�5
X
xAX

PrðX5 xÞfðxÞ

or, the expected value of a function f(x) is the value of the function at x multiplied by the
probability of x, summed over all values x for the random variable X. The mean is defined
as the expected value of the function f(x)5 x. So, the mean of the three coin toss example
discussed previously is

FIGURE 3.5 Bar graph

78 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

EX½x�5
X
xAX

xPrðX5 xÞ

EX½x�5 0 � 1=81 1 � 1=81 1 � 3=81 2 � 3=81 3 � 1=8
EX½x�5 3=2

Clearly, the mean is not a valid number of successes (we cannot have a fraction of a coin
flip). The mean is not guaranteed to be a valid count for the variable in question.
Nonetheless, the empirical average of many trials or random variables will grow ever closer
to the true mean of distribution, assuming that all trials originate from the same underlying
distribution and are statistically independent. This property, that the empirical average
over many trials will approach the expected value, is called the Central Limit Theorem.

We can easily demonstrate that the mean for any Bernoulli random variable with proba-
bility p of outcome 1 is p:

EX½x�5
X
xAX

xPrðX5 xÞ

EX½x�5 ð1Þp 1 ð0Þð12 pÞ5 p

As mentioned earlier, the mean provides a measure of the central tendency. What the mean
doesn’t provide is a measure of the dispersion of the data. One group of data may be widely
dispersed, and another may be tightly clustered, but both may have very similar means.

Unfortunately, we cannot simply use the sum of the differences between the random
variable and the mean as a measure of dispersion, as the positive and negative deflections
around the mean tend to cancel each other out, tending toward an expected value of zero:

EX½ðx2 xÞ�5
X
xAX

ðx2 xÞPrðX5 xÞ

EX½ðx2 xÞ�5
X
xAX

ðxPrðX5 xÞ2 xPrðX5 xÞÞ

EX½ðx2 xÞ�5
X
xAX

xPrðX5 xÞ2
X
xAX

xPrðX5 xÞ

EX½ðx2 xÞ�5 x2
X
xAX

xPrðX5 xÞ

EX½ðx2 xÞ�5 x2 x
X
xAX

PrðX5 xÞ

EX½ðx2 xÞ�5 x2 xð1Þ5 0

Instead, we can calculate the expected value of square of this difference (as they don’t can-
cel out), called the variance:

VarðxÞ5EX½ðx2xÞ2�5
X
xAX

ðx2xÞ2PrðX5 xÞ

VarðxÞ5
X
xAX

ðx2 2 2xx1 x2ÞPrðX5 xÞ

VarðxÞ5
X
xAX

x2PrðX5 xÞ2
X
xAX

2xxPrðX5 xÞ1
X
xAX

x2PrðX5 xÞ

793.3 PROBABILITY AND STATISTICS

I. FUNDAMENTALS

VarðxÞ5
X
xAX

x2PrðX5 xÞ2 2x
X
xAX

xPrðX5 xÞ1 x2
X
xAX

PrðX5 xÞ

VarðxÞ5
X
xAX

x2PrðX5 xÞ2 2xðxÞ1 x2ð1Þ

VarðxÞ5EX½x2�2 x2

Thus, the variance is the difference between the expected value of the random variable
squared and the square of the mean. Unlike the expectation of the difference between the
random variable and the mean, the variance is rarely zero. Because the variance is in units
equivalent to the square of the random variable, we will often use the standard deviation
instead, which is defined as the square root of the variance. The Greek letter sigma is often
used to represent standard deviation:

σx 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxÞ

p
By definition, sigma squared represents the variance of the random variable.

3.3.2.1 Sample Estimates of Population Parameters

Often when dealing with real data the actual distribution of values will not be known.
After collecting a set of data, one can look at the empirical distribution of the collected data. Is
that distribution necessarily an instantiation of the exact distribution of the population from
which the data was collected? Since each data point is a random variable in a sample that is
often considerably smaller than the population it was drawn from, the empirical distribution
of data will never match exactly, but (for most distributions) increasing numbers of samples
will allow a better approximation of the distribution of the (usually much larger) population.

When we discuss sample estimates of a distribution, we use a slightly different notation
from the notation we are used to for the actual distribution itself. The sample mean of a
set of random variables is denoted as x rather than μ. This mean of the sample forms an
estimate of the mean of the actual distribution and is calculated from a sample by

x5
1

N

XN
n

xn

or the sum of the values divided by the number of values. The estimate of the standard
deviation is written as s instead of σ and is calculated as

s5

ffiPN
n
ðx2xÞ2

N2 1

vuuut
The estimated variance is the square of this quantity, and is written as s2. You may note

the factor of N2 1 rather than N as with the mean. This results from the use of the empiri-
cally calculated mean in the estimate for the standard deviation. Because of this factor, this
value is often called the unbiased estimate of the standard deviation, as one degree of free-
dom is lost. Note that in practice you will almost always deal with sample estimates of

80 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

these parameters, as you have access to a sample of data (sampled from the population at
large, but not equal to that population).

MATLAB provides the functions mean(), var(), and std() to estimate the mean, variance,
and standard deviation of a sample.

.. x 5 [2 3 5 9 5 6 7];

.. mean(x)
ans 5

5.2857
.. var(x)
ans 5

5.5714

EXERCISE 3.12

The MATLAB function normrnd(mu,

sigma) generates random values that vary

according to a normal distribution with

mean mu and standard deviation sigma. We

will discuss the properties of the normal dis-

tribution later on. For the purposes of this

exercise, generate a good number of random

values with normrnd(30, 10), and calculate

empirical estimates of the mean and standard

deviation. How do they compare to the

known values (mean5 30, sigma5 10)?

3.3.2.2 Joint and Conditional Probabilities

At this point, we’ve explored single variable distributions fairly extensively. While
many phenomena can be modeled quite effectively with just a single independent vari-
able, this is not always the case.

Take for example the following scenario: Instead of one, you are now rolling two ordi-
nary six-sided dice on each trial. The total can be modeled as a single independent vari-
able, but it may be simpler in certain cases to treat the dice as two separate random
variables X and Y. Both variables would be from the same uniform discrete distribution,
so we say these are identically distributed.

With two random variables, we can discuss the probabilities of outcomes across both of
them at the same time. For example, P(x,2, y,3) is the probability that the result of the
first die is less than 2 and the result of the second is less than 3. This can be computed by
enumerating all the possibilities and determining the fraction that complies. In this case,
the outcomes are (1, 1) and (1, 2), so there are two possible outcomes that meet the criteria.
There are 36 possible outcomes, so the probability is 2/36. This probability over multiple
variables is called the joint probability over X and Y.

You may have noticed a relationship between the probabilities of each individual case
and the overall probability. In the context of multiple random variables, probabilities of
individual random variables are termed marginal, for historical reasons (there is nothing
inherently marginal about it; they were computed—manually—by writing probability
sums in the margins of a probability table). Thus, the probability P(x,2) in this context is

813.3 PROBABILITY AND STATISTICS

I. FUNDAMENTALS

a marginal probability. For P(x,2), there is one outcome out of six (for X alone, only
the first die is considered). Likewise, there are two outcomes where the die roll is less
than 3, so P(y,3) is 2/6. The product of these two probabilities is equivalent to the joint:
P(X, Y)5P(X)P(Y). This general relationship, where the joint probability is the product of
the marginal probabilities, defines statistical independence. In other words, the outcome of X
and Y do not depend on one another. As we’ve defined our problem, we can say that X
and Y are independent and identically distributed (very frequently abbreviated as i.i.d.).

Many systems of variables will not be independent. If we take for example the previous
system in the context of a random variable Z representing the total of X and Y, the joint
probability is clearly not just the product of the individual probabilities. For example, take
the events of rolling a 12 total, and rolling a 6 on the first die (before looking at the out-
come of the second). In this case, P(x5 6, z5 12) is 1/36. However, the probability of roll-
ing a 6 is 1/6 and the probability of rolling a 12 on the two dice is 1/36. Thus, the
variables Z and X are not independent: the overall outcome rather strongly depends on
what was rolled on the first die.

Given the relationship between X and Z, we may want to express probabilities of cer-
tain events conditioned on other events having occurred. For example, if the first die
comes up 6, what is the probability that the total will be 12? (Hopefully, it is clear that the
probability of that total is 1/6, the probability of rolling a 6 with the remaining die. This
holds because the two die themselves are independent. This might seem confusing, but it
is important to keep in mind separately.) We can use a conditional probability to express
such cases. A conditional probability takes the form P(AjB), which is the probability of out-
come A, given that B has occurred. So, the previous example of rolling a 12 given one die
is already 6 can be written as P(z5 12jx5 6).

The joint, conditional, and marginal probabilities have the relationship

P(AjB)P(B)5P(A,B)

Thus, the joint probability of events A and B happening is equal to the conditional prob-
ability of A occurring if B occurs multiplied by the probability of B occurring. We can ver-
ify this in the case of the two-die scenario.

P(z5 12jx5 6) P(x5 6)5P(z5 12, x5 6)

We know that the probability of P(z5 12, x5 6) is 1/36, from the above. P(x5 6) is 1/6
(remember, this is the probability of the first die coming up 6 considered entirely on its
own). As discussed above, P(z5 12jx5 6) is also 1/6. Thus, the relationship holds true. It
is important to remember that this relationship holds even when the random variables are
not independent.

EXERCISE 3.13

Calculate the conditional probabilities:

P(z5 10jx . 4)

P(z , 6jx5 2)

P(z5 12jx5 5)

82 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

A serious drawback of using dice examples in most introductory treatments of probability
is questionable relevance. It is understandable why these examples are used so often; a tightly
constrained problem allows for establishing the concepts with great mathematical precision.
However, most of us are hopefully not spending the majority of our days throwing dice.
Introducing real world examples is dicey, as most real world examples map onto such funda-
mental concepts in multiple ways. No matter which topic you pick, this holds; you will imply
a relationship (sometimes a causal relationship) between variables that can a priori be con-
ceptualized as independent. But that is what science is all about: finding these relationships.

Ultimately, a conditional probability indicates that additional information is known about
the problem space. Science establishes this information; society uses it beneficially. For
instance, an insurance company might assess your risk of dying within the next 10 years dif-
ferently if they knew that you are overweight, smoke, and don’t exercise. In a way, all of life
is about harvesting the information expressed in conditional probabilities, and optimizing
one’s outcomes in the face of uncertainty. It is now cliché that half of marriages end in
divorce. It is less well-known that there are pretty solid conditional probabilities involved; the
outcome strongly depends on educational and financial status as well as number of previous
sexual partners. Put differently, while the probability of divorce for any couple selected ran-
domly is around 0.5, the conditional probability can be far from 0.5 under certain conditions.

Another common situation arises in a medical context. For instance, the probability of a
baby to have Down’s syndrome is about 1/700. However, the conditional probability is as
high as 1/20, given that the mother is over 45 years old. Similarly, the conditional proba-
bility that a child will develop autism is four times higher than the unconditional probabil-
ity if it is known that the child is male.

We can also expand our understanding of expectation and variance to account for multiple
random variables. Conditional expectation follows in a straightforward way from conditional
probabilities. So, to use the previous two-die example, the expectation of the sum Z is 7:

Ez½z�5
X
zAZ

zPðz5ZÞ5 7

We can calculate the conditional expectation of the sum Z given that the first die roll is
a 6 in a similar manner:

EðZjX56Þ½z�5
X
zAZ

zPðz5ZjX5 6Þ

EðZjX56Þ½z�5 2 PðZ5 2jX5 6Þ1 3 PðZ5 3jX5 6Þ1 12 PðZ5 12jX5 6Þ
For any values of Z less than 7, the conditional probability is zero, and the correspond-

ing terms drop out, leaving

EðZjX56Þ½z�5 7 PðZ5 7jX5 6Þ1 8 PðZ5 8jX5 6Þ1 12 PðZ5 12jX5 6Þ
With one die known, only one outcome of the six possible can produce each sum, so

EðZjX56Þ z½ �5 71 81 91 101 111 12½ � 1
6
5

57

6
5 9:5

For systems with multiple random variables, a single variance does not sufficiently
describe dispersion. The term covariance describes variance that occurs together between ran-
dom variables, due to statistical dependence. Covariance between two variables is defined as

833.3 PROBABILITY AND STATISTICS

I. FUNDAMENTALS

covðx; yÞ5EðX;YÞ ðx2EX½x�Þðy2EY½y�Þ
� 	

over the two variable expectation. Covariance is often written as σxy. When calculated
between a variable and itself, the covariance is equivalent to the standard variance, some-
times written as σxx. A nonzero covariance indicates some interdependence between the
two variables. Two entirely independent variables should have a covariance of zero.

3.3.3 The Poisson Distribution

The Poisson distribution is used to describe phenomena that are comparatively rare. In
other words, a Poisson random variable will relatively accurately describe a phenomenon
if there are few “successes” (positive outcomes) over many trials.

The Poisson distribution has a single parameter, λ. For a Poisson distribution modeling
a binomial phenomenon, λ can be taken as an approximation of np.

EXERCISE 3.14

Write a MATLAB function to calculate the

probability of k successes for a Poisson distri-

bution with parameter lambda. Compare a

binomial distribution with parameters n5 10

and p5 0.01 with the equivalent Poisson

distribution.

Aside from use as an approximation for the binomial distribution, the Poisson distribu-
tion has another common interpretation. For an infrequently occurring event, the parame-
ter lambda can be viewed as the mean rate, or λ5 nT, where n is the mean events per unit
time, and T is the number of time units. In such a case, a Poisson distribution with the
appropriate parameter λ will approximate the distribution of events over time or the num-
ber of events in an interval.

Events whose occurrence follows a Poisson distribution have another interesting prop-
erty. Given a series of Poisson distributed independent random variables X1;X2;X3; . . .Xn

and their corresponding arrival times T1;T2;T3; . . .Tn, we can calculate the distribution of
the corresponding inter-event intervals.

Let N(t) equal the number of events at some time t, where P(k5N(t)) follows a Poisson
process with parameter λ. Then, the probability of the nth event occurring at

PðTk . tÞ5PðNðtÞ , kÞ
PðT1 . tÞ5PðNðtÞ , 1Þ
PðT1 . tÞ5PðNðtÞ5 0Þ

PðNðtÞ5 0Þ5 e2λtðλtÞ0
0!

5 e2λt

Likewise, we can calculate a distribution for the inter-event intervals. Here, the proba-
bility of an interval between two successive events Tk and Tk21 being larger than some

84 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

time t is the same as the probability of exactly k2 1 events occurring within the interval 0
to Tk21 1 t. This can be expressed as follows:

PðTk 2Tk21 . tÞ5PðNðTk21 1 tÞ5 k2 1Þ
The probability of k2 1 events during the interval Tk11 1 t is equivalent to the probabil-

ity of no events during the interval 0 to t.

PðNðTk21 1 tÞ5 k2 1Þ5PðNðTk21Þ5 k2 1ÞPðNðtÞ5 0Þ
PðNðTk21 1 tÞ5 k2 1Þ5PðNðtÞ5 0Þ

By definition, k2 1 events occurred during the interval 0 to Tk21. Thus, if any events
occur during the interval Tk21 to Tk21 1 t, this would mean that the number of events in
the interval Tk21 1 t would not be k2 1 but greater than k2 1.

This implies that the intervals are distributed in a “memoryless” fashion. In other words,
for an ongoing process following a Poisson distribution of events, the distribution of wait-
ing time to the next event does not change over time. Put differently, knowing when the
last event occurred does not give you any information about when to expect the next one.

The distribution of intervals that we have derived here is called the exponential distribu-
tion. This is our first example of a continuous distribution. Unlike with discrete distributions,
calculating the exact probability of a single value in a continuous distribution is not feasible,
as it is always zero. To understand why, one can use the previous example of the exponential
distribution of time intervals for a Poisson process. The probability of a specific value, say 3
seconds, would correspond to the probability of the time interval being exactly equal to 3 sec-
onds. Since this would exclude any interval even infinitesimally close to 3, this will be vanish-
ingly small regardless of the number chosen. Therefore, when working with continuous
probabilities, we compute the probability of a variable falling within a range of values.

Because of this fundamental difference, continuous distributions do not have a proba-
bility mass function like discrete distribution. Continuous distributions are defined in
terms of cumulative distribution functions. The derivation of the exponential distribution
above provides an excellent example. Above, the probability of an inter-event interval T
being greater than some value t was found to be equal to PðT1 . tÞ5 e2λt. Usually, the
cumulative distribution function F is defined as the probability of a random variable being
less than a given value. Following those conventions, the cumulative distribution function
F for the exponential distribution can be defined as

PðT , tÞ5 12 e2λt

(This falls out of the requirement that the sum of probability be equal to one. If
PðT , tÞ1PðT . tÞ5 1; then PðT , tÞ5 12PðT . tÞ.)

To determine the probability of a random variable falling within a specific range, we
can subtract ranges. For example, the probability of a random variable T falling between t1
and t2 can be expressed in terms of each value alone:

Pðt1 , T , t2Þ5PðT , t2Þ2PðT , t1Þ
This holds true because the probability of the random variable T being less than t2

includes all cases where the random variable is less than t1. So, the probability mass corre-
sponding to PðT , t1Þ must be subtracted out.

853.3 PROBABILITY AND STATISTICS

I. FUNDAMENTALS

This can be more clearly understood by introducing the probability density function, a
function f(x) such that the cumulative distribution function FðxÞ5 Ð

fðxÞdx. For a probabil-
ity expression with a density function f(x), the probability PðX , xÞ5 Ð x

0 fðxÞdx. Likewise,
the range Pða , X , bÞ5 Ð b

a fðxÞdx.

EXERCISE 3.15

Demonstrate through derivation that the

probability density function f(x) for the

exponential distribution is fðxÞ5λe2λx.

Remember that the cumulative density func-

tion is defined in terms of the probability

density function as FðxÞ5 Ð x
2N fðtÞdt and the

cumulative density function for the expo-

nential function as given above. (Note:

Because the exponential distribution is only

defined for non-negative numbers, the lower

bound of the integral can be set at 0.)

Continuous distributions also have expectations like discrete distributions. Instead of
summing over all probabilities, the expectation is defined in terms of an integral over the
probability density function. For a probability density function f(x), the expectation of the
function g(x) is defined as

E½gðxÞ�5
ðN

2N

fðxÞgðxÞdx

With this, we can calculate the mean and variance for the exponential distribution:

E½x�5
ðN

2N

xfðxÞdx

E½x�5
ðN
0

xðλe2λxÞdx

E½x�5λ
ðN
0

xe2λxdx

E½x�5λ 2x
1

λ
e2λx2

1

λ2
e2λx

2
4

3
5
N

0

E½x�5 2xe2λx2
1

λ
e2λx

2
4

3
5
N

0

E½x�5 01 01 0
1

λ
5

1

λ

86 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

VarðxÞ5
ðN

2N

ðx2μÞ2fðxÞdx

VarðxÞ5
ðN

2N

ðx2μÞ2λe2λxdx

VarðxÞ5
ðN

2N

x2λe2λx 1μ2λe2λx 2 2λμe2λxdx

VarðxÞ5λ
ðN
0

x2e2λx 1μ2λ
ðN
0

e2λxdx2 2μλ
ðN
0

xe2λxdx

VarðxÞ5λ
2

λ2

0
@

1
A1

1

λ2
2 2

1

λ
5

1

λ2

3.3.4 Normal Distribution

The last classical distribution that we will discuss here is the normal distribution. There
are many more, some of which will be visited in later chapters for more specialized pur-
poses. Because its cumulative distribution function is not solvable analytically, the normal
distribution is usually defined in terms of its probability density function,

fðx;μ;σÞ5 1

σ
ffiffiffiffiffiffi
2π

p e2
ðx2μÞ2
2σ2

Here, the parameters μ and σ define the mean and standard deviation of the distribu-
tion. A normal distribution with μ5 0 and σ5 1 is called a standard distribution.

The cumulative distribution function of the normal distribution is the integral over all
values x:

Fðx;μ;σÞ5
ðx

2N

1

σ
ffiffiffiffiffiffi
2π

p e2
ða2μÞ2
2σ2 da

The cumulative distribution function of the standard distribution is often denoted as
ΦðxÞ. This cumulative distribution function is often defined in terms of another special func-
tion whose form is very similar to the integral over the probability density. This function is

commonly called the error function erfðxÞ5 2ffiffi
π

p
Ð x
0 e

2t2dt. So, in terms of the error function,

the cumulative distribution function of the standard distribution is ΦðxÞ5 1
2 1

1
2 erf

xffiffi
2

p

 �

.

MATLAB defines both a cumulative distribution function, normcdf(x, mu, sigma), and
the error function, erf(x), for the normal distribution.

873.3 PROBABILITY AND STATISTICS

I. FUNDAMENTALS

.. normcdf(0.6, 0, 1)
ans 5

0.7257
.. 0.51 0.5*erf(0.6/2^0.5)
ans 5

0.7257

The normal distribution approximates how many phenomena vary. In particular, the
normal distribution is useful in understanding error.

3.3.5 Confidence Values

The normal distribution is particularly useful because of the central limit theorem.
Given N independent, identically distributed random variables with mean μ and variance
σ2, the central limit theorem asserts that the distribution of the mean of the random vari-
ables will converge to a normal distribution with mean μ and variance σ2

N . The dependency
of the variance on the number of variables (in this case, samples) is particularly important.
As we will see, this result is especially relevant to estimating distributions from samples.

EXERCISE 3.16

Here we will explore how the precision

of a mean estimate varies with the sample

count.

.. figure

.. samples 5 [];

.. N 5 [1:15];

.. for n 5 1:15

samples(n) 5 var(mean(randn(2^N(n),

100)));

end

.. scatter(N, samples)

The use of randn(2^N(n), 100) here

selects 2^N3 100 samples from a standard

normal distribution. The intent is to simu-

late picking 2^N samples 100 times in order

to estimate the variance of the distribution

of the means. mean() calculates the sample

means, returning a vector of length 100, and

var() estimates the variance of the distribu-

tion of means.

You should see a figure like

FIGURE 3.6

How does variance vary with sample

count? How many more samples are

required to halve the variance in the esti-

mate of the mean?

88 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

The term standard error of the mean (or just standard error) is defined as

SEx 5
sffiffiffi
n

p

where s is the estimate of the standard deviation and n is the number of samples in the
estimate.

Often, the error will be expressed as confidence intervals around the mean. A confi-
dence interval is expressed as the interval surrounding the mean within which an estimate
of the mean should fall with a certain probability (often 90% or 95%). For a 95% confidence
interval, this is approximately 1.96 times the standard error on either side of the mean
estimate.

For example, let’s assume we have a normally distributed population whose actual
mean is 25 and whose variance is 5. We can collect a sample of 10 as follows.

.. sample 5 normrnd(25, sqrt(5), [1 10]);

.. mean(sample)
ans 5

25.5606
.. se 5 std(sample)/sqrt(10);
.. se * 1.96
ans 5

1.4133

In this case, the 95% confidence interval around the mean estimate 25.5606 would be
24.1473 to 26.9739.

For values other than 95%, we can calculate the factor of the standard error directly
using the MATLAB function erfinv(). erfinv() calculates the inverse of the error function
discussed earlier. To determine the factor to replace the 1.96, you will need to calculateffiffiffi
2

p
erf21ðpÞ, where p is the confidence interval probability. It is important to note that this

assumes normally distributed values.

.. 2^0.5 * erfinv(0.95)
ans 5

1.9600
.. 2^0.5 * erfinv(0.90)
ans 5

1.6449

3.3.6 Significance Testing

Hand in hand with the idea of a confidence interval is significance testing. Take a known
distribution: a normal distribution with a mean of 15 and a standard deviation of 3. A sam-
ple of five values has a mean of 11. Is this sample likely to be drawn from the same popula-
tion? How about a sample of 100 values with the same mean? There is always a chance that
the sample was drawn from the distribution. The question is, with which probability?
Significance testing provides systematic methods for answering such questions.

893.3 PROBABILITY AND STATISTICS

I. FUNDAMENTALS

Returning to the original question posed about the estimated sample mean of 11, we
can describe this in a probabilistic way; in fact, we can rephrase this probabilistically in at
least two ways. First, we can ask how probable a mean of 11 or lower might be, or

Pðx , 11Þ
Secondly, we can ask how probable a mean at least as extreme as 6 might be, or

Pðjx2μj . ð152 11ÞÞ
Classical statistics distinguishes these two refinements of our original questions as a

hypothesis test: we use the properties of the distribution to test a null hypothesis (often
written as H0) that the five item sample is drawn from the known distribution. An
extremely low probability of such an extreme result would argue against the null hypothe-
sis or, alternatively, for rejecting the null hypothesis.

Typically, a maximum threshold for the probability is chosen, called the significance
level. Common values are 1%, 5%, and occasionally 10%. Outcomes with probabilities
below the significance level are termed statistically significant at the corresponding level,
and usually strongly argue for rejecting the null hypothesis. It is important to keep in mind
that hypothesis testing is only evidence for or against rejecting the null hypothesis. For
example, a significance level of 5% indicates that only one out of every twenty repetitions
would produce a result as extreme. If an experiment is repeated 20 times, on average, the
outcome would be statistically significant once. All that the p value gives you is the proba-
bility that such data so extreme (or more extreme) could happen by chance, assuming that
the null hypothesis is true. By this logic, if the significance level is not met, it does not mean
that the null hypothesis is true, just that we failed to reject it at this significance level.

Often, a significance level is selected prior to analysis or even the collection of data, and
a significance of 5% is especially common. The selection of a significance level requires a
tradeoff between two types of error. Choosing a less stringent significance level increases
the risk of interpreting a result as indicating that the null hypothesis should be rejected
when it’s not actually false (this is classically called a Type I error and refers to spurious
findings). Alternatively, a more stringent significance level enforces a more severe thresh-
old for the rejection of the null hypothesis, but setting too low a significance level can miss
rejection when the null hypothesis is actually false (a classical Type II error: missing differ-
ences that are really there). How one should pick the significance level depends on the rel-
ative value of the outcomes in a given practical case: how serious is it to miss real effects
versus how serious it is to claim the existence of effects that are not really there. More
than the brief treatment of Type I/II errors here is beyond the scope of this primer, and
the reader is referred to a more detailed reference for an in-depth discussion.

Significance tests can be classified as one-tailed or two-tailed hypothesis tests. The origin
of these names can be easily understood from an illustration of the expected distribution
of sample means. From the central limit theorem, as discussed in the last section, we
know that sample means from the known distribution should vary with a normal distri-
bution whose mean matches that of the underlying distribution and whose standard
deviation is σ=

ffiffiffiffi
N

p
.

Figure 3.7 shows the expected PDF (remember, probability distribution function) for
sample means for samples with five elements. Shaded is the probability of the sample mean

90 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

having a value at least as extreme as the collection value. Figure 3.8 shows the shaded por-
tion of the PDF in greater detail. (Noting that Pðjx2μj . ð152 11ÞÞ5Pðx . 19Þ1Pðx , 11Þ
may help in understanding Figure 3.8.)

Figure 3.9 shows the same PDF with the probability of the sample mean being less than
11 shaded. In this case, the shaded probability covers only one of the two ends of the PDF.
This is a one-tailed test. Likewise, the previous case covering both tails of the PDF is called
a two-tailed test.

Using significance testing correctly requires determining whether the question at hand
involves a one-tailed or two-tailed test. Here we are interested in ascertaining whether
the measured sample comes from the known distribution. Understanding the extreme
nature of the sample mean is what we’re interested in, so a two-tailed test is most
appropriate.

Since the sample mean should be distributed according to a known normal distribution,
we can calculate the two-tailed probability using the MATLAB function normcdf. Recall

FIGURE 3.7

FIGURE 3.8

913.3 PROBABILITY AND STATISTICS

I. FUNDAMENTALS

that normcdf(x, mu, sigma) returns the cumulative distribution function at x for a normal
distribution with μ5mu and σ5 sigma.

First, Pðx# 11Þ,
.. mu 5 15;
.. sigma 5 3;
.. N 5 5;
.. s 5 sigma/sqrt(N);
.. p_tail_one 5 normcdf(11, mu, s)
p_tail_one 5

0.0014

Next, we can calculate Pðx . 19Þ. normcdf() can be used for this as well, but if the same
procedure is followed with 19 substituted for 11, we will calculate Pðx# 19Þ:

.. p 5 normcdf(19, mu, s)
p 5

0.9986

Note that the value here is substantially larger than the probability of the first tail. To
calculate Pðx . 19Þ, we can use the equality Pðx . 19Þ1Pðx# 19Þ5 1:

.. p_tail_two 5 1 - p
p_tail_two 5

0.00143

This matches the probability mass of the first tail, as one might expect from Figure 3.9.
The sum of the two is the probability that the sample mean is at least as extreme as the
estimated mean here:

.. p 5 p_tail_one1 p_tail_two
p 5

0.0029

FIGURE 3.9

92 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

So, roughly 3% of the time, the empirical mean of five samples from the known distri-
bution would be at least as extreme as 11. At the 1% significance level, this would not pro-
vide sufficient support for rejecting the null hypothesis, but it would at the 5% level.

EXERCISE 3.17

Does the same conclusion hold for a larger

sample (the second example of 100 samples

with the same mean of 11)? Determine the

probability using normcdf().

3.3.6.1 Student’s t Distribution

Imagine an electrophysiology experiment attempting to determine whether a single
neuron responds to a stimulus. In trials without the stimulus, you see firing rates as in the
second column of Table 3.2. The third column of the table shows the firing rates in trials
with the stimulus. Obviously, we’re interested in whether the stimulus alters the firing
rate. This question can be rephrased as a statistical test: what is the probability that the
two distributions are the same or, rather, that two these samples were drawn from the
same distribution?

TABLE 3.2

Trial Rate without stimulus Rate with stimulus

1 54.5 67.1

2 43.5 63.8

3 36.5 73.5

4 48.7 57.2

5 41.8 31.0

6 52.6 54.2

7 28.7 33.1

8 57.1 117.0

9 40.5 71.4

10 48.2 133.8

11 57.3 60.0

12 50.8 41.1

13 62.5 93.0

14 30.8 33.5

15 28.9 52.0

933.3 PROBABILITY AND STATISTICS

I. FUNDAMENTALS

Unfortunately, since we don’t know either of the distributions from which the firing
counts are sampled, we can’t use the procedure we used in the previous section. This will
often be the case in real scenarios. Fortunately, a wide variety of tests for general purpose
significance testing have been defined. For example, Student’s t test is appropriate here.

Student’s (actually William S. Gosset, but being in the employ of Guinness, he had to
publish under a pseudonym) t test (Student, 1908) is useful in a number of statistical sce-
narios. Here, we will use a paired t test. In this experimental paradigm, the measurements
of firing rate with and without the stimulus are not independent (the experiment measures
the same cell under two different conditions). We can pair the measurements before and
during stimulus presentation, and use the t test to determine whether the data is signifi-
cantly different.

Under the paired t test, we need to calculate a t statistic from

t5
xD

sD=
ffiffiffiffi
N

p

where xD is the mean of the difference between elements of each pair, SD is the estimated
standard deviation of the differences between elements of each pair, and N is the number
of pairs. Then, we need to use a Student’s t distribution in much the same way we used a
normal distribution in the prior section. It is worth nothing that the t distribution is very
similar to the normal distribution anyway, just with heavier tails to account for unknown
population variance with small sample sizes.

MATLAB offers a number of functions to simplify this process. The function ttest() has
two forms that are particularly used. ttest(x,y) performs a paired t test. This would be easi-
est if we have vectors x and y for the two samples.

.. x 5 [54.5 43.5 36.5 48.7 41.8 52 6 28.7 57.1 40.5 48.2 57.3 50.8 62.5 30.8 28.9];

.. y 5 [67.1 63.8 73.5 57.2 31.0 54.2 33.1 117.0 71.4 133.8 60.0 41.1 93.0 33.5 52.0];

.. ttest(x, y)
ans 5

1

Without specifying return parameters, ttest() performs a test and returns whether the
null hypothesis should be rejected at the default significance level (5%). Thus, the data
supports rejecting the null hypothesis that the stimulus has no effect on the firing rate.
(In other words, the data suggests that the stimulus has an effect on the firing rate at the
5% significance level.) We can supply a different significance level as a final parameter to
ttest():

.. ttest(x, y, 0.01)
ans 5

0

This implies that the data does not support rejection of the null hypothesis at the 1%
level of significance. Depending on the criteria of the experiment, significance at the 5%
level may be sufficient, or a lack of significance at the 1% level may suggest that the exper-
iment had insufficient “power” to detect an effect at this level, and more data should be
collected to yield this power.

94 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

We can obtain the exact probability of the result or one more extreme by supplying a
second return parameter:

.. [h, p] 5 ttest(x, y)
h 5

1
p 5

0.0106

If we have the differences between the sample pairs already calculated, we could also
use another form of the ttest function. With a single vector, ttest(x) tests against a mean
of 0. This is appropriate when we just have the differences between the pairs, not the
actual values.

.. d 5 x2 y;

.. ttest(d)
ans 5

1

3.3.6.2 ANOVA Testing

Student’s t test covers a number of hypothesis scenarios for testing the results of a sin-
gle factor (one independent variable) and between pairs of samples. Multiple samples or
multiple experimental factors create a scenario that is difficult for a single t test to handle.
To use a t test under such circumstances, we would need a separate t test for each distinct
pair in the experiment. For a five factor experiment, this would require 255 32 separate
tests! Note that on a significance level of 5%, we would expect 1 in 20 differences to test
positively just by chance, even in the absence of any real experimental effects, so we
would also have to adjust our significance level for multiple comparisons. If this sounds
like a recipe for disaster, it is. An alternative approach for the statistical treatment of
experimental data from experiments with more than one independent variable is the so-
called “analysis of variance.”

An analysis of variance (ANOVA) allows us to ask the probability that a group
of samples all originate from the same larger population without the inflated risk of
a Type I error as with multiple t tests. As an example, we’ll expand our hypothetical
experiment to three different stimuli. For simplicity, we will call them A, B, and C (see
Table 3.3).

First, we need to calculate the variance across groups.

.. stim_a 5 [39.2 45.7 45.9 42.8 60.2 50.7 39.9 50.8 43.0 55.9];

.. stim_b 5 [43.2 56.7 32.8 61.2 54.6 44.6 53.2 43.3 35.1 53.7];

.. stim_c 5 [66.5 54.5 62.6 45.6 46.8 34.9 53.3 60.1 69.7 61.0];

This requires calculating the mean for each stimulus

.. mean_a 5 mean(stim_a);

.. mean_b 5 mean(stim_b);

.. mean_c 5 mean(stim_c);

.. means 5 [mean_a mean_b mean_c];

953.3 PROBABILITY AND STATISTICS

I. FUNDAMENTALS

the overall mean

.. mean_overall 5 mean([mean_a mean_b mean_c]);

and the weighted sum of the squares of differences between the overall group mean and
the mean of each group

.. sum_between 5 sum(10*(means - mean_overall).^2);

.. between_mean 5 sum_between/2;

Next, we need to calculate the variance within each group. We sum the squares of the
differences between each measurement and its difference from the mean of its correspond-
ing group:

.. sum_within 5 sum((stim_a - mean_a).^21 (stim_b - mean_b).^21 (stim_c -
mean_c).^2);
.. within_mean 5 sum_within/(3*9);

We use these two values, the mean square difference between groups and the mean
square difference within groups, to calculate the test statistic, f:

.. f_value 5 between_mean/within_mean
f _value 5 2.483

What does this tell us? If all three sets of data follow the same distribution, the distribu-
tion of f should follow an F distribution, which has two parameters. A discussion of the
analytic form of the F distribution is beyond the scope of this text. For the purposes of our
use of the F distribution, the two parameters are equivalent to the degrees of freedom in
our data set: the number of stimuli minus one (32 15 2) and the total count of data
points, minus the number of stimuli (302 35 27).

TABLE 3.3

Trial Stimulus A Stimulus B Stimulus C

1 39.2 43.2 66.5

2 45.7 56.7 54.5

3 45.9 32.8 62.6

4 42.8 61.2 45.6

5 60.2 54.6 46.8

6 50.7 44.6 34.9

7 39.9 53.2 53.3

8 50.8 43.3 60.1

9 43.0 35.1 69.7

10 55.9 53.7 61.0

96 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

In this case, we need to determine the cumulative probability function for the F distri-
bution given our f value and the two parameters. The fcdf() function will calculate this
value.

.. p 5 fcdf(f_value, 2, 27)
p 5 0.651

This p value, 0.651, indicates a little over 65% of the time samples consistent with the
null hypothesis (i.e., all distributed similarly) would yield an f value at least this extreme.
Thus, we cannot discount the null hypothesis here.

3.3.7 Linear Regression

Assume two variables x and y, with an expected linear relationship between them such
that y5α1βx. Under this relationship, we will call the y the dependent variable and x
the independent variable. Let’s say that we have collected sample pairs ðXn;YnÞ and want
to estimate the parameters α (constant offset) and β (slope) so that we can express y as a
function of x.

This estimation procedure is called linear regression (think “prediction”). Here, we are
regressing x onto y. Under traditional terminology, as the independent variable, x is the
regressor (plural: regressors). We can approach the estimation problem as a search for
values of α;β (we will call these estimates α̂;β̂) that minimize the distance between the
predicted value ŷn 5 â1β̂Xn and the actual measured value Yn. The distance for each mea-
sured pair can be represented as

S5
XN
i51

ðyi2ðα1βxiÞÞ2

S5
XN
i51

ðyi2α2βxiÞ2

Then, the estimates α̂;β̂ can be calculated from the partial derivatives of S:

@S

@α
5
XN
i51

2ð2 1Þðyi 2 α̂2β̂xiÞ5 0

XN
i51

yi 2
XN
i51

α̂2
XN
i51

β̂xi 5 0

XN
i51

α̂5
XN
i51

yi 2
XN
i51

β̂xi

Nα̂5
XN
i51

yi 2
XN
i51

β̂xi

α̂5
1

N

XN
i51

yi 2β̂
XN
i51

xi

 !

973.3 PROBABILITY AND STATISTICS

I. FUNDAMENTALS

The estimate β̂ can be calculated in the same manner:

@S

@β
5
XN
i51

2ð2 xiÞðyi 2 α̂2β̂xiÞ5 0

XN
i51

ðxiyi 2 xiα̂2β̂x21Þ5 0

β̂
XN
i51

x2i 5
XN
i51

xiyi 2
XN
i51

xiα̂

β̂ 5

XN
i51

xiyi 2 α̂
XN
i51

xi

XN
i51

x2i

This has yielded a pair of equations in α̂;β̂ . The equation for the estimate of α̂ can be
substituted in and a closed form solution for β̂ obtained:

β̂ 5

XN
i51

xiyi 2
1

N

XN
i51

yi 2β̂
XN
i51

xi

0
@

1
AXN

i51

xi

XN
i51

x2i

β̂ 12

XN
i51

xi

 !2

XN
i51

x2i

0
BBBBB@

1
CCCCCA5

XN
i51

xiyi 2
1

N

XN
i51

yi
XN
i51

xi

XN
i51

x2i

β̂ 5

XN
i51

xiyi 2
1

N

XN
i51

yi
XN
i51

xi

XN
i51

x2i 2
XN
i51

xi

 !2

This method of linear regression is called least squares optimization, because the esti-
mates originate from optimizing (here, minimizing) the sum of the squared distance.

98 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

EXERCISE 3.18

Write a MATLAB function that calcu-

lates estimates for α̂; β̂, given two vectors of

data: [a,b]5 least_squares(x, y). Test against

the following observations, where x is the

independent variable, and y is dependent.

x 5 [2 0.454, 4.68, 6.93, 7.43, 4.58, 6.40,

6.04, 0.846, 3.49, 4.53]

y 5 [2 4.10, 46.8, 69.0, 74.7, 47.5, 63.8,

61.6, 7.76, 0.739, 45.3]

Once an estimate is calculated, one should look at the residuals, the difference between
the values predicted by the estimated parameters in the regression equation and the mea-
sured values. Assuming that the estimates for α̂;β̂ are stored within MATLAB variables a
and b respectively, the residuals for a single variable can be calculated with

.. r 5 y2b * x2 a;

After any linear regression, it is important to review the residuals. In a perfectly linear
relationship between dependent variables and regressors, the residuals will be randomly
distributed (and ideally small). This implies that the difference between the prediction and
measured value is primarily the result of error and not an additional nonlinear relationship.

After fitting, we can also look at the coefficient of determination, r2.

r2 5 12

P
i ðyi2fiÞ2P
i ðy2yÞ2

Here the numerator is the sum of the squares of the residuals, and the denominator is
the sum of the squares of the difference between the dependent variable and its mean,
essentially N times the var(y). Thus, given estimated parameters in MATLAB variables a, b,
we can calculate r2 with

.. r_2 5 12 (sum((y2 b * x 2 a).^2) / sum((y2 mean(y)).^2));

The coefficient of determination ranges from 0 to 1, with values near 1 indicating a better
fit to the data. One interpretation of r2 is the proportion of variance explained by the model.
Thus, a value closer to 1 indicates that most of the variance in the dependent variables origi-
nate in the variation of the regressors, as propagated through the model. A lower r2 implies
that the dependent variables have some variance unaccounted for by the model.

Instead of calculating the estimates and coefficient of determination by hand, we can
use the MATLAB function regress() in the Statistics Toolbox.

[b,bint] 5 regress(y, x)

regress can perform multivariate linear regression, so for a single variable, x should be
an N3 2 matrix, where N is the number of observations. The first column data are the sin-
gle variate observations, and the second column data consists of ones to indicate the

993.3 PROBABILITY AND STATISTICS

I. FUNDAMENTALS

constant offset. regress() returns a vector b with the estimates for the coefficients, α̂; β̂.
regress() also returns 95% confidence intervals for the coefficients in bint. regress() will
also return the residuals if a third return parameter, r, is included.

3.3.8 Introduction to Bayesian Reasoning

Briefly put, Bayes’ theorem allows you to invert conditional probabilities if the base
rates (or priors) are known. Illustrating the perils of eponyms, Thomas Bayes, a
Presbyterian minister who first worked out the basic idea (but never published it), would
probably be surprised by the attribution, in light of his other work.

When would one want to invert conditional probabilities? Surprisingly often. As a mat-
ter of fact, an awareness of Bayes’ theorem is likely much more useful in contributing to
everyday wisdom in decision making than, say, calculus (which doesn’t stop the profes-
sionals from making up contrived examples anyway). This is due to the fact that it is often
much easier to measure the conditional probability of one, but not another (yet related)
event. If this appears too abstract, it is. A plastic example might help.

A country that shall remain unnamed has suffered a recent spate of vicious and unpro-
voked terrorist attacks on civilians. You have been hired by the government of this coun-
try to advise on a rational response to this unacceptable barbarism. Specifically, the
question is whether the government should implement profiling measures against the
known characteristics of the perpetrators, and if so, to what degree.

Here are the known facts:

All terrorists have been bearded. This translates to p (BeardedjTerrorist)5 1.
One in a million people is a terrorist. This translates to p (Terrorist)5 0.000001.
One in 5 people is bearded. This translates to p (Bearded)5 0.2.

And that’s all she wrote. In reality, having solid numbers on this is probably a better
position than most governments can manage, so you are in a strong position.

What you really would like to know is the probability that someone is a terrorist given
that he is bearded, but you only have the probability that someone is bearded if you
already know he is a terrorist. This doesn’t help. If you already know someone is a terror-
ist, they might either already have committed their heinous act, or are in hiding. Language
can be misleading here. Even though the probability that someone is bearded is 1, given
that they are a terrorist, being bearded and being a terrorist are not synonymous in this
case. Intuitively, if they were, there would have to be many more terrorists around (more
than 1 in a million), given that 1 in 5 people is bearded. But how much is the risk of being
a terrorist increased, given that someone is bearded?

Here, Bayes comes to the rescue.

p (TerroristjBearded)5 p (BeardedjTerrorist) * p (Terrorist)/p (Bearded)
p (TerroristjBearded)5 1 * 1e2 6/0.25 5e2 6.

In other words, the probability is 5 millionth. To put this in perspective, the absolute
probability that someone is a terrorist if he is bearded is extremely low, while the relative
probability is 5 times higher. This makes sense, as we use strong diagnostic information to

100 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

link the two (as p (BeardedjTerrorist) is 1) and the base rate of bearded people in the coun-
try is 1 in 5.

You can now either advise the government that each bearded person should be scruti-
nized 5 times as much as a non-bearded person (to match the increased risk), or forgo pro-
filing altogether, as the absolute risk is still so negligibly small. Both responses are
rational.

What if the probability of being bearded given that someone is a terrorist was only half
as strong—0.5? In other words, there are other kinds of terrorists around, they are not all
bearded.

Plugging in the numbers yields

p (TerroristjBearded)5 0.5 * 1e2 6/0.25 2.5e2 6.

This makes sense. As the strength of the diagnostic information declined, the value of
the criterion of beardedness to indicate terroristic tendencies declined in kind.

What if beardedness was much rarer; say only one in a hundred thousand people is
bearded (and the strength of the link was back to 1)?

p (TerroristjBearded)5 1 * 1e2 6/1e2 55 0.1

Now there is a 10% absolute chance that the person is a terrorist, just by virtue of being
bearded, and the a priori chance is increased a hundred thousand-fold. Now, this seems
like a rational case for strong profiling measures.

EXERCISE 3.19

Write a program that plots the probabil-

ity of being a terrorist given that someone

is bearded for a range of values of p

(BeardedjTerrorist) from 0 to 1 (in steps of

0.01), as well as variable base rates (from 1

in a thousand to 1 in a million people being

terrorists) and from 1 in 2 to 1 in a million

people being bearded. Should the amount

of resources allocated to monitor bearded

people follow this distribution, on a per

unit basis?

This admittedly somewhat contrived example was used to provide an intuitive feel for
Bayesian statistics, using a striking and emotional case study.

While it is unlikely that you will be hired by a government in this position, it is far
from unlikely that you will encounter Bayesian reasoning in your study of the neural and
cognitive sciences. As a matter of fact, it has been suggested that the entire sensory appa-
ratus of the brain works as one giant Bayesian machine. It would make sense that it might,
as Bayes’ theorem allows making use of previous experience (establishing base rates) in a
rational fashion. It has been shown that people do use prior experience to gauge what to
expect from future interactions with members of a given class.

Moreover, the value of Bayesian reasoning is obvious in everyday life. It helps to know
it. “Experts” might give misleading answers. For instance, if you go to the doctor for an

1013.3 PROBABILITY AND STATISTICS

I. FUNDAMENTALS

AIDS test or a mammogram, you are not interested in the probability that the test is posi-
tive if you have the disease. You are interested in the probability that you have the disease
if the test is positive! It has been conclusively shown that doctors frequently confuse these
two probabilities, and give you wildly inaccurate odds (Gigerenzer and Hoffrage, 1995;
Hoffrage and Gigerenzer, 1998). This concludes our introduction to Bayesian Reasoning—
as well as our Mathematics and Statistics Tutorial for the purposes of this book. If you are
interested in specific applications of Bayesian Reasoning in neuroscience, see chapter 22.
For a more extensive treatment of Bayes’ theorem and Bayesian inference, see MacKay
(2003).

3.3.9 Outlook

There is an almost infinite number of concepts we could add at this point. We could
discuss other distributions, such as the Chi-squared distribution. We could take Bayes one
step further and talk about likelihood modeling. However, this will suffice as a conceptual
introduction to mathematical and statistical fundamentals. Some of these issues, e.g., maxi-
mum likelihood estimations, will be revisited in later chapters where appropriate. For
now, we feel that enough groundwork has been laid, and that—if you have been working
with us through this material—it is solid enough to carry you through the next chapters,
which is really all anyone can ask for.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

eye
inv
det
eig
cov
nchoosek
mean
var
std
normrnd
normcdf
erf
scatter
erfinv
fcdf
regress

102 3. MATHEMATICS AND STATISTICS TUTORIAL

I. FUNDAMENTALS

C H A P T E R

4

Programming Tutorial: Principles
and Best Practices

4.1 GOALS OF THIS CHAPTER

Unlike most other sections in MATLAB® for Neuroscientists, the focus here is not on
learning new techniques in MATLAB, but on how to use those techniques better. The sec-
tions that follow introduce guidelines for code organization in small and large projects,
defect (bug) control, and testing strategies in an attempt to communicate strategies for
managing the complexity that comes with larger programming efforts.

In order to benefit maximally, basic proficiency with MATLAB coding is necessary.
Working through the MATLAB tutorial should be adequate preparation; however, pro-
gressing through a few sections beyond the tutorial is an even better preparation. The
additional experience with MATLAB will provide a stronger foundation for understand-
ing the rationale for the suggestions that follow.

4.2 ORGANIZING CODE

4.2.1 A Few Words about Maintenance

Code should be written with the expectation that the author will not be maintaining the
code. This is especially true in many laboratories, where code is passed down from stu-
dent to student, sometimes with very little direct communication. It can be very tempting
to whip out a few lines of code to solve a simple problem, and think that the code might
be a throwaway solution or only used by the code’s author. As with other technical solu-
tions to scientific challenges, solutions to computational problems are rarely entirely
unique. A part of yesterday’s throwaway code might be the kernel of someone else’s the-
sis. Maintainability should be as important as functionality in writing new code. It is in this spirit
that the following sections offer suggestions for writing more maintainable code.

103MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00004-7 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00004-7

4.2.2 Variables and How to Name Them

Simply put, a variable denotes a storage location. That location can hold a number, a
function, a matrix, or even more complex entities, such as cell arrays or MATLAB objects.
In the context of MATLAB code, a variable is referenced by name and scope. This section
will discuss variable naming strategies. Variable scope is equally important, but it will be
discussed in the next section.

Variable names can be any contiguous set of alphanumeric (i.e., 0�9 and a�z) charac-
ters plus the underline character, and they begin with a nonnumeric character. For exam-
ple, this_is_a_variable and th1s_1s_4ls0_4_v4r14bl3. With such flexibility in name choice,
it is surprising how often poor names are chosen.

Here is a simple function written twice to demonstrate the impact of good variable
name choices. First, a version of the function with poorly chosen variable names.

function out 5 align_waveforms(x)
% Determines alignments for a set of waves relative
% to the initial waveform using
% cross correlation.
% Input parameters
% x: MxN matrix of waveforms, where x(m,:) is the nth waveform
% Output parameters
% out: vector of length M, where out(m) is the offset relative
% to the first wave

n 5 size(x);
n 5 n(2);
out 5 [];
for w 5 1:n

c 5 xcorr(x(:, 1), x(:, w));
s 5 find(c 55 max(c));
d 5 s - length(c)/2;
out 5 [out d];

end

end

The same function with better variable names follows.

function offsets 5 align_waveforms(waves)
% Determines alignments for a set of waves relative
% to the initial waveform using
% cross correlation.
% Input parameters
% waves: MxN matrix of waveforms, where x(m,:) is the nth waveform
% Output parameters

104 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

% offsets: vector of length M, where out(m) is the offset relative
% to the first wave

wave_count 5 size(waves);
wave_count 5 wave_count(2);
offsets 5 [];
for wave 5 1:wave_count

c 5 xcorr(waves(:, 1), waves(:, wave));
max_c_index 5 find(c 55 max(c));
offset 5 max_c_index - length(c)/2;
offsets 5 [offsets offset];

end

end

Clearly, variable name choice has impact on readability, even in short functions. Here
are a few simple guidelines for naming variables that promote readability and
maintainability.

Avoid the names of global functions. When MATLAB encounters a sequence of char-
acters that forms a valid name, the variables in the current workspace are checked first for
possible matches. MATLAB searches for functions, scripts, or classes only if an identifier
fails to match any existing variable names. Choosing a name synonymous with a
MATLAB function, or even a user-defined function, hides that function in the current
scope. In the example code ahead, assigning the value 5 to a variable named “factorial”
causes the subsequent attempt to call the factorial function to fail. Because MATLAB
recognizes factorial as a variable, the interpreter attempts to resolve (4) an index into a
vector. Since the variable factorial is a scalar, the index request fails and yields the error.

.. factorial(4)

ans 5

24

.. factorial 5 5;

.. factorial(4)
??? Index exceeds matrix dimensions

Especially inappropriate choices can even cause difficult to identify errors. Another
example ahead shows how setting gamma to a vector creates a situation in which an inte-
ger argument to the gamma function is misinterpreted as an index into the vector and
yields the wrong value.

.. gamma(4) % the correct value for gamma(4) is 6

ans 5

6

.. gamma 5 [0 1 2 3 4 5];

1054.2 ORGANIZING CODE

I. FUNDAMENTALS

.. gamma(4)

ans 5

3

While the MATLAB interpreter is able to evaluate the request for element 4 of the vec-
tor gamma without an explicit error, this is highly confusing to anyone familiar to the
gamma function. If the intent of gamma(4) was actually to invoke the gamma function, the
expression returns the wrong result silently. Such code needlessly complicates later main-
tenance and readability.

The which command is especially useful for determining if a variable might override
an existing command. Typing which followed by a potential name for a variable displays
information about the identity of that name. The clear command will remove a variable
from the current workspace, which is quite useful when inadvertently overriding an
important command. Note how clear alters how MATLAB resolves the identity of gamma
in the following example.

.. gamma 5 [0 1 2 3 4 5];

.. gamma(4)

ans 5

3

.. which gamma
gamma is a variable.
.. clear gamma
.. gamma(4)

ans 5

6

.. which gamma
built-in (/sw/matlab-7.11/toolbox/matlab/specfun/@double/gamma) % double method

Pick a mnemonic name. A name that reflects the purpose of a variable improves read-
ability significantly. Although it’s quite tempting to choose short, one-character variable
names such as n or x, variable names should reflect the variable’s use or contents when-
ever possible. A common MATLAB task involves writing mathematical formulae as
executable MATLAB code. When writing such code, the use of exceptionally short variable
names is especially tempting, since variables used in mathematical notation are quite often
single letters. In the simplest of functions, this is reasonable, especially if the function oper-
ates uniformly on all inputs, i.e., there is no specific meaning ascribable to the variable.
This is fairly rare, however. Aside from simple mathematical functions or variables used
as indices in for loops, single-letter variables should be avoided.

A mnemonic name is not an invitation to a stream of consciousness description of the
code, however. An excessively long name might be a subtle clue of an overly broad or
imprecise use. For example, a variable named indicates_yes_response_or_viable_value
should probably be broken into two separate variables for simplicity. This guideline is

106 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

particularly true for any variable expected to be used interactively. No one wants to type
indicates_yes_response_or_viable_value over and over in an interactive session unless
absolutely necessary.

Retire variables after their specific purpose. Repurposing variables can make code dif-
ficult to follow and maintain, particularly in a long or complicated sequence of code.
Usually choosing mnemonic variable names automatically avoids this problem.

EXERCISE 4.1

Review the following code and rename variables that could be better named. Use the

comments as a guide to the intended functionality.

function psth,bins 5 bin_for_psth(rd, ...
sampling_rate_in_samples_per_second, ...
t, ...
q, ...
q2, ...
size_of_each_psth_bin_in_seconds)

% Locates events above threshold in raw data and generates PSTH
from

% multi-trial recording. Trials should be contiguous.
%
% Input parameters
% rd: raw input data
% sampling_rate_in_samples_per_second: sampling rate in Hz
% t: threshold for events, in same units as raw data
% q: number of contiguous trials
% q2: length of each trial, in seconds
% size_of_each_psth_bin_in_seconds: size of each PSTH bin, in

seconds
%
% Output parameters
% psth: count in each bin
% bins: center position of each bin, in seconds relative

to
% trial start

% first, threshold signal
vnts 5 rd . t;
% only positive threshold crossings (not sustained activity above

threshold)
vnts 5 diff(events) 55 1;
vnts 5 [0 events];
% now, split into trials

1074.2 ORGANIZING CODE

I. FUNDAMENTALS

vnts 5 reshape(vnts, q, ...
q2 * sampling_rate_in_samples_per_second);

% vnts should be MxN, where M 5 trial and N 5 sample
sum 5 sum(vnts);
% sum should be the sum of events at each sample relative to
% the start of the trial
max_vnt_count 5 max(sum);
for count 5 0:max_event_count-1

above_count 5 find(sum . count);
vnt_offsets 5 [vnt_offsets above_count];

end
% vnt_offsets should be the offset in sample counts where events

occur
vnt_ts 5 vnt_offsets / sampling_rate_in_samples_per_second;
[psth, bins] 5 hist(vnt_ts, q2/size_of_each_psth_bin_in_seconds);

end

4.2.3 Understanding Scope

Scope refers to the extent of a variable within the code. During execution, variables
move in and out of scope. For example, under normal circumstances, a variable created
within a MATLAB function ceases to exist once the function ends. One of the most
important aspects of scope is that scope together with name uniquely denotes a vari-
able. Two or more variables with identical names can coexist separately in different
scopes.

Related to the idea of scope is the MATLAB workspace, which acts as a container for
variables within a specific scope. In a sense, workspaces implement scope. Unlike the
abstract concept of scope, workspaces in MATLAB are entities that can be viewed and
interacted with. The most visible workspace is the workspace associated with the com-
mand line, which is visible in the workspace window during interactive sessions, but other
workspaces are created, suspended, and destroyed as necessary to implement other scopes
during execution.

MATLAB recognizes three basic scopes: the command-line scope, global scope, and
function-level scope. Each of these has one or more corresponding workspaces during exe-
cution. With a few exceptions, when the MATLAB interpreter encounters a legal variable
name, the current workspace is checked for a match. Which workspace is current changes
throughout execution. If a match is located, the identifier is treated as the corresponding
variable. We will now discuss each of these types of scope (command line, global, and
function level) and their corresponding workspaces.

The command-line scope consists of all variables created interactively at the command
line or in a script file. Unlike functions, scripts operate under the command-line scope.
Thus, scripts have access to all variables present in the command-line scope and their
values. This makes scripts especially useful for executing sets of commands that one

108 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

would normally type at the command line, such as commands to set up an environment
for a specific type of analysis or visualization. It also means that scripts can easily over-
write variables in the command line scope.

Function-level scope occurs at the entry of a function (i.e., the beginning of execution, at
a function call) and continues until the function ends, usually at the return. Variables
within the function-level scope do not persist after the execution of a function call. Cases
such as the code ahead may appear to counter this assertion, but a careful analysis demon-
strates that this is not the case.

----- in square.m-----

function x 5 square(x)
x 5 x * 2;

------at command line-----

.. x 5 6;

.. x 5 square(x);

.. x

x 5
12

At the command line, it may appear that the value of x persists beyond the call to square
() or within the call to square(). However, this is not the case. Initially, there is a variable x
declared at the command line. This variable contains the value 6. Then, the assignment
statement x5 square(x) is executed, and the function square() is called, with the parameter
x. During the execution of the call to square, all the expressions in the parameter list are
evaluated prior to the call. In this case, the variable x is evaluated, and it refers to the vari-
able x at command line scope. So the value is 6, and square() is called.

When square() is called with the parameter 6, the value 6 is bound to the function-level
scope variable x during the execution of square(). It is crucial to note that this x at the
function-level scope has no relationship with the variable of the same name at the com-
mand line scope aside from the confusing nature of their identical names. During the exe-
cution of square(), the function-level variable x is set to 2 times itself, or 12, and the
function returns. At the return of the function, the value of function-level x is obtained as
the return value of the function (this return value is 12) and bound to the command-line
scope variable x as the final part of the assignment statement. Thus, the command-line
scope variable x will then contain the value 12.

As demonstrated above, when examining functions and function calls, it is important to
remember that all parameters in a function call are evaluated before the call and then
bound to variables in the function-level scope. In other words, variable names in a func-
tion call have no direct relationship with variable names in the function’s code. So, in the
previous example, the command-line variables could have been named x2, y, or even
not_the_x_in_square, and the example would have produced the same result. Formally,
parameters in the function’s code are termed formal parameters to distinguish them from
parameters in the calling of a function, which are called actual parameters.

Function-level scope can become especially complex with recursive functions. Recursive
functions invoke themselves, albeit (usually) with different parameters each time. Here is

1094.2 ORGANIZING CODE

I. FUNDAMENTALS

an example function that implements a factorial, N!. The function is called factorial2 to
avoid conflict with the MATLAB built-in function factorial.

function f 5 factorial2(g)
if g 55 1

f 5 1;
return

end
f 5 g * factorial2(g-1);
end

So, calling factorial2 with a value of 3 causes it to call factorial2 with a value 2, which
calls factorial2 with a value of 1. The innermost factorial2 call which was passed a value 1
terminates, returning 1. Then, the factorial2(2) call resumes, calculating 2*1 and returning
the result 2. Finally, the original call factorial2(3) resumes, calculating 3*2 (2 being the
result from factorial2(2)) and returning 6. This sequence of calls and the associated crea-
tion, suspension, and deletion of scopes is illustrated in Figure 4.1.

function f = factorial2(g)
 if g = =1

 f = 1;
 return

end
 f = g * factorial2(g-1);

function f = factorial2(g)
 if g = =1

 f = 1;
 return

end
 f = g * factorial2(g-1);

function f = factorial2(g)
 if g = =1

 f = 1;
 return

end

factorial2{} is called
with g–1 {which is 2}

Calling factorial2{} creates a
new scope in which g is 2}

factorial2{} is called
with g–1 {which is 1}

Calling factorial2{} creates a
new scope, in which g is 1

Since g is 1, this factorial2{} terminates
and returns a value of 1

Once the invocation of factorial2{} with
input 1 terminates, the previous invocation of
factorial2{} resumes including the previous scope,
evaluates g* factorial2{1}, and itself terminates with the value 2.

Once the invocation of factorial2{} with
input 2 terminates, the previous invocation of
factorial2{} with input value 3 resumes, evaluates
g* factorial2(2) using the g variable in the restored
scope, and itself terminates with the value 2.

end

end

FIGURE 4.1 Sequence of scopes during a recursive call

110 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

It is important to note that each invocation of factorial2 creates its own scope.
Consequently, each variable g in an invocation is different from the variables named g in
other invocations. As each execution of factorial2 invokes factorial2 with a slightly smaller
input parameter, the existing scope is suspended for the execution of the inner call and
resumed when the call returns.

In the context of execution, each scope created by the invocation of a function call is
sometimes called a stack frame. The collection of all the frames existing at any point in the
execution, suspended or live, is sometimes called the execution stack or call stack. facto-
rial2() can be modified to make the stack frame a little more visible during execution by
displaying input parameter g and the current stack using dbstack:

function f 5 factorial2(g)
g
dbstack
if g 55 1

f 5 1;
return

end
f 5 g * factorial2(g-1);
end

Invoking factorial2() on the input 3 at the command line involves 3 calls to factorial2.

.. factorial2(3)

g 5

3

In factorial2 at 3

g 5

2

In factorial2 at 3
In factorial2 at 8

g 5

1

In factorial2 at 3
In factorial2 at 8
In factorial2 at 8

ans 5

6

Global scope has characteristics of both command-line and function-level scopes. Like
command-line scope, variables in global scope persist for the lifetime of the MATLAB
interpreter. Like function-level scope, variables in global scope are accessible during func-
tion execution. One substantial difference between global scope and either of the two other

1114.2 ORGANIZING CODE

I. FUNDAMENTALS

scopes is the necessity of explicitly specifying global scope for those variables which need
it. This is done with the global keyword. Here is an example showing two functions
referencing the same variable in global scope.

function x 5 increment()
global increment_value
x 5 increment_value1 x

end
function set_increment(y)

global increment_value
increment_value 5 y

end

Without the statement global increment_value in either one of the functions,
subsequent statements would attempt to reference a variable of the same name
(increment_value) with function-level scope. As one might expect from the scope of global
variables (i.e., available wherever global appears), all global variables share a workspace
separate from command-line and function-level workspaces.

4.2.4 Script or Function?

Script files and function files in MATLAB have distinct purposes, tightly related to both
files’ respective use of scope. Because script files operate in the workspace used at the com-
mand line, script files act much like commands typed into the interactive prompt. This
means that all variables accessible from the command line are visible and can be modified.
This workspace sharing can be spectacularly useful for tasks like automating a set of com-
mands that one would normally type into the command line without modification.

Functions, on the other hand, create their own workspaces upon execution. Function
parameters are the primary means of moving data from an external workspace into the
function’s workspace. As such, any local variables used in the function are isolated from
variables of the same name outside the function.

When beginning to code in MATLAB, putting all code in script files may feel most natu-
ral, since script file execution operates so similarly to commands executed at the command
line. However, over time, this becomes problematic. Using scripts as functional units
requires designating a specific set of variables to be used to move data between scripts. If
those variables are inadvertently used in scripts for other purposes, certain scripts may
become unusable. By operating in isolated workspaces, functions avoid this problem. Thus,
scripts are best for sequences of commands that require no parameterization.

4.2.5 The Art of Commenting

Nothing guarantees the obsolescence of code like the absence of comments. Even the
clearest code will have areas whose details or larger goals are not self-evident. While too
many obvious comments can obfuscate the code, it is better to err on the side of too much
rather than too few.

112 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

In MATLAB, comments immediately following the declaration of functions or objects
are particularly useful, since the help command will display these comments. Such usage
comments should include the name, a brief summary of purpose, input and output para-
meters, and any data structures or nonobvious steps preliminary to usage required.
Especially important to note in comments are nonobvious side effects (see side effects,
ahead), such as modifying a global variable or altering a file.

4.3 ORGANIZING MORE CODE: BIGGER PROJECTS

4.3.1 Why Reuse Code?

As a project grows in scope, the amount of code becomes difficult to manage. Every
line of code is a site for an unforeseen error. Minimizing code is an effective strategy for
simplifying maintenance. One of the most significant ways of minimizing code is the reuse
of existing code.

Very frequently, sections of code are very similar, save a few parameters. Placing these
functional units within a separate function file has many advantages. In addition to reduc-
ing the amount of code, such an approach allows for testing the functionality indepen-
dently. When a project is constructed from such independently testable, reusable parts
there are fewer errors, and those errors that do occur are typically simpler to eradicate
than in code which lacks this organization. Such projects also often require substantially
less new code and are faster to implement.

This section focuses on guidelines which foster reuse and maintainability. Low coupling
isolates unrelated areas from future changes in a logical unit. High cohesion and separation
of concerns push related units together so that maintenance to a given logical unit requires
modifying as little code as possible. Side effects often limit reuse. Finally, object oriented
design provides one means of reducing coupling and improving cohesion.

4.3.2 Coupling and Cohesion

Coupling describes the flow of information to and, to some degree, the degree of depen-
dency between two or more logical units. Functions requiring a greater quantity of struc-
tured information for use, such as parameters or global variables, are described as having
high or strong coupling. Functions requiring minimal amounts of parameters or global
variables are likewise described as having low or weak coupling.

function s 5 square(m)
s 5 m .^2

end

function s 5 square_field(m)
s 5 m.matrix_data.^2
global global_sum
global_sum 5 global_sum1 sum(s)

end

1134.3 ORGANIZING MORE CODE: BIGGER PROJECTS

I. FUNDAMENTALS

In the function square, there is a small degree of coupling between square and a calling
function. The function square expects a single input parameter and returns a single output
parameter. The function square_field is far more coupled to its caller. Like square,
square_field expects a single input parameter and returns a single output parameter.
However, square_field expects the input parameter to be a MATLAB object with a field
named matrix_data. Moreover, square_field uses a global variable to track the global sum
of squares. These two aspects of square_field’s functionality must be understood and man-
aged by any function invoking square_field.

High coupling marks a more complex relationship between two or more functions.
Usually, a more complex relationship is more difficult to manage in the event of modifica-
tion. In the example above, if the name of the field matrix_data needed to be changed,
every caller of square_field would need to be changed in addition to square_field itself.

Low coupling has a number of advantages for reuse. With fewer parameters to con-
struct and provide, simpler interfaces are easier to integrate into existing code. The simpler
relationships of weaker coupling also mean less to understand when reading or maintain-
ing the code in the future.

Cohesion describes the degree to which a unit’s functionality achieves a single purpose.
Functions in which the functionality of each constituent part implements some necessary
aspect of a clear purpose have high cohesion. The example functions above differ in cohe-
sion as well as coupling. The function square has high cohesion. Its single statement
implements the clear functionality of the unit, which is an element-wise squaring of the
input. The function square_field, on the other hand, could be described as less cohesive.
The rationale for tracking the global sum of elements is not clear from the function’s name
or other code. As such, one could argue that the statements dealing with the global vari-
able global_sum are not aligned with the primary purpose of the unit, which is to calculate
the square of the input variable’s field matrix_data.

Functions with lower cohesion are often more difficult to reuse. Such functions
often have additional input/output variables or even global variables that must be
accounted for in the calling code. Accounting for unnecessary aspects of the function
takes additional time and effort that, themselves, should not be necessary. Code
focused on a single purpose is usually simpler, which is often easier to read, maintain,
and debug.

4.3.3 Separation of Concerns

Separation of concerns is a useful guiding principle in organizing a larger project.
Under separation of concerns, all code related to providing a distinct feature is grouped
together in a separate logical unit. This logical unit could be a single-named function for
simpler features or a set of functions or objects for more complex features. Thus, if systems
have overlapping common features (i.e., concerns), then separation argues for separating
out those common concerns into a new logical unit.

This is quite similar to, but distinct from, high cohesion. High cohesion demands con-
formity of purpose within a logical unit. Separation of concerns seeks to collect similar

114 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

functionality across a system within a single logical unit. Often, maintaining high cohesion
will result in a very natural separation of concerns among logical units.

Separation of concerns provides the substantial benefit that different areas of the proj-
ect can be tested and modified independently of other functional units. Let’s take a
hypothetical example of an application that presents auditory stimuli and records EEG
data during the stimulus presentation. In such an application, there are many concerns,
including randomization of stimuli, playback of stimuli through the speakers, display-
ing EEG data in realtime, collecting EEG data through hardware, and storing the EEG
data. This list is only an example. Different scenarios might lend themselves to a differ-
ent set of concerns. Under a separation of concerns model, all the code dealing with one
of these concerns, for example, realtime display, would be confined to one or more
functions that would be limited as much as possible to realizing realtime display
functionality.

4.3.4 Limiting Side Effects, or the Perils of Global State

Using nonlocal variables, either through script files or through variables declared as
global, strongly limits reuse. Imagine a function that counts spikes in a recording and
uses a global variable to track the total number of spikes over all recordings:

function interval_count 5 count_spikes(r, threshold)
global global_count;
% above_threshold will be for every sample above threshold
above_threshold 5 r . threshold;
% counting only points where diff(above_threshold) . 0
% counts the number of contiguous blocks of samples above threshold
interval_count 5 diff(above_threshold) . 0;
global_count 5 global_count1 interval_count;

end

This may be a convenient way of tracking the overall count, but this mechanism
imposes significant constraints on how count_spikes could be used. Now imagine a set of
extracellular recordings over time intervals for multiple sites, made simultaneously, stored
in an interleaved fashion (i.e., site 1 for interval 1, site 2 for interval 1, site 3 for interval 1,
site 1 for interval 2, site 2 for interval 2, site 3 for interval 2, etc.). If the intervals are pro-
cessed in order, the global count will include spikes above thresholds at all three sites
instead of counting the total spikes at each site separately.

Outside of limitations imposed by complex usage patterns, the use of global variable
global_count could also limit how other functions are used in the same project. Since all
global variables share a workspace, any other function that uses a global variable
named global_count could disrupt the accumulation of results in global_count.

Modifying global variables in a function is a specific case of what is termed a side effect.
A side effect is any change in the run time state outside the scope of a function.
Sometimes, side effects are absolutely necessary. For example, printing text to the screen
and writing to a file would both be considered side effects; such actions change the
console (printing) or file system (writing to a file). Often, side effects are unnecessary, as

1154.3 ORGANIZING MORE CODE: BIGGER PROJECTS

I. FUNDAMENTALS

in the previous example. Tracking all spikes at a given site is best left to the caller of
count_spikes, as no information about the site context is provided to count_spikes.

4.3.5 Objects

Object-oriented programming (OOP) has been a popular programming paradigm for
more than a decade. The fundamental kernel of object-oriented programming is the capa-
bility to package together cohesive units of code and data as “objects,” entities that can be
manipulated programmatically. Objects can refer to physical real world objects or can be
highly abstract concepts. Most programming languages in common use support some
mechanism for object-oriented programming, and MATLAB is no exception.

Object-oriented programming provides a mechanism for separating concerns, reducing
coupling, and increasing cohesion. First, the object-oriented paradigm allows otherwise
difficult to extract bits of code from multiple routines to be grouped together logically.
Secondly, large, relatively inflexible function parameter sequences can be replaced by one
or more flexible objects. In this case, the same data is passed between functions, but the
semantics of objects allow many types of changes to objects without requiring alterations
to those objects’ users, which reduces coupling. Thirdly, by grouping related bits of code
from throughout the system into logical units, the cohesion of the routines from where the
bits of code originated improves.

Beyond the capacity to create and manipulate objects, there is no strict set of features
that compose the object-oriented programming paradigm. Programming languages differ
significantly on the functionality that their respective object models provide. Even
MATLAB supports two different object models, with varying functionality. Within that
variety of models, the following features are strongly associated with the object-oriented
programming paradigm, and many object models support a majority if not all of them:

Encapsulation: the grouping together of data and relevant code in cohesive units
Data hiding: limiting access to data or executable routines related to functionality
internal to the object
Inheritance: allowing “descent of objects”; objects can be defined as descendants of
other objects, gaining their data and executable code
Subtype polymorphism: functioning as objects of a parent type in places where an
object of the parent type are expected
Dynamic dispatch: the capability to differentiate among multiple implementations of a
routine at runtime depending on the identity of an object

As mentioned earlier, MATLAB has supported two separate object models. The more
recently introduced object model, available in MATLAB R2008a and later, provides for all
the features listed above. Only this object model will be discussed here.

4.3.5.1 Creating Objects

Under the MATLAB object model, one specifies the data held by an object and associ-
ated routines in a class definition. These data are called member variables or properties,
and the executable routines are called methods. This terminology is fairly standard among
object models. Once a class is defined, any number of objects (limited by memory, of
course) can be created from that class through a process called instantiation. Each object

116 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

can hold its own copy of the member variables and operate on them independently of
objects of the same class.

To illustrate the benefits of object-oriented programming, we will create a set of objects
that will present a unified model for locating auditory recordings, regardless of the under-
lying format representation. At this time, we anticipate that other code that analyzes the
auditory recordings will require a sampling rate and a time stamp for the start of the file
in addition to the raw data of the recording.

The initial class we define will provide a basic interface for all recordings for obtaining
raw data, sampling rate, and time of recording. Here is code for this initial class.

classdef recording
properties

filename
end
methods

function obj 5 recording(filename)
obj.filename 5 filename;

end
function t 5 timestamp(obj)

% get the time stamp by getting the date from dir
d 5 dir(obj.filename);
t 5 d.date;

end
function r 5 sample_rate(obj)

r 5 -1;
end
function d 5 raw_data(obj)

d 5 [];
end

end
end

The class definition begins with the reserved word classdef. Like most statements that
introduce blocks in MATLAB, classdef has a matching end. Within classdef, there are
properties and methods sections. We’ll discuss the methods section in a moment. Names
for data managed by the class are specified in the properties section. In this case, a prop-
erty called “filename” is defined.

The methods section contains the executable routines specific to the class. Object-
oriented programming has a number of terms to describe the subtly different invocation
of functions in the context of objects. Functions bound to objects and operating on them
are called methods. Outside of MATLAB, data held by objects are often called members or
member fields (MATLAB calls them properties).

Examining the methods, one will quickly discover that all but the first method have an
initial parameter, obj. This initial parameter is the object being referenced. This should be
fairly clear in the implementation of timestamp(). The code in timestamp() obtains the
name of the file through the filename property of the referenced object, which is then used
to locate the date through the dir() function. With the exception of this initial parameter,
methods operate similarly to normal functions.

1174.3 ORGANIZING MORE CODE: BIGGER PROJECTS

I. FUNDAMENTALS

Now we look at the first method. This method has the same name as the class as speci-
fied after the classdef statement. That marks this method as a special method, called a
constructor. A constructor is eponymous with the class and includes initialization code to
be executed when the object is constructed. The parameter list of the constructor lists all the
parameters required to create an instance object of the class. Unlike the other methods,
there no is referenced object as a first parameter, since the object has not been created yet.
Instead, the constructor has the output parameter that appears to go unassigned. It is this
variable that holds the newly created object during the invocation of the constructor. To
initialize our recording object, the value of the filename variable passed into the con-
structor must be copied into the property of the same name in obj. This may seem unnec-
essary, but the two variables named filename are entirely distinct and live in entirely
different scopes, one within the class recording, and one as a local variable in the con-
structor for recording.

To create a recording object, type the following:

.. r 5 recording('test.wav');

Look at the time stamp:

.. r.timestamp()

Note that the methods to load the data and return the sample rate are unimplemented:

.. r.sample_rate()

.. r.raw_data()

Creating implementations for these methods are the focus of the next section.

4.3.5.2 Inheritance

At this stage, it would be helpful to be able to load a sound file. The example below
shows code for a wav_recording class, which loads WAV files. The code for the
wav_recording class is fairly similar to the recording class, with a few differences.

classdef wav_recording , recording
methods

function obj 5 wav_recording(filename)
obj 5 obj@recording(filename);

end
function r 5 sample_rate(obj)

[data, r] 5 wavread(obj.filename);
end
function data 5 raw_data(obj)

[data, r] 5 wavread(obj.filename);
end

end
end

118 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

The most noticeable difference is the less than sign and “recording” at the beginning of
the class definition, immediately after the class name. These denote that the wav_recording
class should inherit from recording. This inheritance means that objects of the
wav_recording class have their own copies of the properties and methods in recording.
Through inheritance, all objects of wav_recording are also objects of recording. Note the
constructor. The unusual function call in the constructor references the constructor of the
parent class, recording. Calling the constructor in recording ensures that the filename input
parameter in the wav_recording constructor will be copied to the filename property during
the execution of the constructor of recording. Also, note the absence of the timestamp
method here in wav_recording. Since the functionality provided in the parent class is suffi-
cient, there is no need to override it here.

.. r 5 wav_recording('test.wav')

.. r.timestamp()

The inheritance is also clear in the implementations of sample_rate() and raw_data(). In
these methods, the filename property of the object is referenced, and this relies upon the
definition of the parent class recording.

Try obtaining the sample rate:

.. r.sample_rate()

.. plot(r.raw_data())

The previous functionality is still available, simply by instantiating a recording object:

.. r 5 recording('test.wav')

.. r.sample_rate()

.. plot(r.raw_data())

The capability of the MATLAB interpreter to choose the proper method based on the
class identity of the object is called dynamic dispatch. For dynamic dispatch to work prop-
erly, the method name and input parameter lists must be the same throughout the class
hierarchy.

Now, we will add support for PCM audio files. PCM (pulse code modulation) is a sim-
ple file format that stores digitized samples as 16 bit integers. Unlike WAV files, PCM files
include only data, and the sample rate must be stored elsewhere (e.g., in experimental
notes or in a separate file). Because of this, we will include the sample rate as a parameter
on the constructor. Our PCM reading�recording class will also require PCM-specific
implementations of sample_rate() and raw_data(), as did the WAV reading class. Here is
code for a PCM reading class:

classdef pcm_recording , recording
methods

function obj 5 pcm_recording(filename, sample_rate)
obj 5 obj@recording(filename);
obj.sample_rate 5 sample_rate;

end
function r 5 sample_rate(obj)

return obj.sample_rate;

1194.3 ORGANIZING MORE CODE: BIGGER PROJECTS

I. FUNDAMENTALS

end
function data 5 raw_data(obj)

fid 5 fopen(obj.filename, 'r');
if fid 55 -1

error('Unable to open file'1 obj.filename);
data 5 [];
return

else
data 5 fread(fid, inf, 'uint165 .double', 0, 'l');
fclose(fid);

end
end

end
end

Note that the sample_rate() method does nothing with the file, but it returns the sample
rate specified through the constructor.

Try the following:

.. r 5 pcm_recording('test.pcm', 20000)

.. r.sample_rate()

.. r 5 pcm_recording('test.pcm', 40000)

.. r.sample_rate() % note 40 kHz rate now

One of the major benefits of working under an object-oriented paradigm is the ability to
write code that works under a variety of cases and that, at the same time, isolates those cases
in separate pieces of code. This strongly promotes both high cohesion and lower coupling.
The example ahead shows a set of functions that scan for events above a threshold and
report on their threshold crossing times.

function dates 5 threshold_crossings(wav_filename, start_time)
% Input parameters
% wav_filename : filename for WAV file
% start_time : start time of the WAV recording
raw_data, sampling_rate 5 wavread(wav_filename);
above 5 raw_data . threshold;
threshold_crossings 5 diff(above) 55 1;
threshold_times 5 find(threshold_crossings);
% threshold_times is the sample count since start_time
% for each threshold crossing
threshold_sec 5 threshold_times / sampling_rate;
dates 5 zeros((length(threshold_sec), 1));
for ii 5 1:length(threshold_sec)

dates[ii] 5 addtodate(datenum(start_time, threshold_sec, 'second'));
end

end

At the moment, this function works only for WAV files. We can change threshold_
crossings() to work with our wav_recording objects with a small amount of work. The

120 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

next example shows threshold_crossings() modified to use recording objects. In making
the change, we reduce coupling somewhat, as threshold_crossings now only requires a
single input parameter, even though new constraints are placed on that parameter (it must
support raw_data, sampling_rate, and start_time methods). Cohesion is improved as well,
as the WAV loading code is no longer in threshold_crossings().

function dates 5 threshold_crossings(rec)
% Input parameters
% rec : audio recording object

raw_data 5 rec.raw_data();
sampling_rate 5 rec.sampling_rate();
start_time 5 rec.start_time();
above 5 raw_data . threshold;
threshold_crossings 5 diff(above) 55 1;
threshold_times 5 find(threshold_crossings);

% threshold_times is the sample count since start_time
% for each threshold crossing
threshold_sec 5 threshold_times / sampling_rate;
dates 5 zeros((length(threshold_sec), 1));
for ii 5 1:length(threshold_sec)

dates[ii] 5 addtodate(datenum(start_time, threshold_sec, 'second'));
end

end

One substantial benefit in making the change is near effortless support of PCM files
obtained through data hiding and encapsulation. Since all the code specific to PCM loading
is isolated in the PCM class, we can safely make changes in threshold_crossings() to support
generic recordings without worrying about PCM support within threshold_crossings().

EXERCISE 4.2

Write a simple function play_recording

that uses sampling rate appropriately to

play an audio recording. Use the sound()

function with raw data and sampling rate

to produce correctly timed sound.

EXERCISE 4.3

Write play_recording from Exercise 4.2 as a method on the recording class.

1214.3 ORGANIZING MORE CODE: BIGGER PROJECTS

I. FUNDAMENTALS

EXERCISE 4.4

File test_audio.hdf5 contains an audio

recording within an HDF5 file. HDF5 is a

high performance hierarchical data format

used to create structured files (i.e., files

containing many types of data in an orga-

nized, labeled manner). MATLAB has

substantial support for HDF5 files. The

function h5disp() displays the content of an

HDF5 file:

h5disp(‘test_audio.hdf5’)

There are also functions to read datasets

(h5read) and attributes on datasets (h5read-

att). Within the file test_audio.hdf5 at loca-

tion “/audio/recording1” is audio data.

Attached to that dataset as an attribute “sam-

pling_rate” should be a sampling rate, in Hz.

Write another child class of recording that

provides an implementation of this structure

within an HDF5 file. You can test your code

on test_audio2.hdf5, which should conform

to the same format.

EXERCISE 4.5

Generalize the class written for Exercise 4.4

to work with any HDF5 file in which a dataset

containing a vector of values and an associ-

ated attribute with sampling rate will work,

regardless of the dataset location within the

HDF5 file or the name of the sampling rate

attribute. (Hint: The names of these two keys

will need to be specified at object instantia-

tion, in the constructor!) Try your solution on

test_audio3.hdf5, which has audio data at

/audio/recording2 and sampling information

at “samples_per_sec” on /audio/recording2.

4.3.5.3 Passing Objects Around: The Handle Class

Much like other types of variables, MATLAB objects are copied in and copied out dur-
ing function calls. Here is an example that demonstrates this phenomenon for a vector:

function x 5 no_change(in_vector, index, new_value)
in_vector(index) 5 new_value;

end

Type the following:

.. x 5 1:5;

.. no_change(x, 4, 2)

.. x

x 5
1 2 3 4 5

122 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

For the change to be permanent, the input parameter must be moved to the output
parameter, as in the following:

function x 5 change(in_vector, index, new_value)
in_vector(index) 5 new_value;
x 5 in_vector;

end

.. x 5 1:5;

.. y 5 change(x, 4, 2);

.. x

x 5
1 2 3 4 5

.. y

y 5
1 2 3 2 5

While the original input x is still unchanged, the modification does leave the function
as an output, which is copied into the variable y. Objects operate much the same. This is
even the case for methods that modify properties. To preserve the change, the modified
object must be copied out:

classdef example
properties

name
end
methods

function change_name1(obj, new_name)
obj.name 5 new_name

end
function change_name2(obj, new_name)

obj.name 5 new_name;
end

end
end

.. r 5 example;

.. r.change_name1('new name');

.. r

r 5

example

Properties:
name: []

Methods

.. r.change_name2('new name');

1234.3 ORGANIZING MORE CODE: BIGGER PROJECTS

I. FUNDAMENTALS

.. r

r 5

example

Properties:
name: []

Methods

.. r 5 r.change_name2('new name');

.. r

r 5
example

Properties:
name: 'new name'

Methods
.. r2 5 r

r2 5
example

Properties:
name: 'new name'

Methods

.. r2.name 5 'testing';

.. r2

r2 5

example

Properties:
name: 'testing'

Methods
.. r

r 5
example

Properties:
name: 'new name'

Methods

124 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

Only passing the modified object out and storing the result in allows for the method to
change the property value. Also note that assigning r to a new variable r2 causes the object
held by r to be copied. The result is a new object in r2 distinct from that held by r.

The situation may arise where this copying of objects is undesirable. This often is the
case when objects are used to manipulate the state of a non-duplicating resource, such as a
file reference or a graphical object. Another case in which these semantics are undesirable
occurs when creating objects where the internal state of the object could change without
the awareness of the invoking code. The WAV reading class written earlier illustrates an
example of this later use.

Because the MATLAB function wavread() always reads the whole WAV file, even if
only the sampling rate is needed, invoking wav_recording.sample_rate() will still read the
entire WAV file into memory. Moreover, invoking wav_recording.raw_data() immediately
afterwards reads the WAV file into memory again. Ideally, the contents of a file could be
stored away as a property when read. Whenever the data was requested through the
raw_data() method, the previously read contents of the file could be returned if available,
saving the overhead of an extra read. Unfortunately, this would require the parent class’
raw_data() to return the current object as a parameter in addition to the read data. This
also makes for a messier call, since the call would be something like

[data, r] 5 r.raw_data()

Fortunately, MATLAB provides an alternate method of passing objects. Under this
alternate object passing mechanism, variables refer not to objects directly, but to handles
of objects. With this paradigm, multiple variables can “point” to the same object, and the
normal copying of variables during function calling only copies a handle. To specify that a
class use this alternate passing mechanism, classes must inherit from handle. Open up the
example class above, and add “, handle” to the end of the first line. Change the class
name to example2, and save as example2. The first two lines of example2 should be:

classdef example2 , handle
properties

.

.

.

Then, type

.. r 5 example2;

.. r.change_name1('new name');

.. r

r 5

example2 handle

Properties:
name: 'new name'

Methods, Events, Superclasses

1254.3 ORGANIZING MORE CODE: BIGGER PROJECTS

I. FUNDAMENTALS

.. r2 5 r

r2 5

example2 handle

Properties:
name: 'new name'

Methods, Events, Superclasses

.. r2.name 5 'testing'

r2 5

example2 handle

Properties:
name: 'testing'

Methods, Events, Superclasses

.. r

r 5
example2 handle

Properties:
name: 'testing'

Methods, Events, Superclasses

Invoking change_name1 on r modified r itself. Likewise, r and r2 refer to the same
object, so changes made using r are visible when examining the object through r2.

For completeness, here is a class wav_recording2 that implements the caching
discussed earlier. A given file is only read once, regardless of how many times
sample_rate() or raw_data() is invoked. The parent class is recording2, which is identi-
cal to recording except that it inherits from handle. A listing of the first few lines fol-
lows the listing for wav_recording2. If a class inherits from handle, then all parent
classes must as well.

classdef wav_recording2 , recording2
properties

stored_data 5 [];
stored_rate 5 -1;

end
methods

function obj 5 wav_recording2(filename)
obj 5 obj@recording2(filename);

end

function r 5 sample_rate(obj)

126 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

if obj.stored_rate .5 0
r 5 obj.stored_rate;

else
[data, r] 5 wavread(obj.filename);
obj.stored_data 5 data;
obj.stored_rate 5 r;

end
end

function data 5 raw_data(obj)
if Bisempty(obj.stored_data)

data 5 obj.stored_data;
else

[data, r] 5 wavread(obj.filename);
obj.stored_data 5 data;
obj.stored_rate 5 r;

end
end

end
end

classdef recording2 , handle
properties

filename
end

.

.

.

One last note about objects descending from handle: Creating objects derived from han-
dle causes allocation of memory that is not automatically cleaned up when the variable is
cleared or goes out of scope. Clearing a variable holding an object derived from handle
only removes the reference to the object. To remove the object itself, delete must be used.
Since delete removes the object itself from memory, other references to the same object
automatically become invalid after deletion.

.. r 5 recording2('test.wav');

.. r2 5 r;

.. delete(r)

.. r.filename
??? Invalid or deleted object.

.. r2.filename
??? Invalid or deleted object.
.. r2

r2 5

deleted recording2 handle

Methods, Events, Superclasses

1274.3 ORGANIZING MORE CODE: BIGGER PROJECTS

I. FUNDAMENTALS

Unfortunately, in addition to deleting handle-derived objects, delete can also be used to
remove files when used as a command. To avoid inadvertently deleting files, always be
sure to use the functional form of delete (i.e., with parentheses).

4.3.5.4 Summary

MATLAB’s object model supports much, much more than what is touched on here,
including access control, events, and complex inheritance patterns. For simple data analy-
sis, simple representation of data as matrices is suitable. Object-oriented programming
provides a tool for organizing larger efforts that promotes maintainability and minimizes
code duplication. Object-oriented programming is particularly suited to GUI program-
ming, where the programmatic objects are a natural analog of the controls and other visual
entities on the screen such as the mouse cursor or menus.

4.4 TAMING ERRORS

4.4.1 An Introduction to the Debugger

At some point, despite great care in design and implementation, errors will rear their
ugly heads. One of the greatest tools for eradicating errors is a debugger.

A debugger allows for running MATLAB code in an environment where the program
state (e.g., variable value, interpreter location, etc.) can be explicitly controlled. The follow-
ing code shows a naı̈ve implementation of a factorial function.

function f 5 factorial2(g)
if g 55 1

f 5 1;
return

end
f 5 g * factorial2(g-1);
end

Typing factorial2(5) yields the expected 120. Try typing factorial2(5.1). Clearly, this
behavior is not desirable. In this simple example, finding the error by inspecting the code
alone is entirely plausible. That same simplicity also argues for this as a good example for
demonstrating the debugger.

The easiest way to invoke the debugger on a function like factorial2 is to open the function
in the editor and add a breakpoint in the editor. A breakpoint denotes a location in the code
where the MATLAB interpreter will always stop. Not all lines can support a breakpoint. In
the editor, lines where a breakpoint can be placed will have a horizontal line to the left of the
code. Clicking on that horizontal line to the left of the text places a breakpoint at that line.
Clicking again removes the breakpoint. For this example, place a breakpoint on the line “if
g55 1.” Figure 4.2 illustrates the editor/debugger window with a breakpoint set.

With breakpoint in place, type factorial2(5.1) again. MATLAB should reposition the edi-
tor/debugger window to the front and place an arrow at the breakpoint. The command
line prompt should also change. The MATLAB interpreter is now inside the function.

128 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

The current workspace is not the command line (Base), but the current factorial scope.
Because the interpreter is in the scope of the current invocation of the function, variable values
can be inspected. Typing “g” shows the value of g in the current scope (5.1). One can also
observe the value of g in the workspace window. In addition to the g in the current scope, the
workspace window allows viewing variables in other scopes as well. Selecting a different
scope in the scope dropdown will cause all the variables in that scope to be displayed.

Selecting “Continue” from the Debug menu in the editor/debugger window will
resume execution until encountering the next breakpoint. Note the contents of the stack
list box after continuing. The stack dropdown allows selecting a specific scope (i.e., stack
frame) in which to operate (see Figure 4.3). In the command window, type

.. g

After observing the value of g, select a different frame from the dropdown and inspect
the value of that frame’s g value by typing

.. g

Are they the same?

FIGURE 4.3 Editor/debugger window showing the stack list and an active debugger (green arrow)

FIGURE 4.2 Editor/debugger window showing a set
breakpoint

1294.4 TAMING ERRORS

I. FUNDAMENTALS

After continuing four more times (a total of five), inspect the value of “g.”
The variable “g” should be 0.1. Continuing again and inspecting g will reveal the error;

g becomes negative. From this, it should be clear that the termination condition for the fac-
torial2 function in the if statement is not specific enough. Checking whether the input is
exactly 1 will miss any non-integer argument. At this point, the error could be addressed
in a number of fashions, depending on the desired functionality when non-integers are
specified as the initial argument.

Change the value of “g” to 1 from2 0.9. This can be done by typing g5 1 at the com-
mand line or by clicking on “g” in the workspace window. After setting g to 1, continue
executing the function by selecting “Continue” from the debug menu in the editor/
debugger window. From this point forward in the execution, the value of g at that scope
will be 1. Since the next line after the breakpoint is the if statement comparing the value of
g to 1, the invocation of factorial2 at the level where g was modified quickly terminates
and returns a value of 1 to the previous calling level.

Again, type factorial2(5.1), and continue until g is negative. Before continuing again, set
the value of g to 1. Before continuing, place a breakpoint on the last end of the function.
Now, the MATLAB interpreter will stop after calculating each part of the factorial. After
continuing, examine the value of g. Is it what you expect? It is important to remember that
the variable “g” at each scope is a distinct and separate variable.

In addition to continuing after a breakpoint, the debugger allows stepping through
code line by line. Type factorial2(3). When the interpreter reaches the first breakpoint, step
one line by selecting “step” from the debug menu. Continue stepping through the function
until the final answer is calculated. Stepping through line by line demonstrates how the
calculation invokes a series of calls that only end once termination condition is reached.
Normally, step does not enter called functions. To enter a called function, step in can be
used instead of step. Likewise, when inside a called function, step out will return to the
calling function.

Finally, when finished, clear the breakpoints, either by clicking on the breakpoints in
the editor or by selecting “clear all” from the debug menu in the editor window.

4.4.2 Logging

In larger programs, running under the debugger may not be feasible. Larger programs
have more complex states, and it may not be possible to duplicate the bug within the
debugger. For such cases, logging may be an appropriate methodology for tracking down
bugs. Logging is simply printing out the internal status of the program. Usually, the log
will be written to an external file to preserve the record for later debugging.

function f 5 factorial2(g, log_file)
fprintf(log_file, 'Entering factorial2(), g5%d', g)
if g 55 1

f 5 1;
return

end
f 5 g * factorial2(g-1);
end

130 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

This example has been simplified to demonstrate logging. This example requires the log
file to remain open for the running of the program. Ideally, one would want the file only
open when the log was being updated. To realize this, the file name could be passed
instead of an open file, but that would require error-handling code in every function using
the log. A better approach would be to create a logging object, capable of maintaining a
file name and encapsulating all the file handling code. This approach improves the cohe-
sion of the factorial2() function, as only the portion of the logging relevant to supplying
factorial2’s behavior would remain in factorial2(). The code ahead demonstrates such a
class and its usage (post-R2008a semantics).

classdef logger
% Provides simple logging functionality.
% To create, use the constructor with a filename.
% Log entries are appended to the end of the file, with each
% entry added on its own line.
properties

filename;
end

methods
function obj 5 logger(filename)

obj.filename 5 filename;
end

function message(obj, msg_str)
% Outputs a message to the logging file.
% Messages should be a string.
% Usage:
% log.message('Within function message()')
fid 5 fopen(obj.filename, ’a1 ’);
if fid 55 -1

warning('Unable to open log file')
return

end
fprintf(fid, '%s\n', msg_str);
fclose(fid);

end
end

end

function f 5 factorial2(g, log)
log.message(sprintf('Entering factorial2(), g5%d', g));
if g 55 1

f 5 1;
return

end
f 5 g * factorial2(g-1);

1314.4 TAMING ERRORS

I. FUNDAMENTALS

end
.. log 5 logger('factorial-log.log');
.. f 5 factorial2(g, log);

4.4.3 Edge Cases and Unit Testing

Greater modularity and tighter cohesion lend themselves to simpler testing. With mod-
ular code, small portions of a larger program can be isolated and tested in a rigorous fash-
ion. Such automated testing of smaller logical components through isolating them from
the other parts of the program is called unit testing.

When unit testing, one wants to verify that all possible inputs have an expected result.
Since testing all possible inputs is not feasible (for a single two element vector alone, this
is 2128 different possibilities!), unit testing focuses on what are termed edge cases: those
states or sets of parameters on the edges of different parameter spaces. Because these edge
cases are usually the boundary between qualitatively different types of functional behav-
ior, these types of inputs are often likely to evoke erroneous behavior because these types
of values are often unplanned for. To illustrate the selection of edge cases, we will use the
factorial2() function from previous sections:

function f 5 factorial2(g)
if g ,5 1

f 5 1;
return

end
f 5 g * factorial2(g-1);
end

If the input is limited to scalars, the behavior is likely to differ for integers (positive
and negative), reals (positive and negative), 0, and 1. Thus, good edge cases would
include2 1, 0, 1, positive values and negative distant from 0, and small real values.
Each test case should test a single edge case. Test cases should invoke the function
with known inputs and compare the result to the expected output. Errors are
acceptable as long as the error is the expected output for the function, given the input.

Here is a script with test cases for a2 1, 0, 1, and a sequence of positive integer inputs.

% test 1
if factorial2(-1) !5 -1

error('incorrect output for test 1: negative numbers');
end
% test 2
if factorial2(0) !5 1

error('incorrect output for test 2: 0');
end
% test 3
if factorial2(1) !5 1

error('incorrect output for test 3: 1');
end
% test 4
a 5 [2 3 4 5];

132 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

a 5 factorial(a);
a2 5 [2 3 4 5];
for ii 5 1:length(a)

a2(ii) 5 factorial2(a2(ii));
end

if a2 B5 a
error('incorrect output for test 4: positive value check');

end

EXERCISE 4.6

As coded previously, factorial2() does not pass the test cases. Modify factorial2() to pass

the test cases.

EXERCISE 4.7

Add test cases to the test script for other edge cases (reals, negative integers).

Even though the test script demonstrated clear deficiencies in the existing factorial2()
function, one of the benefits of a set of unit tests is quickly capturing bugs observed after
the initial design or implementation. Once an aspect of a unit’s functionality is captured in
a test script, regressions in that aspect can be spotted quickly. For example, if someone
later modifying the code changed the termination condition from g ,5 1 to g55 1, exe-
cuting the unit test script would identify the error immediately. Unit tests capture the
expected behavior of a function and allow divergences to be identified much more quickly
than embedded in a large program.

EXERCISE 4.8

The following code thresholds a raw recording, separates the event set into trials, and

sorts the events to generate data for a PSTH (peri-stimulus time histogram).

function psth,bins 5 bin_for_psth(raw_data, sampling_rate, threshold,
trial_count, trial_length, bin_size)

% Locates events above threshold in raw data and generates PSTH from
% multi-trial recording. Trials should be contiguous.
%
% Input parameters

1334.4 TAMING ERRORS

I. FUNDAMENTALS

% raw_data: raw input data
% sampling_rate: sampling rate in Hz
% threshold: threshold for events, in same units as raw data
% trial_count: number of contiguous trials
% trial_length: length of each trial, in seconds
% bin_size: size of each PSTH bin, in seconds
%
% Output parameters
% psth: count in each bin
% bins: center position of each bin, in seconds relative to
% trial start
% first, threshold signal
events 5 raw_data . threshold;
% only positive threshold crossings (not sustained activity above

threshold)
events 5 diff(events) 55 1;
events 5 [0 events];
% now, split into trials
events 5 reshape(events, trial_count, trial_length*sampling_rate);
% events should be MxN, where M 5 trial and N 5 sample
summed_events 5 sum(events);
% summed_events should be the sum of events at each sample relative

to
% the start of the trial
max_event_count 5 max(summed_events);
for count 5 0:max_event_count-1

above_count 5 find(summed_events . count);
event_offsets 5 [event_offsets above_count];

end
% event_offsets should be the offset in sample counts where events

occur
event_times 5 event_offsets / sampling_rate;
[psth, bins] 5 hist(event_times, trial_length/bin_size);

End

Determine edge cases for testing the input parameters of bin_for_psth, above.

EXERCISE 4.9

Write a unit test script for the edge cases identified in Exercise 4.8.

134 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

4.4.4 A Few Words about Precision

Like most quantitative software, MATLAB does not represent most real numbers
exactly. Where this representation fails to capture values exactly is often a source of bugs
in quantitative code. This section discusses how MATLAB represents real numbers so that
such problems can be diagnosed and avoided.

MATLAB labels the specific representation of every variable, and this is visible in the
workspace. You may have noticed that nearly all variables have the label “double.” This
representation is the default representation type for values in MATLAB. Double here is in
deference to single precision floating point, a lesser used floating point representation that
consumes half the memory. Floating point representations are so called because the repre-
sentation does not fix the number of digits on either side of the decimal point. Since the
standards body IEEE (Institute of Electrical and Electronics Engineers) oversees the specifi-
cation of this format, it is commonly known as IEEE 754 or 64 bit IEEE floating point.
Similarly to MATLAB, most quantitative software uses this format for representing real
numbers (Figure 4.4).

The sign bit denotes whether the number as a whole is positive or negative.
The exponent is a base 2 number biased by 2102 1, or 1023. The representation of
exponents are 1023 plus the exponent’s value. This system allows for exponents in the
range 2 1023 to 1023.

The representation of the mantissa is the most complex portion of this standard. The
digits in the mantissa represent a binary fraction, where each successive digit represents a
successive fractional power of 2. Additionally, the mantissa is the fractional part of the
number; there is a 1 implicit in the number not represented in the format.

Here is an example to illustrate how a decimal floating point number is represented
internally by MATLAB.

Take 15.1875.
In base 2, 15 is 11112. As a binary fraction, 0.1875 is 0.00112. (0.1875 is 3/16, or 1/8 1

1/16, or 0*1/21 0*1/41 1*1/81 1*1/16.) In total, 15.1875 is 1111.00112. This must be con-
verted to binary exponential notation: 1.111001123 23. To save space, the IEEE format
assumes a leading one, so we must do the same. To store this as in double precision for-
mat, we need to discard the initial 1 from the mantissa and bias the exponent (Figure 4.5).

Why is this important? MATLAB can only represent a small subset of real numbers with
absolute precision. These numbers are those whose fractional part is a sum of fractional
powers of 2. For example, 7/16 can be perfectly represented (1/4 1 1/8 1 1/16), but 7/17

Sign Exponent (11 bits) Base 2 mantissa (52 bits)

FIGURE 4.4 Representation of floating-point numbers.

Exponent (11 bits) Base 2 mantissa (52 bits)
00001100111010010

FIGURE 4.5 Representation of the number 15.1875.

1354.4 TAMING ERRORS

I. FUNDAMENTALS

cannot. Understanding the limitations of floating point representation can also help to diag-
nose difficult to see errors.

One such error is testing for equality with floating point values. This often occurs when
testing that a variable is zero or one valued. For example, the test below is attempting to
verify that the variable x is 0:

if x 55 0

However, this will often not work if x is the result of extensive calculations. When test-
ing for zero, it is usually best to check a range around zero because the value is likely
some extremely small floating point number rather than exactly zero:

if abs(x) , 1.0e-6

This scenario most often happens when checking for equality with zero, but any com-
parison involving floating point values and an arbitrary value, such as 0 or 1, should use a
small interval instead.

Another such error occurs with operations on two values of extremely different magni-
tudes. The mantissa portion of the IEEE format has only 52 bits of precision. Thus, values
differing by more than 253 cannot be reliably added. This example demonstrates the pro-
blems inherent with sums of large and small magnitude numbers.

.. format compact

.. format long

.. 2^52
ans 5

4.503599627370496e1 15

Note that this is exactly 252; there are no values hidden from view. To demonstrate, we
can add one:

.. 2^52 1 1
ans 5

4.503599627370497e1 15

This cannot be done for 253:

.. 2^53
ans 5

9.007199254740992e1 15
.. 2^531 1
ans 5

9.007199254740992e1 15

The result is identical to the original value, 253. It is important to note that this is not
the result of the unit’s place being hidden from view. The following demonstrates that, under
MATLAB, 11 253 is equal to 253. The equivalent example with 252 is shown for comparison.

.. 2^53 55 2^53 1 1
ans 5

136 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

1
.. 2^52 55 2^52 1 1
ans 5

0

Similar problems occur when multiplying or dividing exceedingly small numbers. For
example:

.. 10^(2 200) * 10^(2 100) * 10^(2 100)
ans 5

0
.. 10^(2 200) * 10^(2 100) * 10^(2 100) * 10^(300) * 10^(300)
ans 5

0

Rearranging the terms yields the correct answer:

.. 10^(2 200) * 10^(300) * 10^(2 100) * 10^(2 100) * 10^(300)
ans 5

1.000000000000000e1 200

Such problems can be avoided by carefully considering the magnitudes of the values in
the calculation. When adding or subtracting terms of varying magnitudes, keeping the
large and small values separated as distinct terms as long as possible often avoids this
problem. Moving the calculation to logarithms is particularly effective for problematic
multiplication or division.

4.4.5 Suggestions for Optimization

Occasionally, the situation arises where code does produce the expected result, but the
code does so too slowly. In such cases, the code can be optimized. Optimization here
means the rewriting of a portion of the code to improve the performance of the overall
program. Since optimization involves scrutinizing working code, it is best to limit substan-
tial optimization efforts to known hot paths—places in a program where the MATLAB
interpreter spends a substantial proportion of the execution time.

Identifying hot paths from source code is difficult and quite error prone for larger
pieces of code. Before engaging in a substantial optimization effort at a poorly performant
site in the code, it is best to verify that the site is actually the cause of the perceived perfor-
mance problem. This can be done by timing experiments with tic/toc or using the
MATLAB profiler. Once identified, addressing efficiencies in the hot paths of a program
can yield substantial returns.

4.4.5.1 Vectorizing Matrix Operations

MATLAB is particularly efficient in executing matrix operations relative to the same
operations. Taking full advantage of matrix operations in code often doesn’t occur when
first learning MATLAB, as the syntax is not as straightforward. This and the following sec-
tions offer suggestions for moving common non-matrix operations to matrix form. Code

1374.4 TAMING ERRORS

I. FUNDAMENTALS

transformations of this type are called vectorization, as the type of matrix operations
MATLAB offers are termed vector operations. (The use of vector to characterize MATLAB
matrix operations indicates multi-valued operations, in deference to scalar (single-valued)
operations, and does not refer to the mathematical objects operated on.)

A primary benefit of vectorizing code is a potential speed up in execution with a sub-
stantial change to the larger algorithm in the code. Here is an example contrasting two dif-
ferent approaches to adding matrices.

A 5 ones(4, 4); * 3; % matrix of threes
B 5 ones(4, 4); * 6; % matrix of sixes
C 5 zeros(4, 4);
for ii 5 1:4

for jj 5 1:4
C(ii, jj) 5 A(ii, jj) 1 B(ii, jj);

end
end

or

A 5 ones(4, 4); * 3; % matrix of threes
B 5 ones(4, 4); * 6; % matrix of sixes
C 5 zeros(4, 4);
C 5 A 1 B;

While both pieces of code accomplish the same task, the second executes measurably
faster. Note that the second snippet avoids the nested for loops.

Understanding why these two bits of code execute so differently requires a brief expla-
nation of how MATLAB evaluates code. Individual operations in MATLAB execute as
compiled machine code, at high speed. For example, the matrix addition in the second
code section executes in this manner.

However, in the case of the first example, evaluation of the inner statement alone
requires evaluating each of the two index variables, three matrix lookups, a scalar addi-
tion, and storing the scalar result. In between operations, the interpreter must be con-
stantly consulted to determine the next step.

4.4.5.2 Conditional Expressions

Using relational operations can often function as an alternative to an if statement nested
within a for loop. A relational operator acting on a matrix returns a matrix of the same
shape with values of 1 for true and 0 for false.

A 5 ones(4, 4);
B 5 rand(4, 4);
for ii 5 1:4

for jj 5 1:4
if (B(ii, jj) . 0.5)

A(ii, jj) 5 A(ii, jj) 1 B(ii, jj);
end

138 4. PROGRAMMING TUTORIAL: PRINCIPLES AND BEST PRACTICES

I. FUNDAMENTALS

end
end

Compare the above with the following.

A 5 ones(4, 4);
B 5 rand(4, 4);
A 5 A 1 (B .* (B . 0.5));

In the latter example, the single expression takes the place of the nested for loops and if
statement. The inner relational expression evaluates to a 43 4 matrix whose elements are 1
if the corresponding element of B is greater than 0.5. Thus, the element-wise multiplication
of this matrix with B generates a matrix whose elements are either the corresponding ele-
ment of B, if B is greater than 0.5, or 0, if that element of B is less than or equal to 0.5.

4.4.5.3 Extracting Subsets from Arrays

Many times, an if statement nested within a for loop is used to extract some subset of
values from a matrix. The use of matrix relational operations and find can eliminate the
need for the iteration. The function find returns all the indices of the input for which the
input is non-zero. For example,

.. A 5 [1 2 3 4];

.. find(A , 3)
ans 5

1 2

Specifying a set of values for the index of a matrix will return a subset of the matrix
values. This can apply to the results of find

.. A 5 [8 9 10 11];

.. find(mod(A,2) 55 0)
ans 5

1 3
.. A(find(mod(A,2) 55 0))
ans 5

8 10

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

which
global
classdef
delete
clear
dbstack

139MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

I. FUNDAMENTALS

C H A P T E R

5

Visualization and
Documentation Tutorial

5.1 GOALS OF THIS CHAPTER

This chapter represents the last chapter of the fundamentals before moving on to the
later parts of the book that contain more specific and more modular material. The content
of this chapter, Visualization and Documentation, will be revisited in each subsequent one
and quite likely as long as you use MATLAB®. Therefore, it is worthwhile to devote a
chapter to it at this point, getting a firmer grip on these elementary issues, allowing you to
focus on the specific new content that is introduced later on.

5.2 VISUALIZATION

The ability to rapidly and effectively visualize data that is afforded by MATLAB is one
of the key reasons why MATLAB is so popular in the first place, perhaps only second to
its efficient computation of matrix operations. In the previous chapters, we have already
seen how easy it is to create figures from data in MATLAB. It is so easy that anyone can
do it. However, this low threshold can be treacherous. While it is easy to make the figure,
comparatively few people know how to make the figure so that it looks just how they
want it to look. This causes much frustration and often drawn-out and lengthy modifica-
tion of figures with other image processing software. It is better to avoid this altogether by
taking complete control of the figure and its appearance from the start.

We already encountered the function set in Chapter 2 when we manipulated the color
of individual subplots. set is a key function in this context. It allows you to set the value
of any figure attribute you want.

141MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00005-9 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00005-9

We will start with creating a figure in itself. By now, you have probably noticed that
MATLAB creates figures by default with a certain size and in a certain position. For many
purposes, this default is too small, which means you have to resize the figure manually
each time the program is executed. A better way to do this is to create the figure with the
right size from the get-go.

Let’s try it:

..figure

..set(gcf,'Position',[100 200 400 300])

This code creates a figure at a position on the screen that is at a distance of 100 pixels
from the left edge of the screen, is 200 pixels from the bottom, extends 400 pixels to the
right (width), and extends 300 pixels upwards (height). The function that accomplished
this is set, which allows us to set the value of object attributes (the object in this case is a
figure, and attributes are called “properties” within MATLAB).

set expects three values in the parentheses: the handle of the object we refer to, the
property we want to change, and the new property value, in this order and separated by
commas.

In this case, we told the function set that we want to refer to a figure not by giving it
the object handle, but by using the function gcf, which stands for “get handle for current
figure.” This is adequate, as the current figure is the one we just created. If there are multi-
ple active figures, it is better to create the figures with a handle, and later specify the han-
dle of the figure object we want to refer to. The second value here was 'Position'; it is
important to put it into quotes, so that MATLAB recognizes it as a property. The third and
last value is a vector of the form

[Left_edge Bottom_edge Width Height]

You can think of the figure as a rectangular window that starts at the point defined by
the Left_edge and Bottom_edge values as their x and y and extends from there, as speci-
fied by width and height.

But how are you supposed to know all of this? How do you know which properties can
be set and what values they expect?

That is an excellent question. Luckily, the solution is relatively straightforward. Try

..get(gcf)

This command displays a long list of figure properties that, as we just created the fig-
ure, are set to default values, except for position, which should be what we set it to be.
You can use the function get to either get all of the figure properties and their values as
with the previous command, or a specific one, as with the command ahead, for the case of
position.

..get(gcf,'Position')
ans 5

100 200 400 300

142 5. VISUALIZATION AND DOCUMENTATION TUTORIAL

I. FUNDAMENTALS

Note that you can either use this for your edification as in the previous command, in
which MATLAB is telling you what the position vector of the figure is, or you can store it
for further use, as with any other vector in MATLAB, and as in this command:

..tempfigpos 5 get(gcf,'Position')

You can now use the variable tempfigpos to do calculations, like so

..figpos 5 2 .* tempfigpos %Doubling everything

..set(gcf,'Position',figpos)
figpos 5

200 400 800 600

Does it still fit on your screen? (I do realize that—given the rapid advance of
technology—the answer to this question will strongly depend on when you are reading this).

Speaking of figures fitting on the screen: For most applications, it is opportune to set
the figure size to the screen size. This will allow you to take advantage of the entire screen
real estate, which is beneficial for complicated figures, particularly if you have a second
monitor—which allows you to code in one window and look at the figures in another. If
you don’t know the number of pixels on your screen or you change monitors often, it is
better to ask MATLAB than to hardcode this, like so:

..temp 5 get(0,'Screensize')

..set(gcf,'Position',temp)

“Screensize” is a property of root, which can be accessed by giving the function set “0”
as the object handle. But how were you supposed to know that 0 would work as a handle?

This is a good time to introduce the hierarchy of graphics objects within MATLAB. At
the top of the hierarchy is root, the screen itself (handle is 0). The screen (or root) can con-
tain any number (limited by memory) of figures. Each figure has a handle which allows
you to access its properties. If you don’t specify a handle, the figure handles are simply
consecutive integers, in order of figure creation, starting with 1. So passing an object han-
dle of “0” accesses root, whereas “1” accesses the first figure, “2” the second figure, and so
on. Each figure in turn contains any number (within reason) of individual axes, which can
also have their own handles. You can change the property values of any property of any
graphics objects in MATLAB by specifying its corresponding object handle.
Understanding this will allow you, as promised, to take complete charge of the appear-
ance of the figures you create. As you get more practice, this will substantially cut down
on the amount of post-processing you will have to do.

EXERCISE 5.1

What other properties does the screen have? What are their values?

1435.2 VISUALIZATION

I. FUNDAMENTALS

Note: Some of the root properties will have byzantine names and a possible use that
will likely escape you at this point. Do not be discouraged by this. It will come, in time.

Back to the figure. Let’s say that for this particular project, you want a figure that
doesn’t feature the usual MATLAB figure gray as a background (represented by the RGB
color vector [0.8 0.8 0.8]), but uses red instead. There are many ways to do this. The most
straightforward one involves passing the current figure handle and property a new value,
in this case “r” (for red).

Here you go:

.. set(gcf,'Color', 'r')

Your figure background should look red now.
MATLAB knows eight different character codes for all integer combinations of the

three-element RGB vector, such as “r” for red [1 0 0], “g” for green [0 1 0], “b” for blue
[0 0 1], and so on. If you need more nuanced coloring, you can pass the vector directly,
using non-integral values. For instance, if you want a darker shade of red with a touch of
purple, this would do it:

.. set(gcf, 'Color', [0.5 0 0.2])

EXERCISE 5.2

Explore 50 different shades of red. Which one do you like best?

Time to plot something. To make matters easy, we’ll just plot a sine wave. This will do
it, creating a nice sine wave:

.. x 5 0:0.01:20;

.. y 5 sin(x);

.. plot(x,y)

Your figure should now look something like Figure 5.1.
This command did two things; first, it created an axis in our figure, and then it created

an object within that axis. Both can be addressed.
One issue that is immediately obvious is that the axes are now hard to make out, as

they are plotted in the default black. Setting them (both x and y) to a brighter shade of
gray should solve the problem:

.. set(gca,'xcolor', [0.7 0.7 0.7]) %Changing the color of the current x-axis.

.. set(gca,'ycolor', [0.7 0.7 0.7]) %Changing the color of the current y-axis.

Voila. Now you can read the axis values again. However, the actual sine wave still looks
positively anemic. It might be prudent to increase the line width. Alas, you plotted it with-
out giving it an explicit object handle. It still has one, but you don’t know it. What to do?

There are several ways to retrieve the object handle.

144 5. VISUALIZATION AND DOCUMENTATION TUTORIAL

I. FUNDAMENTALS

One way is to use the findall command. findall returns a list of all objects for a given
handle. In this case, we’ll use the current axis:

.. temp 5 findall(gca)
temp 5

686.1190
687.1194

This yields two object handles, one for the axis itself and one for the line (represented
by numbers; your numbers might vary, as they are assigned by MATLAB). But how to
find out which one is the line and one which one is the axis?

Type

.. get(temp(1))

and

.. get(temp(2))

Note that in the output, one will list “axes” as “type,” the other “line.” We want to
modify the line.

We can now either access this object handle, or—for future use—redefine temp as only
the object in the current axis out of all the objects that is a line, like this:

.. temp 5 findall(gca,'type','line')

temp 5
687.1194

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 FIGURE 5.1 A sine wave.

1455.2 VISUALIZATION

I. FUNDAMENTALS

Now set the line width to a thicker strength, but hash it at the same time:

.. set(temp,'linewidth',2,'linestyle',':')

The figure should now look something like Figure 5.2.
Note: If you were to print this figure, it would use up a lot of colored ink. To prevent

this, MATLAB prints the background as white and the axes in black by default. If you
want MATLAB to print things exactly as they look on the screen, you need to set a
figure property, like this: set(gcf, 'InvertHardCopy', 'off').

Of course, things really get interesting as one introduces multiple objects in the same
axes. Let’s do it.

In order to do this without erasing the other object, we need to put the hold on, so type

.. hold on

.. z 5 cos(x);

.. h 5 plot(x,z);

This adds a cosine to the mix. Now we have two line objects. The sine wave from
before, and the new one. This time, we labeled our object with an explicit object handle,
“h.” We can now access it.

EXERCISE 5.3

Take a look at the object properties of the second line object, both ways. Once by using

the explicit handle h, and once by using the MATLAB-internal handle.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 FIGURE 5.2 The modified
sine wave figure.

146 5. VISUALIZATION AND DOCUMENTATION TUTORIAL

I. FUNDAMENTALS

Say that in a not so distant future you have a busy figure with a large number of lines.
For some reason, you want to take all lines of a particular color and change a particular
property, e.g., their line width. To do this, you can use the function findobj. It returns the
handles of all objects with a particular property. For example,

.. temp 5 findobj(gca,'color','b')

temp 5
692.1171
687.1194

finds the handles of our two lines again (as they are plotted in blue, per MATLAB
default). We can now set their line width to a uniform 3 and, while we are at it, change
their color to green (see Figure 5.3).

.. set(temp,'color','g','linewidth',3)

If this is what your figure was supposed to look like, you can declare victory at this
point.

Of course, there is a lot left to be done. One important concept to be understood is that
of children in MATLAB. Another one is that of multiple axes in the same figure. We’ll
tackle both at the same time.

If you type .. get(0,'children'), you should get “1” as an output. You are asking
MATLAB how many children (figures) the screen has. At this point, it has 1. If you open
another figure (please do so, by typing “figure”), the output will now be a vector with two
elements: 1 and 2.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 FIGURE 5.3 The sine and
cosine waves plotted, in
green, with line width set to 3.

1475.2 VISUALIZATION

I. FUNDAMENTALS

The second figure seems to be empty at this point, as confirmed by

.. get(gcf,'Children')
ans 5
Empty matrix: 0-by-1

but that is an illusion. MATLAB sometimes uses hidden handles, particularly if it doesn’t
want the user to accidentally do something foolish. However, even these handles can be
displayed and accessed by using the allchild function. For example,

.. temp 5 allchild(gcf)

returns plenty of handles.

EXERCISE 5.4

Find the handle that corresponds to the uitoolbar (which allows you to save, print the

figure, etc.), and turn it off by making it invisible.

There are, of course, a lot of figure, axes, and line properties to modify. It will take time
to become familiar with all of them. With some simple examples, this tutorial demon-
strated how to access these properties in principle. For more information on these proper-
ties and their potential values, search the help (or the function browser) for figure_props
(for figure properties), axes_props (for axes properties), and line_props or linespec (for
line properties). There are a lot of them.

Finally, what is left to do is to explore the syntax to add multiple axes to a given figure.
In Chapter 2, we already discussed how to add a tiled (and ordered) number of axes to

a figure by using the subplot command. While this is sufficient for many purposes, it is
good to know how to add axes at arbitrary positions in the figure.

This is done in relative figure coordinates, where 0,0 corresponds to the lower left and
1,1 to the upper right.

For instance, if we want to place three unequally shaped plots on a figure, we could type

.. h1 5 axes('position',[0 0.8 1 0.2])

.. h2 5 axes('position',[0.8 0 0.2 0.8])

.. h3 5 axes('position',[0 0 0.8 0.8])

to create the 3 axes and their handles, then type

.. set(gcf,'CurrentAxes',h1)

.. plot(x,y)

.. set(gcf,'CurrentAxes',h2)

.. plot(x,y)

.. set(gcf,'CurrentAxes',h3)

.. plot(x,y)

to get a figure that looks something like Figure 5.4.

148 5. VISUALIZATION AND DOCUMENTATION TUTORIAL

I. FUNDAMENTALS

5.3 DOCUMENTATION

There are several interpretations of the notion of “documentation.” One of these, in the
sense of “commenting your code,” was already covered in the previous chapter. If you
skipped it, you might want to revisit that. All I want to say about it here is that you do
want to comment your code as neatly as possible. I can guarantee you that the very code
you just wrote, sans comments, will make perfect sense to you now, but it will be so
opaque to you in about 6 months that it might as well have been written by someone else.
This is a problem. It happens surprisingly often; for instance, it happens when you need
to revisit your code because reviewer 2 suddenly asks for a different analysis in the second
round of reviews of your paper.

Another sense of “documentation” is the sense of a protocol. This can come in handy
when you are in need of documenting your work, e.g., for a class. Copying and pasting
individual inputs and outputs from the command window to a word processor can get
tedious quickly. It might be easier just to copy the entire command history and paste that,
but it lacks the outputs. A simple solution is to type diary, which toggles the function
diary on (it is off by default). If it is invoked in the absence of a filename, “diary” will be
the filename, in the “current folder” directory. Of course you can specify a filename, e.g.,
by typing

..diary('report.txt')

Yet another sense of “documentation” is the documentation of MATLAB itself. We
already covered the generic help function in Chapter 2; however, as you might appreciate
by now, MATLAB uses a great deal of punctuation, all of which has distinct meaning.
This can seem overwhelming to the beginner. But don’t despair. You don’t have to

0 2 4 6 8 10 12 14 16 18 20

1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 5.4 Three unequally
shaped plots.

1495.3 DOCUMENTATION

I. FUNDAMENTALS

memorize this all. Proficiency will come with use. In the meantime, you can rely on spe-
cific MATLAB help functions for reminders, such as:

..help punct %Details on punctuation

..help relop %Details on logical and relational operators

..help paren %Explains parentheses, braces, brackets and their use

..help colon %Explains the use of the colon operator

..help lists %Comma separated lists

Executing these functions by themselves (without help) doesn’t do anything. They are
specific help functions to remind you of the syntax.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

Get
Set
Gca
Gcf
Findall
Allchild
Findobj
Axes
Diary
Punct
Relop
Paren
Colon
Lists

150 5. VISUALIZATION AND DOCUMENTATION TUTORIAL

I. FUNDAMENTALS

C H A P T E R

6

Collecting Reaction Times I:Visual
Search and Pop Out

6.1 GOALS OF THIS CHAPTER

The primary goal of this chapter is to collect and analyze reaction time data using
MATLAB®. Reaction time measures to probe the mind have been the backbone of experimen-
tal psychology at least since the time of Donders (1868). The basic premise underlying the use
of reaction times in cognitive psychology is the assumption that cognitive operations take a
certain and measurable amount of time. In addition, it is assumed that additional mental pro-
cesses add (more or less) linearly. If this is the case, increased reaction times reflect additional
mental processes. Let us assume for the time being that this is a reasonable framework. Then,
it is highly useful to have a program that allows you to quickly collect reaction time data.

6.2 BACKGROUND

Understanding how the mind/brain decomposes a sensory scene into features is one of
the fundamental problems in experimental psychology and systems neuroscience. We take
it for granted that the visual system, for example, appears to decompose objects into differ-
ent edges, colors, textures, shapes, and motion features. However, it is not obvious a priori
which features actually represent primitives that are encoded in the visual system. Many
neurophysiological experiments have searched for neurons that are tuned to features that
were chosen somewhat arbitrarily based on the intuitions of the experimentalists.

Psychologists, however, have developed behavioral experiments by which feature pri-
mitives can be revealed. For instance, a study by Treisman and Gelade (1980) has been
particularly influential. This is probably due to the fact that it is extremely simple to grasp,
yet the pattern of results suggests provocative hypotheses about the nature of perception
(e.g., feature primitives, serial search, etc.).

So what is the visual search and pop-out paradigm that was used in the Treisman
study?

153MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00006-0 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00006-0

Research participants were asked to report the presence or absence of a target stimulus
(in this case, a colored lowercase letter “o”) among various numbers of distracter stimuli. If
the distracter stimuli are just of a different color—that is, if they differ by a single feature—
you usually find the “pop-out” effect: the reaction time to detect the target is independent
of the number of distracters. Conversely, if more than one stimulus dimension has to be
considered to distinguish targets and distracters (conjunction search), you typically find a
linear relationship between reaction time and the number of distracters. See Figure 6.1.

As pointed out previously, this pattern of results immediately suggests the existence of
“feature primitives”, fundamental dimensions that organize and govern human perception
as well as a serial scanner in the case of conjunction search, where one element of the stim-
ulus set after the other is considered as a target (and confirmed or discarded). Often, the
ratio of the slopes between conditions where the target is present versus where the target
is absent suggests a search process that self-terminates once the target is found.

There are many, many potential confounds in this study (luminance, eye movements,
spatial frequency, orientation, etc.). However, the results are extremely robust. Moreover,
the study was rather influential. Hence, we will briefly replicate it here.

6.3 EXERCISES

In this section, we introduce and review some code that will help you to complete the
project in Section 6.4. The first thing you need to be able to gather reaction time measures
is a way to measure time. There are different ways to measure time in MATLAB. One of
the most convenient (and, for our purposes, sufficient ones) comes in the form of the func-
tions tic and toc. They work in conjunction and effectively implement a stopwatch. Try
the following on the command line:

.. tic

.. toc

What is your elapsed time?
The time reported by MATLAB is the time between pressing Enter after the first state-

ment and pressing Enter after the second statement.
Of course, operating in the real physical world, MATLAB also takes some time to exe-

cute the code itself. In most cases, this delay will be negligible. However, you should not

Conjunction

Pop-out

Set size

R
ea

ct
io

n
tim

e

FIGURE 6.1 The pop-out task.

154 6. COLLECTING REACTION TIMES I:VISUAL SEARCH AND POP OUT

II. DATA COLLECTION WITH MATLAB

take this delay for granted. Try it. In other words, write a program (M-file) that contains
only the following lines and execute it:

tic
toc

In my case, toc reported 0.000004 seconds.
You can now create some code to test if MATLAB takes equal amounts of time to incre-

ment an index or if it depends on the magnitude of the index. So open a new M-file and
enter the following:

format long; %We want to be able to see short differences in time
ii 5 1; %Initializing the index, ii
t 5 []; %Initializing the matrix in which we will store the times
while ii , 11 %Starting loop
tic%Starting stop-watch
ii 5 ii1 1; %Incrementing index
t(ii,1) 5 toc ; %Ending stop-watch and putting respective time into the matrix
end % End the loop

Try to run the program. It should execute rather quickly.
Now create a little plot by typing the following on the command line:

.. figure

..plot (t)

The result should be fairly reproducible but the exact shape of the curve as well as the
absolute magnitude of the values depends on the computer and its speed.

The result should look something like that shown in Figure 6.2.

2

2.5

3
� 10–5

1.5

1

0.5

0
21 3 4 5 6 7 8 9 10 11

FIGURE 6.2 Task timing.

1556.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

As you can see, after an initial transient, the time does not depend on the actual value of
the index, unlike most human mental processes (e.g., Shepard and Metzler, 1971). This could
be taken as evidence for a different kind of information processing in man versus machine.

If you want to know the average time it took for the index to increment, type

.. mean(t)

If you want to know the maximum and minimum times, you can type max(t) or min(t),
respectively.

This example also illustrates several important points. First, when making an inductive
claim about all cases all the time, you should sample a substantial range of the problem
space (complete would be best). In this case, incrementing an index 10 times is not very
impressive. What about incrementing it 100,000 times?

EXERCISE 6.1

Increment your index 100,000 times. What does the resulting graph look like?

It should look something like the result shown in Figure 6.3.

0.06

0.07

0.05

0.04

0.03

0.02

0.01

0
0 1 2 3 4 5 6 7 8 9 10

�104

0.06

0.05

0.04

0.03

0.02

0.01

0
0 1 2 3 4 5 6 7 8 9 10

�104

FIGURE 6.3 Task timing revisited.

156 6. COLLECTING REACTION TIMES I:VISUAL SEARCH AND POP OUT

II. DATA COLLECTION WITH MATLAB

Hence, we discourage premature conclusions on the basis of scant data. Second, it
shows that while MATLAB inherently takes care of “plumbing issues” such as memory
management or the representation of variables, it cannot avoid the consequences of physi-
cal processes. In other words, they might very well impact the execution of your program.
Therefore, you should always check that the program is doing what you think it is doing.
The structure of the peaks and their robust nature (the subplots show different runs of the
program) indicate that they are reliable and not just random fluctuations, probably
induced by MATLAB having to change the internal representation of the variable t, which
takes longer and longer as it gets larger. This makes sense because MATLAB is shuffling
an increasingly large array around in memory, looking for larger and larger chunks
thereof. Some of the observed spikes in time taken appear to be distributed largely at ran-
dom, mostly due to other things going on with the operating system.

Finally, it is a lesson on how to avoid problems like this—namely by preallocating the
size and representation of t in memory, if the final size is known in advance.

EXERCISE 6.2

Replace the line t 5 []; with t 5 zeros

(100000,1); to preallocate the size of the vari-

able in memory. Then run it.

The result should look something like

that shown in Figure 6.4.

There are still some issues left, but nowhere near as many as there were before. As you
can see, the problem largely goes away (you should also close all programs other than
MATLAB when running time-sensitive code). Note also the dramatic difference in the
time needed to execute the program. The reason for this is the same—namely memory
management. Therefore, if you can, always preallocate memory for your variables, particu-
larly when you know their size in advance and if their size is substantial.

If you’d like to, you can save this data (stored in the t variable) by clicking on the File
menu from the MATLAB command window and then clicking on the Save workspace as
entry. You can give your file any name you like. Later, you can import the data by clicking
on Open in the File menu from the MATLAB command window (not the editor). Try this
now. Save your workspace, clear it with clear all, and then open it again.

You can also use the tic-toc stopwatch to check on MATLAB. For example, the follow-
ing code is supposed to check (use another M-file) whether MATLAB really takes a 0.5
second break:

tic %Start stopwatch
pause (0.5) %Take a 0.5(?) second break
toc %End stop-watch

1576.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

By running this program several times, you can get a sense of accuracy and variance
(precision) within internal timers in MATLAB. So much for time and timing.

What is still missing at this point is a way to handle random events. In the design of
experiments, randomness is your friend. Ideally, you want everything that you don’t vary
systematically to behave randomly (effectively controlling all other variables, including
unknown variables and unknown relations between them).

You encountered the random number generator earlier. Now you can utilize it more
systematically. This time, it will be enough to generate random numbers with a uniform
distribution. This is achieved by using the function rand(). Remember that the function
randn() will generate random numbers drawn from a normal distribution. Conversely,
rand() draws from a uniform distribution between 0 and 1. This distinction is important
to know, since you can use this knowledge to create two events that are equally likely.
Now start a new M-file and add the following code:

a 5 rand(1,1) %Creates a random number and assigns it to the variable a
if a . 0.5 %Check if a is larger than “0.5”
b 5 1 %We assign the value “1” to the variable b
else %If not,
b 5 0 % We assign the value “0” to the variable b
end %End the condition check

Run this code a couple of times and see whether different random values are created
every time. Note that this is a rather awkward—but viable—way to create integral random
numbers. Recent versions of MATLAB include a new function randi, which draws from a
uniform discrete distribution. For example, the command randi(2,30,1) yields a single col-
umn vector with 30 elements randomly drawn to be 1 or 2. This new function is a good
example of how innovation in MATLAB versions makes previously accepted ways of
doing things (such as generating discrete random numbers) obsolete. The old way still
works, but the new one is much more elegant.

Next, we will introduce several functions and concepts that will come in handy when you
are creating your program for the project in Section 6.4. The first is the concept of handles. A

0.06

0.04

0.02

0
0 1 2 3 4 5 6 7 8 9 10

×104

FIGURE 6.4 Problem solved—mostly.

158 6. COLLECTING REACTION TIMES I:VISUAL SEARCH AND POP OUT

II. DATA COLLECTION WITH MATLAB

handle typically pertains to an object or a figure, for our purposes. For more detailed treat-
ment of handles, see the Visualization and Documentation tutorial in Chapter 5.

It is simply declared as follows:

h 5 figure

This creates a figure with the handle h. Of course, the name can be anything. Just be
sure to remember which handle refers to which figure:

thiscanbeanything 5 figure

This creates the handles as variables in the workspace. You can check this by typing
whos or simply by looking in the workspace window.

Handles are extremely useful. They literally give you a handle on things. They are the
embodiment of empowerment.

Of course, you probably don’t see that yet because handles are relatively useless without
two functions that go hand in hand with the use handles. These functions are get and set.

The get function gives you information about the properties that the handle currently
controls as well as the values of these properties. Try it. Type get(h).

You should get a long list of figure properties because you linked the handle h to a par-
ticular figure earlier. These are the properties of the figure that you can control. This capa-
bility is extremely helpful and implemented via the set function.

Let’s say you don’t like the fact that the pointer in your figure is an arrow. For whatever
reasons you have, you would like it to be a cross-hair. Can you guess which
figure property [revealed by get(h)] controls this? Try this:

set(h, 'Pointer', 'crosshair')

How do you know which property takes which values? This is something you can find
in the MATLAB help, under Figure properties. Don’t be discouraged about this. It is
always better to check. For example, MathWorks eliminated the former figure property
“fullcrosshairs” and renamed it “fullcross.”

Of course, some of the values can be guessed, such as the values taken by the property
visible—namely on and off. This also illustrates that the control over a figure with han-
dles is tremendous.

Try set (h,'visible','off') and see what happens. Make sure to put character but not
number values between'and'.

Of course, handles don’t just pertain to figures; they also pertain to objects. Make the
figure visible again and put some objects into it.

An object that you will need later is text. So try this:

g 5 text (0.5, 0.5, 'This is pretty cool')

If you did everything correct, text should have appeared in the middle of your figure.
Text takes at least three properties: x-position, y-position, and the actual text.
But those are not all the properties of text. Try get(g) to figure out what you can do.
It turns out, you can do a lot. For example, you can change color and size of the text:

1596.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

set(g,'color','r', 'fontsize', 20)

Also, note that this object now appears as a “child” of the figure h, which you can check
with the usual method.

Now you should have enough control over your figures and objects to complete the
project in Section 6.4.

Finally, you need a way for the user (i.e., the participant of the experiment) to interact
with the program. You can use the pause function, which waits for the user to press a key
before continuing execution of the program. In addition, the program needs to identify the
key press.

So type this:

pause %Waiting for single key press
h725 5 get(h,'CurrentCharacter')

The variable h725 should contain the character with which you overcame pause.
Interestingly enough, it is a figure property that allows you to retrieve the typed character
in this case, but that is one of the idiosyncrasies of MATLAB. Be sure to do this within an
M-file.

Another function you will need (to be able to analyze the collected data) is corrcoef. It
returns the Pearson correlation between two variables, e.g.,

a 5 rand(100,2); %Creates 2 columns of 100 random values each, puts it in variable a
b 5 corrcoef(a(:,1),a(:,2)); %Calculates the Pearson correlation between the two columns

In my case, MATLAB returns a value close to 0, which is good because it shows that
the random number calculator is doing a reasonable job.

b 5
1.0000 0.0061
0.0061 1.0000

Corrcoef as a function can also take several parameters:

[magnitude, p] 5 corrcoef(a(:,1),a(:,2)) %Same as before, but asking for significance
magnitude 5

1.0000 0.0061
0.0061 1.0000

p 5
1.0000 0.9522
0.9522 1.0000

According to MATLAB, there is a probability of 0.95 that the observed values were
obtained by chance alone (which is, of course, the case). Hence, you can conclude that the
correlation is not significant.

By convention, correlations with p values below 0.05 are called “significant.”
The final function concerns checking of the equality of variables. You can check the

equality of numbers simply by typing55 (two equal signs in a row):

160 6. COLLECTING REACTION TIMES I:VISUAL SEARCH AND POP OUT

II. DATA COLLECTION WITH MATLAB

.. 5 55 6
ans 5

0
.. 5 55 5
ans 5

1

Since MATLAB 7, this technique is also valid for checking the equality of characters;
Try this:

.. var1 5 'a'; var2 5 'b'; var1 55 var2

.. var1 55 var1

The more conventional way to check the equality of characters is to use the strcmp
function:

.. strcmp(var1,var2)

.. strcmp(var2,var2)

Together with your knowledge from Chapter 2, “MATLAB Tutorial,” you now have all
the necessary tools to create a useful experimental program for data collection.

6.4 PROJECT

Your project is to implement the visual search paradigm described in the preceding sec-
tions in MATLAB. Specifically, you should perform the following:

• Show two conditions (pop-out search versus conjunction search) with four levels each
(set size5 4, 8, 12, 16). These conditions can be blocked (first all pop-out searches, then
all conjunction searches or something like that).

• It is imperative to randomly interleave trials with and without target. There should be
an equal number of trials with and without targets.

• Make sure that the number of green and red stimuli (if you are red/green blind, use
blue and red) is balanced in the conjunction search (it should be 50%/50%). Also, make
sure that there is an equal number of x and o elements, if possible.

• Use only correct trials (user indicated no target present when no target was presented
or indicated target present when it was present) for the analysis.

• Try to be as quick as possible while making sure to be right. It would be suboptimal if
you had a speed/accuracy trade-off in your data.

• The analysis should contain at least 20 correct trials per level and condition for a total
of 160 trials. They should go quickly (about 1 second each).

• Pick two keys on the keyboard to indicate responses (one for target present, one for
target absent).

• Report and graph the mean reaction times for correct trials as a function of pop-out
search versus conjunction search and for trials where the target is present versus where

1616.4 PROJECT

II. DATA COLLECTION WITH MATLAB

the target is absent. Hence, you need between two and four figures. You can combine
graphs for comparison (see below).

• Report the Pearson correlation coefficients between reaction time and set size and
indicate whether it is significant or not (for each condition).

• Make a qualitative assessment of the slopes in the different conditions (we will talk
about curve fitting in a later chapter).

Hints:

• Start writing one trial and make sure it works properly.
• Be aware that you effectively have an experimental design with three factors [Set size: 4

levels (4, 8, 12, 16), conjunction versus feature search: 2 levels, target present versus
absent: 2 levels]. It might make sense to block the first two factors and randomize the
last one.

• Be sure to place the targets and distracters randomly.
• Start by creating a figure.
• Each trial will essentially consist of newly presented, randomly placed text.
• Be sure to make the figure big enough to see it clearly.
• Make sure to make the text vanish before the beginning of the next trial.
• Your display should look something like Figure 6.5.
• Determine reaction time by measuring time from appearance of target to user reaction.
• Elicit the key press and compare with the expected (correct) press to obtain a value for

right and wrong answers.
• Put it into a matrix, depending on condition. It’s probably best to have as many

matrices as conditions.
• Plot it.

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 6.5 The display.

162 6. COLLECTING REACTION TIMES I:VISUAL SEARCH AND POP OUT

II. DATA COLLECTION WITH MATLAB

• Write a big loop that goes through trials. Do this at the very end, if individual trials
work.

• You might want to have a start screen before the first trial, so as not to bias the times of
the first few trials.

• If you can’t do everything at once, focus on subgoals. Implement one function after the
other. Start with two conditions.

• Figure 6.6 shows one of the exemplary result plots from a participant. Depicted is the
relationship between mean reaction time and set size for trials where a target is present
(only correct trials). Red: Conjunction search. Blue: Pop-out search. Pearson r for
conjunction search in the data above: 0.97.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

clear all
tic
toc
mean
min
max
pause
rand
randi
55

4
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

8 12
Set size

R
T

16

FIGURE 6.6 Typical results.

163MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

II. DATA COLLECTION WITH MATLAB

strcmp
whos
get
set
text
corrcoef
pointer
fullcrosshair
visible
fontsize
CurrentCharacter

164 6. COLLECTING REACTION TIMES I:VISUAL SEARCH AND POP OUT

II. DATA COLLECTION WITH MATLAB

C H A P T E R

7

Collecting Reaction Times II:
Attention

7.1 GOALS OF THIS CHAPTER

The primary goals of this chapter are to consolidate and generalize what you learned in
Chapter 6 about data collection in MATLAB®. Moreover, we will elaborate on data analy-
sis in MATLAB beyond simple correlations. You will also learn how reaction time data
can be used to infer the mental process of spatial attention.

7.2 BACKGROUND

As the pioneering American psychologist William James pointed out well over 100 year
ago, we all have a strong intuition what attention is:

Everyone knows what attention is. It is the taking possession by the mind, in clear and vivid form, of
one out of what seem several simultaneously possible objects or trains of thought. Focalization, concentra-
tion of consciousness are of its essence. It implies withdrawal from some things in order to deal effectively
with others, and is a condition which has a real opposite in the confused, dazed, scatterbrained state. . . .

(James, 1890, p. 403)

The idea of attention as a process by which mental resources can be concentrated or
focused continues to pervade thinking in the scientific study of attention. Psychologists
and neuroscientists have divided the concept into three different forms: space-based,
object-based, and feature-based attention. In this chapter, we will focus on spatial atten-
tion. Helmholtz (1867) was one of the first experimentalists to demonstrate that one could
covertly (i.e., by holding the eyes fixed) shift one’s attention to one part of space prior to
presentation of a long list of characters. He found that one could more effectively recollect

165MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00007-2 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00007-2

the characters within the region of space to which the “attentional search light” was
shifted.

In the modern study of attention, the Posner paradigm (Posner, 1980) has been particu-
larly influential. This is likely owed to the fact that it is extremely simple to grasp, yet the
pattern of results has potentially far-reaching implications for our understanding of spatial
attention in mind and brain. In particular, this paradigm has been used to quantify the
attentional deficits in patients with parietal-lobe damage (i.e., parietal hemi-neglect syn-
drome), leading to the theory that spatial attentional mechanisms may be localized in the
parietal cortex.

7.2.1 So What is the Posner Paradigm?

In the Posner paradigm, research participants are asked to fixate in the center of the
screen and not to break fixation for the duration of the trial. Then, a location on the screen
is cued in some way (usually by highlighting or flashing something). After the cue, a tar-
get appears in either the cued location or in another location. Research participants are
instructed to press a key as soon as they see the target. Figure 7.1 provides a schematic
illustration of the paradigm.

Posner (1984) found that if the cue is valid, reaction time was substantially lower than if
it was invalid. He interpreted this in terms of an “attentional spotlight” that is focused on
a certain region in space and permanently shifting at a finite and measurable speed.

7.3 EXERCISES

Most of the functions needed to write software that allows you to gather reaction time
data were already introduced in Chapter 6, “Visual Search and Pop Out.” This time, we
will introduce some functions that allow you to generalize the kinds of conditions in
which such data are collected. To this end, we introduce another drawing function, rectan-
gle, that will come in handy when creating your program in Section 7.4.

Space

T
im

e

Valid trial Invalid trial FIGURE 7.1 The Posner paradigm.

166 7. COLLECTING REACTION TIMES II: ATTENTION

II. DATA COLLECTION WITH MATLAB

Try this code:

figure %Create a new figure
xlim([0 1]) %Set the range of values on the x-axis to (0 to 1)
ylim([0 1]) %Set the range of values on the y-axis to (0 to 1)
rectangle('Position', [0.2 0.6 0.5 0.2]) %Create a rectangle at the x-position 0.2,
%y-position 0.6 with an x-width of 0.5 and a y-height of 0.2

If you declare rectangle with a handle, you can change all properties of the rectangle.
Try it. Rectangles have some interesting properties that can be changed.
Regarding data analysis, the most important function we can introduce at this point is

the t-test. MATLAB uses ttest2 to test the hypothesis that there is a difference in the mean
of two independent samples.

Consider this:

A 5 rand(100,1); %Create a matrix A with 100 random elements in one column
B 5 rand(100,1); %Create a matrix B with 100 random elements in one column
[significant,p] 5 ttest2(A,B)

MATLAB should have returned:

significant 5 0
p 5 0.6689

This means that the null hypothesis was kept because you failed to reject it. You failed
to reject it because the observed difference in means (given the null hypothesis is true)
had a probability of about 0.67, which is far too high to reject the null hypothesis. This is
what you should expect if the random number generator works. Now try this test:

B 5 B .* 2;
[significant,p] 5 ttest2(A,B)
significant 5 1
p 5 3.3467e-013

Now, the null hypothesis is rejected. As a matter of fact, the p-value is miniscule.
Note on seeding the random number generator: If you use the rand() function just as

is, the SAME sequence of pseudorandom numbers will be generated each session. You can
avoid this by seeding it first like this: rand('state',number). It is important to note that the
“random number generator” does no such thing. As a matter of fact, all numbers gener-
ated are perfectly deterministic, given the same seed number. We don’t want to go on a
tangent why this has to be the case or how to avoid this by relying on a genuinely random
(at least as far as we can tell) natural process (such as radioactive decay). As long as you
pick a different number as a seed each time, you should be fine, for all common intents
and purposes. Hence, it is popular to make the number after the state argument depen-
dent on the cpu-clock. In old versions of MATLAB (e.g., 7.04), this could be done as
follows:

rand('state', sum(100*clock))

1677.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

Newer versions of MATLAB (e.g., 8.1 onwards) rely on a very different system.
Namely, the notion of a random number stream that underlies rand, randn, and randi.
This random number stream is implemented as randstream.

To seed the generator in new versions of MATLAB, things are more complicated but
also more versatile.

First type
RandStream.list
to get a list of available pseudorandom number generation methods. Mersenne twister

with Mersenne prime 2^19937-1 sounds appealing.
Now type

s 5 Randstream('mt19937ar', 'seed', sum(100*clock))

Note the value of “Seed”.
Now type

RandStream.setDefaultStream(s);

These changes are due to the fact that MATLAB is becoming increasingly object ori-
ented. We are now handling Randstream “objects.” Expect to see more of this in the
future. For the project in Section 7.4, it might be useful to know at least one other common
data analysis function, namely ANOVA (analysis of variance). ANOVA generalizes the
case of a two-sample t-test to many samples. For the purposes of this chapter, a one-way
ANOVA will be sufficient:

A 5 rand(100,5); %Generating 5 levels with 100 repetitions each.
anova1(A); %Do a one-way balanced ANOVA.

In this case, there were no significant differences, as revealed by Table 7.1 and
Figure 7.2.

Now try this:

B 5 meshgrid(1:100); %Generate a large meshgrid
B 5 B(:,1:5); %We only need the first five columns
A 5 A .* B; %Multiply!
anova1(A); %Doing the one-way balanced ANOVA again

This time, there can be no doubt that there is a positive trend, as you can see in
Table 7.2 and Figure 7.3.

The anova1 function assumes that different samples are stored in different columns and
that different rows represent different observations in the same sample.

TABLE 7.1 ANOVA Table 1

Source SS df MS F Prob. F

Columns 0.288 4 0.072 0.81 0.5221

Error 44.2525 495 0.0894

Total 44.5405 499

168 7. COLLECTING REACTION TIMES II: ATTENTION

II. DATA COLLECTION WITH MATLAB

1

0

0.1

0.2

0.3

0.4

0.5

V
al

ue
s

0.6

0.7

0.8

0.9

1

2 3
Column number

4 5

FIGURE 7.2 N.S.

TABLE 7.2 ANOVA Table 2

Source SS df MS F Prob.F

Columns 207.519 4 51.8797 50.39 0

Error 509.66 495 1.0296

Total 717.179 499

1

0

0.5

1

1.5

2

2.5

V
al

ue
s

3

3.5

4

4.5

5

2 3
Column number

4 5

FIGURE 7.3 An effect.

1697.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

Note that anova1 assumes that there is an equal number of observations in each sample.
For more generalized ANOVAs or unequal samples, see anova2 or anovan. Their syntax is
very similar. This, however, should not be necessary for the following project.

7.4 PROJECT

For this project, your task is to replicate a generalized version of the Posner paradigm.
In essence, you will measure the speed of the “attentional spotlight” in the vertical versus
horizontal directions. You need to create a program that allows you to gather data on reac-
tion times in the Posner paradigm as described in the preceding sections. Most of the par-
ticular implementation is up to you (the nature of the cue, specific distances, etc.).
However, be sure to implement the following:

• Cue and target must appear in one of 16 possible positions. See, for example, Figure 7.4.
• Make sure you have an equal number of valid and invalid trials. [If the trial is valid,

the target should appear in the position of the cue. If the trial is invalid, the target
position should be picked randomly (minus 1, the position of the cue).]

• Choose two temporal delays between cue and target: 100 ms and 300 ms. Make the
delay an experimental condition.

• Collect data from 80 trials per spatial location of the cue (so that you have 20 for each
combination of conditions: Valid/invalid, delay1/delay2). This makes for a total of 1280
trials. But they will go very, very quickly in this paradigm.

• Make sure that the picking of condition (valid/invalid, delay1/delay2, spatial location
of cue) is random.

• After collecting the data, answer the following questions:

1. Is there a difference in reaction times for valid versus invalid trials? (t-test)
2. Is there a difference in reaction times for different delays? (t-test)
3. Does the distance between target and cue matter? For this, use only invalid trials and

plot reaction time as a function of
a. Total distance of cue and target

Cue phase

Valid trial

Target phase

Cue phase

Invalid trial

Target phase

FIGURE 7.4 Valid and invalid trials.

170 7. COLLECTING REACTION TIMES II: ATTENTION

II. DATA COLLECTION WITH MATLAB

b. Horizontal distance of cue and target
c. Vertical distance of cue and target

4. Related to this: Is there a qualitative difference in the slope of these lines? Is the
scanner faster in one dimension than the other?

5. What is the speed of the attentional scanner? How many (unit of your choice, could
be inches) does it shift per millisecond?

• Implement the project in MATLAB and answer the preceding questions. Illustrate with
figures where appropriate.

• *If you are adventurous: Use anova2 or anovan to look for interaction effects between
type of trial (valid/invalid, delay and spatial location of cue).

Hints:

• Start writing one trial and make sure it works properly.
• Be aware that you effectively have an experimental design with three factors: Cue

position (16 levels), trial type (2 levels), and temporal delay (2 levels). However,
you can break it up into four factors: Horizontal cue position (4 levels), Vertical cue
position (4 levels), trial type (2 levels), and temporal delay (2 levels), which will
make it easier to assess the x- versus y-speed of the scanner.

• If you can’t produce a proper cue, try reviewing object handles (in figures).
• Write a big loop that goes through trials. Do this at the very end, if individual trials

work.
• If you can’t do everything, focus on subgoals. Implement one function after the other.

Start with two conditions. If you are not able to implement all eight conditions, try to
get as far as you can.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

randstream
rectangle
ttest2
state
clock
anova1

171MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

II. DATA COLLECTION WITH MATLAB

C H A P T E R

8

Psychophysics

8.1 GOALS OF THIS CHAPTER

In this chapter, you will learn how to use MATLAB® to do psychophysics. Once you
master these fundamentals, you can use MATLAB to address any psychophysical question
that might come to mind. While—in principle—all sensory modalities are open to psycho-
physical investigation, we will focus on visual psychophysics in this chapter.

8.2 BACKGROUND

Psychophysics deals with the nature of the quantitative relationship between physical
and mental qualities. Today, the practice of psychophysics is ubiquitous in all fields of
neuroscience that involve the study of behaving organisms, be they man or beast.
Curiously enough, the origins of systematic psychophysics can be traced to a single indi-
vidual: Gustav Theodor Fechner (1801�1887). Fechner’s biography exhibits many telling
idiosyncrasies. Born the son of a pastor, he studied medicine at the University of Leipzig,
but never practiced it after receiving his degree. Mostly by virtue of translating chemistry
and physics textbooks from French into German, he was appointed professor of physics at
the University of Leipzig. In the course of studying afterimages by gazing into the sun for
extended periods of time—himself being the primary and sole research participant—he
almost lost his eyesight and went into deep depression in the early 1840s. This episode
lasted for nearly a decade, a time which Fechner spent mostly within a darkened room.
Emerging from this secluded state, he was overwhelmed by the sheer brilliant radiance of
his surroundings, giving rise to his panpsychist worldview: he was now utterly certain
that all things have souls, including inanimate objects such as plants and stones.

173MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00008-4 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00008-4

Determined to share his insights with the rest of humanity, he soon started publishing on
the topic, formulating an “identity theory” stating that the physical world and the spiritual
world are not separate entities, but actually the same—the apparent differences resulting
from different perspectives (first versus third person) onto the same object. In his view,
this reconciles the incompatible dominant philosophical worldviews of the 19th century:
idealism and materialism. However, his philosophical treatises on subjects such as the
soul-life of plants or the transcendence of materialism were poorly received by the scien-
tific community of the day (Fechner, 1848). In order to convince his colleagues of the valid-
ity of his philosophical notions, he set out to devise methods that would allow him to
empirically link physical and spiritual realms (Fechner, 1851). His rationale being that if it
can be shown that mental and physical qualities are in a clear functional relationship, this
would lend credence to the notion that they are actually metaphysically identical.

Publishing the results of empirical studies on the topic in his Foundations of
Psychophysics in 1860, he showed that this is the case for several mental domains, such as
the relationship between physical mass and the perception of heaviness or weight.
Fechner formulated several methods to arrive at these results that are still in use today.
Importantly, he expressed the results of his investigations in mathematical, functional
terms. This allowed for the theoretical interpretation of his findings. Doing so, he intro-
duced notions such as sensory thresholds quantitatively.

Ironically, inventing psychophysics did not help Fechner in convincing his philosophi-
cal adversaries of the merits of his identity theory. Few philosophers of the day renounced
their idealistic or materialistic positions in favor of identity theory. Most of them simply
chose to ignore Fechner, while the others mostly attacked him. Consequently, Fechner
spent much of the remainder of his life fighting these real or imaginary adversaries, pub-
lishing two follow-up volumes in 1877 and 1882, chiefly focusing on the increasingly bitter

FIGURE 8.1 Gustav Theodor Fechner (1801�1887).

174 8. PSYCHOPHYSICS

II. DATA COLLECTION WITH MATLAB

struggle against the philosophical establishment of Imperial Germany. Ultimately, these
efforts had little tangible or lasting impact. Meanwhile, the first experimental psycholo-
gists, particularly the group around Wundt, pragmatically used these very same methods
to create a psychology that was both experimental and empirical. It is not too bold to claim
that they never stopped and that contemporary psychophysics derives in an unbroken line
from these very roots.

The key to visual psychophysics (and psychophysics more generally) is to elicit rela-
tively simple mental phenomena that lend themselves to quantification by presenting
physical stimuli that are easily described by just a few parameters such as luminance, con-
trast, or spatial frequency.

It is imperative that the experimenter has complete control over these parameters. In
other words, the visual stimuli that s/he is presenting have to be precise. One way to cre-
ate these stimuli is to use commercially available graphics editors, most prominently
Photoshop®. While this practice is very common, it comes at a cost. For example, the
images created by Photoshop have to be imported by the experimental control software. It
is more elegant to create the stimuli in the same environment in which they are used.
More importantly, the experimenter surrenders some degree of control over the created
stimuli, when using commercial graphics editors, because the proprietary algorithms to
perform certain image functions are not always completely documented or disclosed. This
problem is equally avoided by creating the stimuli in a controlled way within MATLAB.

8.3 EXERCISES

We need to introduce methods by which to create and present visual stimuli of any
kind on the screen. Fortunately, MATLAB includes a large library of adequate functions.
We will introduce the most important ones here.

By default, MATLAB visualizes images by triplets in a 256-element RGB space. Each
element of the triplet has to be an integral value between 0 and 255. This corresponds to a
range of 8 bits. Hence, these elements can be represented by variables of the type uint8.
These values correspond to the intensity of red, green, and blue at a particular location in
the image. Depending on the physical output device (typically cathode ray tube or LCD
displays), these values effectively regulate the voltage of individual ray guns or pixels. Of
course, MATLAB also supports much higher bit-depths. For the purposes of our discus-
sion, 8 bit will suffice.

One important caveat is that the relationship between the assigned voltage values of the
three individual ray guns in the cathode ray tube (0 to 255) and the perceived luminance
of the screen is not necessarily linear. Visual scientists generally calibrate their monitors
by “gamma correcting” them. This linearizes the relationship between assigned voltage or
intensity values and the perceived luminance.

To be able to linearize the relationship, you need a photometer. Because we assume that
those are—due to their generally high price—not readily available, we will forgo this step
for the purposes of this book. However, we urge budding visual scientists to properly

1758.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

calibrate their monitors before doing an experiment in which the veracity of the data is
crucial—as is the case if they are intended for publication. For more information on the
issue of monitor calibration, see for example Carpenter and Robson (1999).

To begin, create a simple matrix with the following command:

.. test_disp5 uint8(zeros(3,3,3))

This command creates the matrix test_disp, which is a three-dimensional matrix with
three elements in each dimension. Importantly, it is of the data type uint8, which
MATLAB assumes by default for its imaging routines. Of course, the function image can
also image other matrices, but this would require to specify additional parameters.
Imaging only matrices of the type uint8 is the most straightforward thing to do for the
purposes of this chapter.

Now type the following:

.. figure

.. subplot(2,2,1)

.. image(test_disp)

The function image compels MATLAB to interpret the values in the matrix as com-
mands for the ray guns of the monitor and to display them on the screen. You should now
be looking at a completely and uniformly dark (black) subplot 1.

Now, type the following:

.. test_disp(2,2,:)5 255

.. subplot(2,2,2)

.. image(test_disp)

The structure of the matrix and the function of the image command now become
apparent.

The 0 values are interpreted as turning off all ray guns. The 255 values are interpreted
as full power. As you maximally engage all three guns (represented by the third dimen-
sion of the matrix), the result is an additive mix of spectral information that is interpreted
by the visual system as white. Now, try this:

.. subplot(2,2,3)

.. test_disp(2,2,1)5 0

.. image(test_disp)

The picture in subplot 2 is devoid of color from the red gun. It should appear cyan.
Now try the following:

.. test_disp(2,2,:)5 0

.. test_disp(2,2,1)5 255

.. subplot(2,2,4)

.. image(test_disp)

176 8. PSYCHOPHYSICS

II. DATA COLLECTION WITH MATLAB

This code has the opposite effect, yielding a red inner pixel. The result should look
something like Figure 8.2.

SUGGEST ION FOR EXPLORAT ION

Can you create arbitrary other colors? Can you create arbitrary shapes?

While it is hard to surpass this example of using just 9 pixels in clarity, it is also some-
what pedestrian. The true power of this approach becomes clear when considering natural
stimuli, which are also increasingly used in visual psychophysics. To do this, you need to
import an image into MATLAB. For this example, use the imread function:

.. temp5 imread('UofC.jpg')

This command creates a large three-dimensional matrix of the uint8 type (positive inte-
gral values from 0 to 255, as can be addressed by 8 bits).

0.5

1

1.5

2

2.5

3

3.5

0.5

1

1.5

2

2.5

3

3.5

0.5

1

1.5

2

2.5

3

3.5

0.5

1

1.5

2

2.5

3

3.5

1 2 3

1 2 3

1 2 3

1 2 3

FIGURE 8.2 Testing the ray guns with matrices interpreted as images.

1778.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

Next, type the following to get a magnificent view of the Harper Library at the
University of Chicago:

.. figure

.. subplot(2,2,1)

.. image(temp)

Now, you can manipulate this image in any way, shape, or form. Importantly, you will
know exactly what you are doing, since you are the one doing it, which cannot be said for
most of the opaque algorithms of image processing software. For example, you can sepa-
rate the information in different color channels by typing the following:

.. for ii5 1:3

.. bigmatrix(:,:,:,ii)5 zeros(size(temp,1),size(temp,2),3);

.. bigmatrix(:,:,ii,ii)5 temp(:,:,ii);

.. subplot(2,2,ii1 1)

.. upazila5 uint8(bigmatrix(:,:,:,ii));

.. image(upazila)

.. end

You get the picture shown in Figure 8.3 as a result.

200 400 600 800 1000

200 400 600 800 1000 200 400 600 800 1000

200 400 600 800 1000

200

400

600

800

200

400

600

800

200

400

600

800

200

400

600

800

FIGURE 8.3 The University of Chicago Harper Library in red, green, and blue.

178 8. PSYCHOPHYSICS

II. DATA COLLECTION WITH MATLAB

SUGGEST ION FOR EXPLORAT ION

Can you find the MATLAB “Easter

eggs”? MATLAB once had a large number

of those. Most of them have been removed

by the PC police now. Some of them

remain. One of them concerns the image

function. If you type image without any

arguments, the creepy “MATLAB Ghost”

appears in your figure. Another remaining

easter egg concerns the spy function, a

function to visualize the structure of sparse

matrices. Try it without arguments as well.

Note the use of the upazila helper variable. You have to use this because MATLAB
interprets non-3D-uint8 matrices differently when presenting images. Later you will learn
how to make do without the upazila step. The different subplots illustrate the brightness
values assigned to an individual ray gun (Upper left: all of them together. Upper right:
red. Lower left: green. Lower right: blue). This allows you to assess the contribution of
every single channel (red/green/blue) to the image. Another way of judging the impact of
a particular channel is to leave it out. To do this, you add the other channels together, as
follows:

.. bigmatrix2(:,:,:,1)5 bigmatrix(:,:,:,1)1bigmatrix(:,:,:,2)1bigmatrix(:,:,:,3);

.. bigmatrix2(:,:,:,2)5 bigmatrix(:,:,:,1)1bigmatrix(:,:,:,2);

.. bigmatrix2(:,:,:,3)5 bigmatrix(:,:,:,1)1bigmatrix(:,:,:,3);

.. bigmatrix2(:,:,:,4)5 bigmatrix(:,:,:,2)1bigmatrix(:,:,:,3);

.. figure

.. for ii5 1:4

.. subplot(2,2,ii)

.. image(uint8(bigmatrix2(:,:,:,ii)))

.. end

Doing so should yield the picture shown in Figure 8.4.
In this figure, the upper left is all channels. In the upper right, the blue channel is

missing. In the lower left, the green channel is missing. In the lower right, the red chan-
nel is missing. Belaboring this point enhances an understanding of the relationship
between the brightness values in the three-dimensional matrix and the appearance of
the image.

SUGGEST ION FOR EXPLORAT ION

Find out what the MATLAB upazila actually is.

1798.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

You are now in a position to implement arbitrary changes to the image. For example,
you can brighten it, increase the contrast, or selectively change the color balance. To
explore this, start by changing the overall brightness by typing the following:

.. figure

.. subplot(2,2,1)

.. image(uint8(bigmatrix2(:,:,:,1)))

.. subplot(2,2,2)

.. image(uint8(bigmatrix2(:,:,:,1)1 50))

.. subplot(2,2,3)

.. image(uint8(bigmatrix2(:,:,:,1)-50))

.. subplot(2,2,4)

.. bigmatrix2(:,:,1,1)5 bigmatrix2(:,:,1,1)1 100;

.. image(uint8(bigmatrix2(:,:,:,1)))

The result, shown in Figure 8.5, is a picture that has been somewhat brightened (upper
right), darkened (lower left), and where the red channel has been turned (way) up in the
lower right.

200 400 600 800 1000

200 400 600 800 1000 200 400 600 800 1000

200 400 600 800 1000

200

400

600

800

200

400

600

800

200

400

600

800

200

400

600

800

FIGURE 8.4 The University of Chicago Harper Library without red, green, and blue information.

180 8. PSYCHOPHYSICS

II. DATA COLLECTION WITH MATLAB

SUGGEST ION FOR EXPLORAT ION

Increase the contrast of the image. Also try to image matrices that are not of the type uint8.

One of the most common image manipulations using image editors is the smoothing or
sharpening of the image. The former is often performed to get rid of random noise or
granularities in the image. Scientists might do this to simulate and understand the output
of the visual system of another species. Importantly, these ends are typically achieved by
low- or high-pass filtering of the original image. Unfortunately, most users don’t really
understand what is happening behind the scenes when using a commercially available
image editor. Of course, this is unacceptable for doing psychophysics in particular or sci-
ence in general.

Hence, we will now discuss how to perform these operations in MATLAB. First, import
another image by typing the following. This image is more suited to making the effects of
your manipulations more readily apparent.

.. pic5 imread('filtering.jpg')

.. figure

.. subplot(2,2,1)

200 400 600 800 1000

200 400 600 800 1000 200 400 600 800 1000

200 400 600 800 1000

200

400

600

800

200

400

600

800

200

400

600

800

200

400

600

800

FIGURE 8.5 Brightening and darkening any or all ray guns has a profound effect.

1818.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

Look at the image. So far, so good. Now, slightly blur the image. To do so, you will con-
volve the image with a filter. Refer to Chapter 16, “Convolution,” to understand precisely
the underlying mathematics of the operation. For purposes of this example, it is enough to
understand that the convolution operation will allow you to blur the image by blending
brightness values of adjacent pixels. To create a small 33 3 filter, you type

.. filter5 ones(3,3)

then

.. lp35 convn(pic,filter)

to perform the convolution of the image with the 33 3 filter. You might have noted that
the values are no longer in the range between 0 and 255. This is due to the multiplying
and adding brought about by the convolution. Next, divide by the block size (9) to rectify
this situation:

.. lp35 lp3./9;

This operation creates floating-point values, so you have to be careful when imaging
this:

.. subplot(2,2,2)

.. image(uint8(lp3))

This code creates a very slightly low-pass filtered version of the image. This result is
most readily apparent when you look at the texture of the hat or hair in the image. Now,
try a more radical low-pass filtering:

.. filter5 ones(25,25)

.. lp255 convn(pic,filter)

.. lp255 lp25./625;

.. subplot(2,2,3)

.. image(uint8(lp25))

Looking at the image reveals significant blurring. This is the low-frequency component
of the image. It is similar to what a typical nocturnal animal with relatively poor spatial
acuity might see (sans the color). You arrive at the image by blurring a substantial number
of pixels together.

SUGGEST ION FOR EXPLORAT ION

What happens if you use ever larger filters?

Note that the matrices you created with the convolution operation are slightly larger
than the one that represents the initial picture (which had a format of 6003 800). This is
due to the nature of the convolution operation. It creates an artificial black rim not present
in the original picture. You will understand why this happens and why this is a hard

182 8. PSYCHOPHYSICS

II. DATA COLLECTION WITH MATLAB

problem when reading Chapter 16. For now (we will encounter much more elegant ways in
Chapter 16), and to (mostly) get rid of it and cut the image back to size, try the following:

.. lp25cor5 lp25(13:612,13:812,:);

You might also have noted that the execution of the convolution operation took a signif-
icant amount of time. This might be important if you want to create your stimuli on the
fly, as the observer does the experiment. To assess how your system stacks up against cer-
tain known benchmarks, type this command:

.. bench

Doing so makes MATLAB perform various typical operations and compare the speed
of their execution to other benchmark systems. This is particularly crucial when you’re
running a time-sensitive program. Don’t be surprised when receiving rather low bench-
mark values, particularly when running MATLAB over a network, despite basically fast
hardware. To evaluate the reliability of the benchmark values, try running bench more
than once, e.g. bench(5) runs it 5 times.

Let’s get back to the filtering problem. The image in the lower left corresponds to what
psychophysicists would call the “low spatial frequency” channel. It contains the low spa-
tial frequency information in the image. Notably, it is mostly devoid of sharp edges. This
information about edges in the image is contained in the “high spatial frequency” channel.
How do you get there? By subtracting the low spatial frequency information from the orig-
inal image. Try this:

.. subplot(2,2,4)

.. hp5 pic-uint8(lp25cor);

.. image(hp)

The image in the lower right now contains the high spatial frequency information. It
represents most of the textures and sharp edges in the original image.

Unfortunately, it is rather dark (due to the subtraction). To appreciate the full high spa-
tial frequency information, add a neutral brightness level back in:

.. hp5 hp1 127;

.. image(hp)

Much better. The final result should look something like that shown in Figure 8.6.

EXERCISE 8.1

Use the information in the high spatial

frequency channel to sharpen (enhance the

edges) of the original image.

We have discussed a variety of image manipulations with MATLAB, namely the manip-
ulation of form, color, and spatial frequency. One remaining major issue is the creation of

1838.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

moving stimuli. There are many ways to do this in MATLAB. One of the most straightfor-
ward is to use the circshift function in combination with a frame capture function.

To use this function, type the following:

.. figure

.. pic35 circshift(pic,[100 0 0]);

.. image(pic3)

The circshift function shifts all matrix values by the stated amount in the second
argument—in this case, 100 in the direction of the first dimension, nothing in the others.

You can use this to create a movie:

.. figure

.. pic45 pic;

.. for ii5 1:size(pic4,1)/101 1

.. image(pic4)

.. pic45 circshift(pic4,[10 0 0]);

.. M(ii)5 getframe;

.. end

There are other ways to create movie frames, for example, using the im2frame function.
However, this version lets you preview the movie as you create it. You can play it by
typing

100 200 300 400 500 600 700 800

100

200

300

400

500

600
100 200 300 400 500 600 700 800

100

200

300

400

500

600

100 200 300 400 500 600 700 800

100

200

300

400

500

600
100 200 300 400 500 600 700 800

100

200

300

400

500

600

FIGURE 8.6 Information about texture is carried in different spatial frequency channels.

184 8. PSYCHOPHYSICS

II. DATA COLLECTION WITH MATLAB

.. movie(M,3,24)

This command plays the movie in matrix M three times, at 24 frames per second, in the
existing figure. One caveat for movies is size in memory. These frames take up a considerable
amount of space. You might get an error message indicating that the frames could not be cre-
ated if you go beyond the available memory. The available memory depends on the computer
and operating system. To assess the memory situation on the machine you are using, type

memory

There are several caveats when making movies with MATLAB. For example, the chop-
piness will depend on many factors, including machine speed, available memory, step
size of the circshift, as well as frame rate. On most systems, it will be hard to avoid trade-
offs to create movies that are reasonably smooth.

EXERCISE 8.2

Use this knowledge to create a movie of a

single white dot (pixel) that moves from the

far left of the screen to the far right. Then do

it without circshift, simply updating the

RGB values in the matrix for each frame

with the right values. As most pixels don’t

change frame to frame, they don’t need to

be updated (circshift shifts all of them).

SUGGEST ION FOR EXPLORAT ION

Import two pictures with the same size.

Create a movie in which one morphs into the

other. Hint: Over time, the numerical values

in the matrix that represents the image

should gradually shift from one to the next

while you capture this process in frames.

As the color information is represented in the third dimension of the matrix, you can
also use circshift to elegantly swap colors, as in this example:

.. figure

.. for ii5 1:3

.. subplot(1,3,ii)

.. image(pic)

.. axis equal

.. axis off

.. pic5 circshift(pic,[0 0 1]);

.. end

The result should look something like Figure 8.7.
Often, when creating large numbers of stimuli, you might want to save them on the

hard disk to free up some space in available memory. You can easily do this by using

1858.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

the imwrite function. For example, you can save the image in which the RGB values were
swapped for BRG by typing imwrite(pic,’BRG.jpg’,’jpg’). This should have created the
file BRG.jpg as a .jpg file in your working directory. You can now open it with other image
editing software, put it online, etc. Similarly, you can save the movie by typing

movie2avi(M,'upazila.avi','quality',100,'fps',24)

which creates an .avi file named upazila at a frame rate of 24 and a quality of 100 in your
working directory. From now on, this file will behave like any other movie file you might
have on your hard disk.

At this point, we have explored several important image manipulation routines that
should really give you a deep appreciation of the way MATLAB represents and displays
images. Of course, many more image manipulations are possible in MATLAB. We will leave
those for you to discover and return to the task of collecting psychophysical data, using this
newfound knowledge. Because MATLAB represents images as brightness values in a three-
dimensional matrix, you can manipulate them at will with any number of matrix operations.
In principle, you could write your own Photoshop toolbox in MATLAB.

EXERCISE 8.3

Can you rotate an image by 90�? Can you rotate by an arbitrary number of degrees?

EXERCISE 8.4

Try adding different images together. For

example, you can transmit secret information

by embedding one image in another. Or

create artificial stimuli. For example, in the

attention community, it is popular to super-

impose pictures of houses and faces.

FIGURE 8.7 You can use circshift to shift colors.

186 8. PSYCHOPHYSICS

II. DATA COLLECTION WITH MATLAB

SUGGEST ION FOR EXPLORAT ION

Implement your favorite Photoshop routine in MATLAB.

Let’s get back to psychophysics. Fechner formalized three fundamental methods to elicit
the relationship between mental and physical qualities and introduced them to a wider
audience. These methods are still in use today. You should recognize the method of limits
from visits to the ophthalmologist investigating your vision or the otologist investigating
your hearing. Basically, the observer is presented with a series of stimuli in increasing (or
decreasing) intensity and asked to judge whether or not the stimulus is present. This
method is extremely efficient because only a few stimuli are necessary to establish fairly
reliable thresholds. Unfortunately, the method suffers from hysteresis; the threshold is
path dependent, as participants exhibit a certain inertia (e.g., stating that the stimulus is
still present even if they can’t detect it, if coming from the direction of a stimulus being
present). This problem can be overcome by counterbalancing (starting from different
states). However, a better correction is the method of constant stimuli. In this method, the
experimenter presents stimuli to be judged by the observer in random order, from a pre-
determined set of values. The advantage of this method is that it yields very reliable and
mostly unbiased threshold measurements. The drawback is that one needs to sample a rel-
atively large range of stimuli (as one doesn’t a priori know where the threshold will lie)
and a large number of repetitions per conditions to reduce error. Hence, this method is
usually not used where time is at a premium (such as in a doctor’s office), but rather in
research, where the time of undergrad or grad student observers is routinely sacrificed for
increases in accuracy.

Finally, the method of adjustment lets the research participant manipulate a test stimulus
that is supposed to match a given control. This method is particularly popular in color
psychophysics. It is relatively efficient, but suffers from its own set of biases.

8.4 PROJECT

In this project, you will use the method of constant stimuli to determine the absolute
threshold of vision, a classic experiment in visual psychophysics (Hecht, Shlaer, and
Pirenne, 1942). Obviously, you will be able to do only a crude mock-up of this experiment
in the scope of this chapter. The actual experiment was extremely well controlled and took
a long time to carry out (not to mention specialized equipment).

Since you are unconcerned with publishing the results (these are extremely well estab-
lished), you can pull off a “naı̈ve” version in order to highlight certain features and princi-
ples of the psychophysical method. If you want to increase experimental control, perform
the experiment in a dark room and wait 15 minutes (or better 30 minutes) before data col-
lection. Also, try to keep a fixed distance from the monitor (e.g., 50 cm) throughout the
data collection phase of the experiment.

1878.4 PROJECT

II. DATA COLLECTION WITH MATLAB

However, before you can collect data, you need to write a stimulus control program uti-
lizing the skills from the previous two chapters and the image manipulation skills intro-
duced in this chapter. Here is a simple program that will do what is needed (make this an
M-file). Note the somewhat obsolete use of the modulus function to order the stimuli. We
could also do this with randi in the latest versions of MATLAB. On the other hand, the
use of the modulus function allows you to have exactly the same number of trials per con-
dition (as opposed to them having random frequencies).

clear all; %Emptying workspace
close all; %Closing all figures

temp 5 uint8(zeros(400,400,3)); %Create a dark stimulus matrix
temp1 5 cell(10,1); %Create a cell that can hold 10 matrices

for ii 5 1:10 %Filling temp1
temp(200,200,:) 5 255; %Inserting a fixation point
temp(200,240,:) 5 (ii-1)*10; %Inserting a test point 40 pixels right

%of it. Brightness range 0 to 90.
temp1{ii} 5 temp; %Putting the respective modified matrix in cell

end %Done doing that

h 5 figure %Creating a figure with a handle h

stimulusorder 5 randperm(200); %Creating a random order from 1 to 200.
%For the 200 trials. Allows to have
%a precisely equal number per condition.

stimulusorder 5 mod(stimulusorder,10); %Using the modulus function to
%create a range from 0 to 9. 20 each.

stimulusorder5 stimulusorder1 1; %Now, the range is from 1 to 10, as
%desired.

score5 zeros(10,1); %Keeping score. How many stimuli were reported seen

for ii5 1:200 %200 trials, 20 per condition
image(temp1{stimulusorder(1,ii)}) %Image the respective matrix. As

%designated by stimulusorder
ii %Give observer feedback about which trial we are in. No other feedback.
pause; %Get the keypress
temp25 get(h,'CurrentCharacter'); %Get the keypress. “.” for present,

%“,” for absent.
temp35 strcmp('.', temp2); %Compare strings. If . (present), temp35 1,

%otherwise 0.
score(stimulusorder(1,ii))5 score(stimulusorder(1,ii))1 temp3; %Add up.

% In the respective score sheet.
end %End the presentation of trials, after 200 have lapsed.

Note that these are relatively crude steps. In a real experiment, you might want to probe
every luminance value and collect more samples per condition (50 or 100 instead of 20).

188 8. PSYCHOPHYSICS

II. DATA COLLECTION WITH MATLAB

Also, a time limit of exposure and decision time is usually used. But for now, this will do.
When running this program yourself, make sure to focus on the central fixation dot. Don’t
get frustrated or bored. Psychophysical experiments are extremely intricate affairs, usually
operating at the limits of the human sensory apparatus. Hence, they are rarely pleasant.
So try to focus the firepower of your cortex on the task at hand. Also note that you will
make plenty of errors. Don’t get frustrated. That is the point of psychophysics. In a way,
psychophysics amounts to a very sophisticated form of producing and analyzing errors. If
you don’t make any errors, there is no variance, and without variance, most of the psycho-
physical analysis methods fail—hence the large number of trials. Given enough trials, you
can count on the statistical notion that truly random errors will average out, while retain-
ing and strengthening the systematic trends in the data, revealing the properties of the sys-
tem that produced it. As a matter of fact, you might want to throw in a couple of practice
runs before deciding to analyze your data for real. Given that you are likely to be what is
technically called an untrained observer there will be various dynamics going on during
the experiment. At first, practice effects will enhance the quality of your judgments; then
fatigue will diminish it. Also note that you are technically not a “naı̈ve” observer, as you
are aware of the purpose of the experiment. Don’t let this discourage you for now. Doing
so, we obtained the curve shown in Figure 8.8. This figure shows a fairly decent psycho-
metric curve. It is obvious that we did not see the dot on the left tail of the curve (the
observed variation represents errors in judgment). Similarly, it is obvious that we did
always see the dot on the right of the curve, yet there is some variation in the reported
instances seen. In other words, the points on the left are below threshold, whereas the
points on the right are already saturated. In a real experiment, we would resample
the range between the brightness values 20 and 70 much more densely, as it is clear that
the date points outside this range add no information. However, this neatly illustrates one
problem of the method of constant stimuli. We didn’t know where the threshold would

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50
Brightness

P
ro

ba
bi

lit
y

re
po

rt
ed

 s
ee

n

60 70 80 90

FIGURE 8.8 The psychometric
curve reveals below-threshold regions,
saturation regions, and a linear range.

1898.4 PROJECT

II. DATA COLLECTION WITH MATLAB

lie. Hence, we had to sample a broad range—undersampling the crucial range and over-
sampling regions of no interest. Even limiting the range from 0 to 90 was an educated
guess. Strictly speaking, and without any previous knowledge, we would have had to
sample the entire range of 0 to 255. Modern “staircase” procedures attempt to solve this
problem, but are beyond the scope of this chapter. Psychophysicists like to boil down this
entire dataset into one number: the absolute threshold. In this case, you can derive this value
by interpolation. It is the x-value that corresponds to the intersection between the curve
and the y-value of probability reported seen of 0.5, as shown in Figure 8.9. In other words,
this analysis indicates an absolute threshold of a brightness value of 43. If you want to get
a precise threshold, you would have to resample the range between 30 and 60 (or even
between 40 and 50) very densely. Also note that this value of 43 is not inherently meaning-
ful. Without having the monitor calibrated with a photometer, we don’t know to how
much physical light energy this corresponds to. Hence, we can’t relate it to the minimum
number of light quanta that can be detected. However, this threshold is meaningful in the
context of a behavioral task: a shifted threshold under different conditions can give rise to
conjectures about the structure and function of the physiological system producing these
thresholds, as you will see when doing the exercises. Moreover, the absolute threshold is a
stochastic concept. It is not true that lights below it are never seen. Of course, psychophy-
sicists have very elaborate ways to analyze data like these. Most straightforwardly, they
like to fit sigmoidal logistic curves to such data. We will go into the intricacies of psycho-
physical data analysis in the next chapters. Finally, we chose luminance values that
worked on our monitor, yielding a decent psychometric curve, allowing us to determine
the threshold. You might have to use a different range when working within your setup.
For more background on psychophysical methods, read the classic Elements of
Psychophysics by Fechner (1860) or, for a modern treatment of the use of these methods in
visual neuroscience, The Psychophysical Measurement of Visual Function by Norton, Corliss,

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50
Brightness

P
ro

ba
bi

lit
y

re
po

rt
ed

 s
ee

n

60 70 80 90

FIGURE 8.9 The psychometric
curve allows you to establish the abso-
lute detection threshold.

190 8. PSYCHOPHYSICS

II. DATA COLLECTION WITH MATLAB

and Bailey (2002). In this project, you should specifically address the following issues:
Compare thresholds in the periphery and center. You just did a parafoveal stimulus pre-
sentation (if you were honest and fixated the fixation point) or even a foveal presentation
(if you looked at the stimulus directly). How does the threshold change in the periphery
(putting the stimulus several hundred pixels away from the fixation point)?

Determine the thresholds for brightness values of the red, green, and blue guns individ-
ually. Which gun has the lowest threshold (is perceived as brightest)? Which gun has the
highest threshold (is perceived as dimmest)? Can you account for the white threshold (as
we did above) by adding the individual thresholds?

You just determined absolute thresholds. Another important concept in psychophysics
is the relative threshold. To determine the relative threshold, put another test dot to the
left of the fixation point. The task is now to indicate if the brightness of the right dot is
higher (.) or lower (,). Does the relative threshold depend on the absolute brightness
values of the dots? If so, can you characterize the relationship between relative threshold
(difference in stimulus brightness values that gives a probability of 0.5) and absolute value
of the stimuli?

When determining the relative threshold, can you reason why it makes sense to ask
which of the two is brighter, instead of asking if they are the same or different (which
might be more intuitive)?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

uint8
double
convn
circshift
image
bench
imread
imwrite
memory
movie
getframe
movie2avi
randperm
mod
spy

191MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

II. DATA COLLECTION WITH MATLAB

C H A P T E R

9

Psychophysics with GUIs

9.1 GOALS OF THIS CHAPTER

This chapter pursues dual goals. First, we want to build on the data collection with the
psychophysical methods that were introduced in the last chapter. Second, and more
importantly, this chapter will introduce the concept of a graphical user interface (GUI)
within MATLAB® and demonstrate its gainful use.

9.2 INTRODUCTION AND BACKGROUND

A surprisingly large number of scientists pride themselves on their coding skills as a
considerable source of self-esteem and identity. For them, it is bad enough that they are
using a high-level interpreted language like MATLAB in the first place. They surely
wouldn’t be caught dead using a GUI on top of that, as giving up the command line
would likely constitute a deadly blow to their street cred.

Nevertheless, there are legitimate uses for GUIs. These reasons are largely the same ones
that made GUIs catch on in the community at large. Briefly put, they make things more acces-
sible, and they require less user knowledge to operate. This is neatly illustrated by the success
of Microsoft Windows, which made the use of computers conceivable for a mass audience
that couldn’t realistically be expected to learn how to profitably interact with a command line.

To illustrate this point within a MATLAB context, the following (true) example should
suffice. I was once involved in a long-distance collaboration involving a question that was
of theoretical interest to me. They had specialized equipment and would collect the data,
but they were not trained in the arts of MATLAB, so we decided that I would do the data
analysis. So far, so good. What I didn’t realize is that there was a rather large amount of
data files collected under a daunting number of experimental conditions that didn’t seem
to be organized or denoted in any way that made sense to me. Worse, they didn’t seem to
be able to communicate the structure to me, and on top of everything else, the organiza-
tion of these data files seemed to keep changing. As you will learn in some of the later
chapters, the proper organization of data is absolutely crucial when attempting to analyze
complex datasets. I couldn’t just send them the code so that they could adapt to their use,

193MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00009-6 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00009-6

because they didn’t have MATLAB, nor did they know how to use it. To make a long
story short, after a few miserable and drawn-out attempts, the collaboration failed. It was
my fault. What I should have done instead (short of physically going there, which I
couldn’t do, due to other commitments) was to write a self-contained GUI that encapsu-
lated the data analysis itself. Such a GUI can be deployed on any machine, even if it
doesn’t have MATLAB, and—if properly set up—can be operated by anyone, even with-
out any MATLAB knowledge. Put differently, I should have used a MATLAB GUI to cre-
ate a data browser (and analyzer), then given it to those who understood the structure of
the dataset (because they collected it). Instead of struggling with an impossible analysis, I
should have invested my time in creating a purpose-built GUI. Luckily, you can learn
from my mistake. This example serves—at least to me—as a very vivid cautionary tale of
why one disregards GUIs at one’s peril. They do have legitimate uses.

9.3 GUI BASICS

GUI stands for graphical user interface. It is therefore redundant to say “GUI interface.”
GUIs were pioneered by Xerox in the 1960s, along with the mouse. They were introduced to
public use with the Apple Macintosh in 1984 and to widespread public use with Windows. In
terms of MATLAB, early GUI functionality was introduced to MATLAB with version 4 in 1992.

For most purposes, the use of GUIs is not indicated. It takes effort to make them, and it is
overkill if only the programmer will ever use the program, e.g., in most data analysis cases in
research. This is particularly true if speed is of the essence, e.g., if you are rushing to meet a
deadline. The two most common use cases that dowarrant the construction of a GUI are:

• If the end user is not the programmer and not expected to know the intricacies of the
program, e.g., for teaching, data collection, or analysis (as in the case of my ill-fated
collaboration).

• If the program involves a lot of flags and parameters that need to be customized with
every run. Instead of doing this on the command line, it is easier to press buttons (and
not forget one). This is good if you, for instance, write a data browser or a simulation.

Having now discussed the conceptual history and defined use cases for GUIs, the obvi-
ous question is: How to make one?

This question is best answered not in the abstract, but with a practical example; which
is why we cover that in the next section.

9.4 USING A GUI TO TRACK AN IP ADDRESS

In popular culture, GUIs are, perhaps unsurprisingly, steeped in mystery. For instance,
in an episode of “CSI: New York,” a character states, during an urgent crisis, that she
will “create a GUI interface using Visual Basic to see if she can track an IP address”
(http://goo.gl/0Dxv0). While this is plainly ridiculous on many levels (see use cases, pre-
vious section), this will do as a simple starter example that will allow you to grasp the
basic functionality. Let’s see if we can create a GUI (not a GUI interface!) to track an IP
address. And we’ll do it using MATLAB, not Visual Basic.

194 9. PSYCHOPHYSICS WITH GUIS

II. DATA COLLECTION WITH MATLAB

http://goo.gl/0Dxv0

The first thing to note is that while you can, in principle, build a GUI by hand and from
scratch, no one really does this anymore since MathWorks introduced the function guide.

GUIDE stands for “GUI design environment,” and it provides exactly that, an editor
that allows you to create GUIs in a point-and-click fashion. It allows you to quickly create
functional GUIs, automatically taking care of most of the plumbing. In MATLAB, GUIs
consist of a figure with associated code. The shell of all of this is created by guide, you are
simply expected to add the functionality. You add elements like buttons, sliders, and lists
in the figure, and you spell out what should happen once the users interact with these ele-
ments in the code. Let’s try it.

After you type guide, you will be prompted with a quick start dialog window; see
Figure 9.1. Note: This GUI was created on a Mac. If you use a PC, your directory structure
will show backslashes, not slashes.

For now, please opt to create a new GUI, use the default “Blank GUI” template, and
click “OK.”

Once you do that, a figure opens that will allow you to build your GUI (see Figure 9.2).
At this point, nothing is on it, but note in the bottom right the indication of a “current
point” vector, which denotes the x and y position of your mouse cursor on the figure, as
well as the “Position” vector. You can resize the figure by dragging the black rectangle on
the bottom right corner of the gray figure canvas. Make sure to keep the screen dimen-
sions of the machine that you want to deploy the GUI in mind. It would be annoying if
the GUI you create so painstakingly wouldn’t fit on the target screen.

On the left is a palette of tools you can insert in the figure, containing buttons and the
like. Click on the button icon (“OK,” below the arrow), and draw its outline on the canvas.
Once you are done, it should look something like Figure 9.3.

The button reads “Push Button”; let’s change that. Double-click on the button. This brings
up the “Inspector.” In this case, the inspector indicates that it is inspecting the uicontrol
pushbutton1. You can also invoke this menu by typing “inspector” in the command line.
You do need to give the handle of the uicontrol as an argument. For now, simply scroll

FIGURE 9.1 GUIDE quick start.

1959.4 USING A GUI TO TRACK AN IP ADDRESS

II. DATA COLLECTION WITH MATLAB

FIGURE 9.2 Blank GUI template.

FIGURE 9.3 Newly created button.

196 9. PSYCHOPHYSICS WITH GUIS

II. DATA COLLECTION WITH MATLAB

down and take note of the different properties. At this point, the tag “pushbutton1” and the
“String” are most relevant. The tag is how we will later address the button. We click on the
text next to the string, change it to “TRACK!,” and click OK; see Figure 9.4. Uicontrols are
user interface objects such as buttons, sliders, and the like. They have a great many proper-
ties that can be set. They can be created both by dragging them onto the canvas within the
guide, or programmatically. For now, we’ll focus on the guide approach.

EXERCISE 9.1

Add another button to the right of the existing button; label it “Own machine.”

Now add an “Edit Text” control. After adding it, change its background color to white
(via the inspector) and take note of its tag. Your figure should now look something like
Figure 9.5.

Now add another “Edit Text” control, and label them with Static text controls as “Host”
and “IP,” as in Figure 9.6.

As you can see, the aesthetics of this GUI leave a lot to be desired, but we’ll fix that
later. For now, let’s focus on functionality.

Click on the green arrow to run the GUI. If you do this for the very first time, you will be
polled for a name. Call it iptracker. After you enter a filename, two things will open: The
GUI as it will look to the end user and the code that was created by GUIDE; see Figure 9.7.

FIGURE 9.4 Renaming the button to “TRACK!”.

1979.4 USING A GUI TO TRACK AN IP ADDRESS

II. DATA COLLECTION WITH MATLAB

FIGURE 9.5 Edit Text control added.

FIGURE 9.6 Host and IP Edit Text controls.

198 9. PSYCHOPHYSICS WITH GUIS

II. DATA COLLECTION WITH MATLAB

The code looks complicated. It seems like GUIDE already created over a hundred lines of
code. But we’ll look at that soon. First, click on the buttons. Nothing will happen. You can enter
text into the text controls, but that’s it. Clearly, we need to add functionality to our program.

That’s what we’ll do now. Close the running instance of the GUI, which should leave you
with the GUI editor and the code. All existing code is stored in iptracker.m, and was created
automatically by GUIDE. Analyzing the code, there are eight functional parts. First, a
lengthy comment section explains the iptracker function (in principle). You can edit this if
you want to. Then comes initialization code, which you should not edit until you know
what you are doing; changes here can break the GUI. After that comes a function that exe-
cutes at the opening of the GUI, before you can see it. Do not concern yourself with this
either at this point. Then comes a function that handles potential output to the command
line. Of particular interest for our purposes are the functions that come after that. Two of
them, “pushbutton1_Callback” and “pushbutton2_Callback,” govern what happens if the
respective button is pressed. To make this explicit: If a given button (identified by the tag,
which you can change via the inspector) is pressed, the code in the corresponding callback
function is executed. The remaining functions govern the creation and updating of the two
edit text boxes. These are the guts of the GUI. We need to define what the code should be
doing by editing the “callback” functions. Speaking more generally, every time you invoke
the uicontrol by moving a slider or pressing a button, the code within the associated “call-
back” function is executed. On a sidenote, you can add uicontrols and associated callback
functions to any figure, without formally creating a GUI if you want the user to be able to
interact with the figure directly, e.g., allowing to change line styles on the fly.

FIGURE 9.7 The GUI and its code.

1999.4 USING A GUI TO TRACK AN IP ADDRESS

II. DATA COLLECTION WITH MATLAB

EXERCISE 9.2

Use the inspector to change the tag for

the two buttons from pushbutton1 and

pushbutton2 to “track” and “own,” respec-

tively. Similarly, change the tag of the two

edit text elements to “ip” and “host.” See

how it changes automatically in the code

after saving the figure by running it again.

This is recommended so that you don’t

lose track of what is what in GUIs with

many elements.

The code still won’t do anything, but

at least the functions are now named

properly.

Now, we are in a position to create the right functionality in the right places. There are
actually only a few key structures and functions that govern the behavior of the GUI.
These are:

• handles: this is the name of the structure that contains all data that is passed around
within the GUI as its elements.

• get: this function is used to get the value of a GUI element.
• set: this function is used to set the value of a GUI element.
• guidata(hObject,handles): invoking this updates the handles data structure.

And that’s basically it. The rest is details and commentary.
We now add the following code to the track callback function, which executes when the

track button is pressed. Basically, we implement a three-step process. First, we read in the
value of the “host” text field, then we use a special Java function provided by MATLAB
(getHostAddress) to resolve the IP address. Third and finally, we put output this value
into the ip text field, as follows:

handles.temp 5 get(handles.host,'String'); %Reading in the string in "host" text field,
%putting it into temp.

ipaddress 5 char(getHostAddress(java.net.InetAddress.getByName(handles.temp)));
%Resolving the IP address.
set(handles.ip,'String',ipaddress); %Updating the string field of the ip object with

%the ip address.

At the end of this exercise, your function should look like Figure 9.8.
Now execute your code and try it. Input a URL into the host field, then click the track

button (see Figure 9.9).

FIGURE 9.8 Track callback function.

II. DATA COLLECTION WITH MATLAB

200 9. PSYCHOPHYSICS WITH GUIS

It works! Congratulations, you just executed your first MATLAB function from a GUI,
and you tracked an IP address in the process.

Naysayers might complain that we didn’t actually track an IP address, we just resolved
one. OK, fine. Luckily, we anticipated this in the design of our program.

We’ll use similar but slightly different logic as before, (as we now need to use functions
to retrieve our own IP). To do that, add the following code to the callback function that
corresponds to the “own machine” button (see Figure 9.10):

FIGURE 9.9 Success!

FIGURE 9.10 Success again!

2019.4 USING A GUI TO TRACK AN IP ADDRESS

II. DATA COLLECTION WITH MATLAB

ipaddress 5 char(getHostAddress(java.net.InetAddress.getLocalHost)); %Get own IP
%address.

set(handles.ip,'String',ipaddress); %Updating the string field of the ip object with %
%the ip address.

set(handles.host,'String','This machine'); %Updating the string field of the host
%object.

We taste sweet success yet again. We tracked an IP address (in real time!), even if it was
our own. You can even toggle back and forth between tracking URLs and your own IP.

Now that you understand the basic mechanics of GUIs, we can move on to something
more exciting, like psychophysics.

9.5 USING A GUI FOR PSYCHOPHYSICS

We won’t reinvent the wheel here. If temporal precision is an issue and if you want to
do advanced psychophysics, you should use the Psychophysics Toolbox or MGL, as
explained in more detail in Appendix B. Nevertheless, you can use GUIs to nicely collect
psychophysical data, and maybe even add a button to calculate thresholds, and so on.

As you will also learn in Appendix B, there is a MATLAB compiler that allows you to
deploy a GUI without needing the machine of the end user to have MATLAB installed.
This adds versatility if you need to collect data in the field.

People are very used to GUIs by now. Most participants in your experiments won’t know
much about MATLAB, but they will know how to use a GUI (if you designed it right).

For educational purposes, we won’t start with a fresh GUI, but will continue in medias
res. Let’s add some things to the existing GUI that you will need for psychophysics.

The first thing to do is to resize it (make it bigger) to accommodate our changes.
Then, add an axes element (you can add as many axes as you want, but one will do for

now), a slider element, another two buttons (“START” and “HAPPY”), and another text
edit field (tagged brightness), roughly as shown in Figure 9.11.

As you know by now, these elements don’t do anything yet, so we have to add the func-
tionality by adding code. Once we execute the program by clicking on the green arrow,
MATLAB will create the necessary wrappers/callbacks for us. We just have to fill them.

Appropriately, we’ll start with the functionality of the “START” button. The point of
this button will be to initialize the display in “axes.” Put this code into the callback func-
tion for the start button:

%Create a dark background with one spot of random brightness
handles.X 5 zeros(500,500,3);
%Create a matrix with zeros, in 3 dimensions
actual_brightness 5 randi([0 255],1);
%Pick a random integer as a luminance value from 0 to 255.
actual_brightness 5 actual_brightness./255;
%Scale down
handles.X(250:259,200:209,:) 5 actual_brightness;
%Assign it to a 93 9 pixel square.
imagesc(handles.X,[0 255]); %Image it, scaled.

202 9. PSYCHOPHYSICS WITH GUIS

II. DATA COLLECTION WITH MATLAB

axis off; %Take off axes labels, etc.
axis square %Make it square
handles.actbright 5 actual_brightness; %Put the actual brightness in the handles
%structure.

Now every time you execute the code, a bright square will be displayed on a dark
background. Every time you press start again, a new, random brightness is picked (see
Figure 9.12).

Now for the slider. The idea is that the participant can dial the brightness of a compari-
son square up and down. The goal is to match the brightness of the square set by
MATLAB (once START is pressed).

Add this code to the slider function. It executes every time the slider is moved. The
logic is that we first get the slider value, then add it to the matrix:

handles.bright 5 get(handles.slider1,'Value'); %Getting the slider value
handles.X(250:259,300:309,:) 5 handles.bright; %Assign it to another 93 9 pixel

%square next to the other one.
imagesc(handles.X,[0 255]); %Image it, scaled.
axis off; %Take off axes labels, etc.
axis square %Make it square

Run the code. Something weird will happen. In my case, the whole screen turns blue
every time I move the slider (see Figure 9.13). Not quite the outcome I was hoping for.
What is going on?

FIGURE 9.11 The expanded GUI.

2039.5 USING A GUI FOR PSYCHOPHYSICS

II. DATA COLLECTION WITH MATLAB

FIGURE 9.12 The START button at work.

FIGURE 9.13 Not the desired outcome.

204 9. PSYCHOPHYSICS WITH GUIS

II. DATA COLLECTION WITH MATLAB

Bugs like these are hard to track down. In this case, it helps to remember what we dis-
cussed earlier in terms of the functions that implement virtually all basic GUI operations.
The individual functions that make up the GUI don’t by themselves have access to vari-
ables in other functions. They only do so via the handles structure. And that is only
updated if the function guidata is invoked. This means there is an easy fix here. The slider
function did not have access to the X matrix we created in the start button function, as
handles hadn’t yet been updated. To remedy this, add this code at the end of the start but-
ton code (and for good measure, put it at the end of the slider code as well):

guidata(hObject, handles);

That did it; see Figure 9.14. The user can adjust the brightness of the right patch at will,
by moving the slider.

We now need to assign an end condition, a condition that allows the user to indicate
that he is happy with the match and ready to move on to the next trial. That’s where the
“HAPPY” button comes in.

Add this code to the function that executes when the happy button is pressed:

handles.diff 5 abs(handles.bright-handles.actbright).*255; %Calculate the absolute
%difference between the values

set(handles.brightness,'String',num2str(handles.diff)); %Put it in the text field tagged
%"brightness"

guidata(hObject, handles); %Don’t forget to update. Save your work.

FIGURE 9.14 The brightness slider working properly.

2059.5 USING A GUI FOR PSYCHOPHYSICS

II. DATA COLLECTION WITH MATLAB

It calculates the difference between the two brightness values, and outputs it in the text
field we haven’t used yet (see Figure 9.15).

Now, if you were adventurous, you could add code that starts a new trial in this very same
function. You could also add code that calculates thresholds on the press of a button, you could
display the data on the screen and prettify the design of this figure, etc.; you get the idea.

This is as far as we’ll go for now. You can write GUIs of arbitrary complexity with hun-
dreds of elements and multiple pages with the principles we covered here. If you are
interested in more details and, in particular, how to build GUIs by hand (without using
guide), we refer you to Smith (2006), although the book is somewhat dated by now.

Congratulations, you did “CSI: New York” one better. Not only did you create a GUI
that tracks an IP address in real time, the same GUI also allows you to collect psychophys-
ical data at the same time. Impressive.

EXERCISE 9.3

The “method of production” sensu

Fechner, in which the study participant con-

trols a dial to match a given stimulus inten-

sity, is particularly popular in color

psychophysics. Create a GUI where the

participant is presented with a given colored

light and has to reproduce it by adjusting

three sliders: one for the red gun, one for the

green gun, and one for the blue gun of the

screen.

FIGURE 9.15 The HAPPY button at work.

206 9. PSYCHOPHYSICS WITH GUIS

II. DATA COLLECTION WITH MATLAB

9.6 PROJECT

This one is very straightforward. Put the psychophysics task that you created in the last
chapter into a GUI! Make sure to add a button that allows you to calculate thresholds at
the end. It doesn’t have to calculate IP addresses, so start with a fresh GUI.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

guide
inspector
getHostAddress
guidata
randi
guidata

207MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

II. DATA COLLECTION WITH MATLAB

C H A P T E R

10

Signal Detection Theory

10.1 GOALS OF THIS CHAPTER

This chapter will mostly concern the use of signal detection theory to analyze data gen-
erated in psychophysical—and hypothetical neurophysiological—experiments. As usual,
we will do this in MATLAB®.

10.2 BACKGROUND

At its core, signal detection theory (SDT) represents a way to optimally detect a signal
in purely statistical terms without an explicit link to decision processes in particular or
cognitive processes in general. However, in the context of our discussion, SDT provides a
rich view of the problem of how to detect a given signal. It reframes the task as a decision
process, adding a cognitive dimension to our understanding of this matter.

To illustrate the application of SDT in psychophysics, let us again consider the problem
of reporting the presence or absence of a faint, barely visible dot of light, as in Chapter 8,
“Psychophysics.” In addition to the threshold, which is determined by the physical prop-
erties of the stimuli and the physiological properties of the biological substrate, there are
cognitive considerations. In particular, observers have a criterion by which they judge (and
report) whether or not a signal was present. Many factors can influence the criterion level
and—hence—this report. You likely encountered some of those in the preceding chapters.
For example, your criterion levels might have been influenced by doing a couple hundred
trials, giving you an appreciation of what “present” and “absent” mean in the context of
the given stimulus range (which is very dim overall). Moreover, motivational concerns
might play a role when setting a criterion level. If research participants have an incentive
to over- or under-report the presence of a signal—e.g., if they think that the experimenter
expects this—they will in fact do so (Rosenthal, 1976). Interestingly, neuroeconomists uti-
lize this effect by literally paying their research participants to prefer one alternative, in
order to study the mechanisms of how the criterion level is set.

Of course, one could question the real-world relevance of these considerations, given
that they arose in very particular and arguably often rather contrived experimental

209MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00010-2 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00010-2

settings. It is worth emphasizing that this first impression is extremely misleading. Today,
signal detection theory constitutes a formal, stochastic way to estimate the probability by
which some things are the case and others are not; by which some effects are real and
others are not, and so on. As such, it has the broadest possible implications. Signal
detection theory is used by pharmaceutical companies as well as oil prospectors, and it
has even made its mark in public policy considerations. Of course, experimenters—
psychophysicists in particular—also still use it.

The astonishing versatility and base utility of signal detection theory are likely owed to
the fact that it goes to the very heart of what it means to be a cognitive organism or sys-
tem, as we will now describe.

Consider the following situation. Let us assume you work for a company that builds
and installs fire alarm systems. As these systems are ubiquitous in modern cities, business
is good. However, you are confronted with a rather confounding problem: How sensitive
should you make these alarms? The four possible cases are tabulated in a classic matrix, as
shown in Table 10.1.

Let’s peruse this matrix in detail as it is the foundation of the entire discussion to fol-
low. The cell in the upper left represents the “desired” (as desired as it can be, given that
there is a real fire in the building) case: there actually is a fire and the alarm does go off,
urging the occupants of the building to leave and alerting the fire department to the situa-
tion. Ideally, you would like the probability of this event to be 1. In other words, you
always want the alarm to go off when there is a fire present. This part should be fairly
uncontroversial. The problem is that in order to reach a probability of 1 for this case, you
need to set the criterion level for indicating “fire” by some parameters (usually smoke or
heat or both) incredibly low. In fact, you need to set it so low that it will likely go off by
levels of smoke or heat that can be reached without a fire being present. This puts you
into the cell in the upper right. If this happens, you have a false alarm. From personal
experience, you can probably confirm that the criterion levels of fire alarms are typically
set in a hair-trigger fashion. Almost anything will set them off, and almost all alarms are
therefore false alarms, given that the a priori probability of a real fire is very, very low. As
is the case in modern cities. While this situation is better than having a real fire, false
alarms are not trivial. Having them frequently is disruptive, can potentially have deleteri-
ous effects in case of a real fire (as the occupants of the building learn to stop taking action
when the alarm goes off), and strains the resources of the firefighters (as a matter of fact,
firefighters have been killed in traffic accidents on their way to false alarms). In other
words, setting the sensitivity too high comes at a considerable cost. Hence, you want to
lower the sensitivity enough to always be in a state that corresponds to one of the cells on
the main diagonal of the matrix, either having a hit (if there is actually a fire present) or a
“correct rejection,” arriving in the lower right. The latter should be the most common case,

TABLE 10.1 The Signal Detection Theory Payoff Matrix

Real fire No fire (but possibly some smoke or heat)

Alarm goes off Hit False alarm

Alarm does not go off Miss Correct rejection

210 10. SIGNAL DETECTION THEORY

II. DATA COLLECTION WITH MATLAB

indicating that there is no fire and the fire alarm does not go off. Unfortunately, if you
drop the sensitivity too low, you arrive in the worst cell of all in terms of potential for
damage and fatalities: having a real fire, but the fire alarm does not alert you to this situa-
tion. This is called a “miss,” in the lower left.

In a way, this matrix illustrates what signal detection theory is all about: figuring out a
way to set the criterion in a mathematically optimal fashion (in the applied version) and
figuring out how and why people, organisms, and systems actually do set criteria when
performing and solving cognitive tasks (in the pure research version).

If this description sounds familiar, it should. As contemporary science has largely
adopted a stochastic view on epistemology, this fundamental situation of signal detection
theory appears in many if not most experiments, disguised as the “p-value” problem.

You are probably well aware of this issue, so let us just briefly retrace it in terms of sig-
nal detection theory.

When performing an experiment, you observe a certain pattern of results. The basic
question is always: How likely is this pattern, given there is no effect of experimental
manipulation? In other words: How likely are the observed data to occur purely by
chance? If they are too unlikely given chance alone, you reject the “null hypothesis” that
the data came about by chance alone. That is—in a nutshell—the fundamental logic of test-
ing for the statistical significance of most experimental data since Fisher introduced and
popularized the concept in the 1920s (Fisher, 1925).

But how unlikely is too unlikely? Again, we face the fundamental signal detection
dilemma, as illustrated in Table 10.2.

In science, the criterion level is conventionally set at 5%. This is called the significance
level. If a certain pattern of data is less likely than 0.05 to have come about by chance, then
you reject the null hypothesis and accept that the effect exists. Implicitly, you also accept
that—at this level—5% of the published results will not hold up to replication (as they
don’t actually exist). It is debatable how conservative this standard is or should be. For
extraordinary claims, a significance level of 1% or even less is typically required. What
should be apparent is that the significance level is a social convention. It can be set accord-
ing to the perceived consequences of thinking there is an effect when there is none (alpha
error) or failing to discover a genuine effect (beta error), particularly in the medical commu-
nity. The failure to find the (side-) effect of certain medications has cost certain companies
(and patients) dearly. For a dissenting view on why the business of significance testing is
a bad idea in the first place, see for example Ziliak and McCloskey (2008).

Regardless of this controversy, one can argue that any organism is—curiously—in a
quite similar position. You will learn more about this in Chapters 21, “Neural Decoding:
Discrete Variables,” and 22, “Neural Decoding: Continuous Variables.” For now, let us dis-
cuss the fundamental situation as it pertains to the nervous system (particularly the brain)

TABLE 10.2 Alpha and Beta Errors in Experimental Judgment

Effect exists (H0 false) Effect does not exist (H0 true)

We conclude it exists Discovery of effect Alpha error (false rejection of H0)

We conclude it doesn’t exist Beta error (false retention of H0) Failure to reject the null hypothesis

21110.2 BACKGROUND

II. DATA COLLECTION WITH MATLAB

of the organism. Interestingly, based on everything we currently assume to be true, the
brain has no direct access to the status of the environment around it—as manifested in
the values of physical parameters such as energy or matter. It learns about them solely by
the pattern of activity within the sensory apparatus itself. In other words, the brain
deduces the structure of the external world by observing the structural regularities of its
own activity in response to the conditions in the outside world. For example, the firing of
a certain group of neurons might be associated with the presence of a specific object in the
environment. This has profound philosophical implications. Among them is the notion
that the brain decodes its own activity in meaningful ways, as they were established by
interactions with the environment and represent meaningful associations between firing
patterns and states in the environment. In other words, the brain makes actionable infer-
ences about the state of the external world by cues that are provided by activity levels of
its own neurons. Of course, these cues are rarely perfectly reliable. In addition, there is
also a certain level of “internal noise,” as the brain computes with components that are not
perfectly reliable either. This discussion should make it clear how the considerations about
stochastic decision making introduced previously directly apply to the epistemological sit-
uation in which the brain finds itself. We will elaborate on this theme in several subse-
quent chapters. It should already be readily apparent that this is not trivial for the
organism, as it has to identify predator and prey, along with other biologically relevant
hazards and opportunities in the environment. In this sense, errors can be quite costly.

SUGGEST ION FOR EXPLORAT ION

The basic signal detection situation

seems to reappear in different guises over

and over again. What we call the two funda-

mental errors varies from situation to situa-

tion. Try framing the results of a diagnostic

test for an arbitrary disease in these terms

(which here appear as false positive and false

negative). Also, try to model a case in the

criminal justice system in this way.

10.3 EXERCISES

With this background in mind, it is now time to go back to MATLAB®. Let us discuss
how you can use MATLAB to apply signal detection theory to the data generated in
behavioral experiments.

Consider this situation. You run an experiment with 2000 trials. While running these
trials, you record the firing rate from a single neuron in the visual cortex. In 1000 of the
trials, you present a very faint dot. In the other 1000, you just present the dark back-
ground, without an added visual stimulus.

Let’s plot the (hypothetical) firing rates in this experiment. To do so, you use the normpdf
function. It creates a normal distribution. Normal distributions occur in nature when a large
number of independent factors combine to yield a certain parameter. A normal distribution
is completely characterized by just two parameters: its mean and variance.

Now, let us create a plausible distribution of firing rates. There is evidence that the
baseline firing rate of many neurons in visual cortex in the absence of visual stimulation

212 10. SIGNAL DETECTION THEORY

II. DATA COLLECTION WITH MATLAB

hovers around 5 impulses/second (Adrians). Moreover, firing rates cannot be negative.
This makes our choice of a normal distribution somewhat artificial, as it does—of course—
yield negative values.

With that in mind, the following code will produce a somewhat plausible distribution
of firing rates for background firing in the absence of a visual stimulus:

x 5 0:0.01:10;
y 5 normpdf(x,5,1.5)
plot(x,y)

The third parameter of normpdf specifies the variance. In this case, we just pick an arbi-
trary, yet reasonable value—for neurons in many visual areas, the variance of the neural
firing rate scales with and is close to the mean. Other values would also have been possi-
ble. Note that strictly speaking, it would make more sense to consider only integral firing
rates, but for didactic reasons, we will illustrate the continuous case. This will not make a
difference for the sake of our argument, and it is the more general case.

Now consider the distribution where the stimulus is in fact present. However, it is very
faint. It is sensible to assume that this will change the firing rate of an individual neuron
only very modestly (as the neuron needs the rest of the firing range to represent the remain-
ing luminance range). This assumes that the neuron changes its firing rate in response to
luminance changes in the first place. Many—even in visual cortex—do not but are lumi-
nance invariant. Most do—however—modulate their firing in response to contrast. None of
this is important for our didactic “toy” case. A plausible distribution will be created by:

z 5 (normpdf(x,6,1.5));
plot(x,z)

In other words, we assume that adding the stimulus to the background adds only—on
average—one spike per stimulus in this hypothetical example. For the sake of simplicity,
we keep the variance of the distribution the same, in reality it would likely scale with the
increased mean.

SUGGEST ION FOR EXPLORAT ION

MATLAB has a large library of probabil-

ity density functions. Try another one to

model neural responses. A plausible start-

ing point would be the Poisson distribution,

as it yields only discrete and positive

values, as is the case with integral neural

firing rates. MATLAB offers the Poisson

probability density function under the com-

mand poisspdf.

On a side note, this is a good point to introduce another class of MATLAB functions,
namely cumulative distribution functions. They integrate the probability density of a given
distribution function (e.g., the normal distribution).

These are used for many calculations, as they provide an easy way to determine the
integrated probability density of a given distribution at a certain cutoff point.

For example, normcdf is often used to determine IQ-percentiles.

21310.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

As IQ in the general population is distributed with a mean of 100 and a standard devia-
tion of 15, we can type:

normcdf(100,100,15)

to get the unsurprising answer:

ans 5
0.5000

If we want to find out the percentile of someone with an IQ of 127, we simply type:

.. normcdf(127,100,15)
ans 5

0.9641

In other words, the person has an IQ higher than 96.41% of the population.
Back to SDT. If you did everything right, you can now cast the problem in terms of sig-

nal detection theory. It should look something like Figure 10.1.
The plot in Figure 10.1 contrasts the case of stimulus absence versus stimulus presence;

firing rate in impulses per second is plotted on the x-axis, whereas probability or frequency
is plotted on the y-axis. The thick vertical black line represents the criterion level we chose.

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 1 2 3 4 5 6 7 8 9 10

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 1 2 3 4 5 6 7 8 9 10

FIGURE 10.1 Signal absent versus signal present—two different distributions.

214 10. SIGNAL DETECTION THEORY

II. DATA COLLECTION WITH MATLAB

The upper panel represents the case of an absent stimulus. For the cases to the right of
the black line, the neuron concluded “stimulus present,” even in the absence of a stimulus.
Hence, they are false alarms. Cases to the left of the black line are correct rejections. As
you can see, at a criterion level of 7.5 impulses per second, the majority of the cases are
correct rejections.

The lower panel represents the case of a present stimulus. For the cases to the left of the
black line, the neuron concluded “stimulus absent,” even in the presence of a stimulus.
Hence, they are misses. Cases to the right of the black line represent hits. At a criterion
level of 7.5 impulses per second, the majority of the cases are misses.

We are now in a position to discuss and calculate the receiver operating characteristic
(ROC) curve for this situation, defined by the difference in mean firing rate, variance, and
shape of the distribution. The exotic-sounding term receiver operating characteristic origi-
nated in engineering, in particular the study of radar signals and their interpretation.

Generally speaking, an ROC curve is a plot of the false alarms (undesirable) against hits
(desirable), for a range of criterion levels. “Area under the ROC curve” is a metric of how
sensitive an observer is, as will be discussed later. Given the conditions that you can gen-
erally assume, ROC curves are always monotonically non-decreasing curves. In the context
of tests, you plot the hit rate (or true positive rate or sensitivity) versus the false positive
rate (or 1-specificity) to construct the ROC curve. Keep this in mind for future reference. It
will be important.

First, try to plot the ROC curve:

figure
for ii 5 1:1:length(y) %Going through all elements of y
FA(ii) 5 sum(y(1,ii:length(y))); %Summing from ith element to rest - FA(ii)
HIT(ii) 5 sum(z(1,ii:length(y))); %Summing from ith element to rest - Hit(ii)
end
FA 5 FA./100; %Converting it to a rate
HIT 5 HIT./100; %Converting it to a rate
plot(FA,HIT) %Plot it
hold on
reference 5 0:0.01:1; %reference needed to visualize
plot(reference,reference,'color','k') %Plot the reference

Note: This code could have been written in much more concise and elegant ways, but it
is easier to figure out what is going on in this form.

To get the ROC curve, see Figure 10.2.
Note that the false alarms and hits are divided by 100 to get a false alarm and hit rate.

The black line represents a situation in which hits and false alarms rise at the same rate �
no sensitivity is gained at any point. As you can see, this neuron is slightly more sensitive
than that, as evidenced by the deviation of its ROC curve from the black identity line.
However, it rises rather gently. There is no obvious point where one should set the crite-
rion to get substantially more hits than false alarms. This is largely due to the small differ-
ence in means between the distributions, which is smaller than the variance of the
individual distribution. By experimenting with different mean differences, you can explore
their effect on the ROC curves.

21510.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

EXERCISE 10.1

Experiment with mean differences by yourself. The result should look something like

Figure 10.3.

It becomes readily apparent that the ability to choose a criterion level that allows you to
give a high hit rate without also getting a high false alarm rate is dependent on the differ-
ence between the means of the distributions. The larger the difference (relative to the vari-
ance) between the means, the easier it is to set a reasonable criterion level. For example, a
mean difference of 5 allows you to get a hit rate of 0.9 virtually without any false alarms.
This also gives a normative prescription to reduce false alarms: If you want to reduce false
alarms, you should increase the difference in the means of the measured parameter
between conditions of signal present (e.g., a fire) and signal not present (e.g., no fire). The
clearer the parameters you choose to differentiate between these two cases, the better off
you will be. A similar case can be made for the variance of the signals. The less variance
(often noise) there is in the signals, the better off you will be, when you are trying to dis-
tinguish between them. Hence, in order to create highly sensitive tests that discriminate
between two situations, one needs to measure parameters that can be measured reliably
without much noise but which exhibit a large difference in the mean parameter value,
given the different situations in question.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 10.2 The ROC curve.

216 10. SIGNAL DETECTION THEORY

II. DATA COLLECTION WITH MATLAB

SUGGEST ION FOR EXPLORAT ION

How are the ROC curves affected by

increasing the variance of the distribution,

while keeping the absolute mean difference

the same?

The concept of difference (or distance) between means relative to the variance is of cen-
tral importance to signal detection theory. Hence, it received its own name: Discriminability
index (d0 or d prime). d0 is defined as the distance between the means of the two distributions
normalized (divided) by the joint standard deviation of the two distributions.
Conceptually, it is an extension of the signal to noise ratio (SNR)—from means to mean dif-
ferences. Here, it can be interpreted as a representation of signal strength relative to noise.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4

Mean difference = 0 Mean difference = 1

Mean difference = 5Mean difference = 3

0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 10.3 The shape of the ROC curve is dependent on the mean difference of the distributions.

21710.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

Importantly, d0 determines where an optimal criterion level should be set. For example,
if d0 is very high, you can get 100% hits without any false alarms, by setting the criterion
level properly. The situation is slightly more complicated when d0 is small, but there is a
prescriptive solution for this case as well—it is discussed below.

This point makes intuitive sense. The errors derive from the fact that the “signal-pres-
ent” and “signal-absent” distributions overlap. The more they overlap, the higher the
potential for confusion. If the distributions don’t overlap at all, you can easily draw a
boundary without incurring errors or making mistakes.

EXERCISE 10.2

Consider Figure 10.4. It represents two

distributions: one for “stimulus absent” on

the left and one for “stimulus present” on

the right. At which x-value would you put

the criterion level? Can you plot the corre-

sponding ROC curve (mean difference5 5,

variance5 0.5)?

SUGGEST ION FOR EXPLORAT ION

Create a movie that shows the evolution

of the ROC curve as a function of increasing

d0 (for added insight, try various degrees of

variance in the distribution). You can also

download this movie from the web site.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 5 10 15

FIGURE 10.4 A case of high d0.

218 10. SIGNAL DETECTION THEORY

II. DATA COLLECTION WITH MATLAB

So far, so good. One central concept of signal detection theory that we are still missing is
the notion of a likelihood ratio, or rather the use of likelihood ratios in signal detection theory.

While they sound rather intimidating, likelihood ratios are extremely useful because
they are abstract enough to be powerful and flexible, yet specific enough to be of practical
use. Hence, they are used in many fields, particularly diagnostics, but more generally in
almost all of science. If you want to grasp the core of the concept, it is important to first
strip off all these uses—some of which you might be already familiar with—and under-
stand that it originally comes from statistics, or rather probability theory.

If you happen to appreciate analytical statistics, you might be appalled by the purely
intuitive treatment of the likelihood ratio in this chapter. However, we deem this treat-
ment appropriate for the purposes of our discussion.

Consider a situation in which you throw a fair and unbiased six-sided die. Each side
has a probability of 1/6, which is about 0.1667. In other words, you expect the long-term
frequency of a particular side to be 1 in 6. If you now want to know the probability that
the die is showing one of the three lower numbers, you add the three individual probabili-
ties and arrive at 0.5. Similarly, the probability that the die will show one of the three high-
er numbers is equally 0.5.

In other words, the ratio of the probabilities is 0.5/0.55 1.
If you ask what the probability ratio of the upper 4 versus the lower 2 numbers is, you

arrive at (4*0.1667)/(2*0.1667)5 0.666/0.3335 2/15 2. In other words, the ratio of the
probabilities is 2 and—in principle—you could call this a likelihood ratio.

In practice, however, the term likelihood ratio has a specific meaning, which we will
briefly develop here.

To do so, we have to do some card counting. Let’s say a deck of cards contains eight
cards valued 2 to 9. In each round, the dealer draws two cards from this deck (without
showing them to you). There is an additional, special deck that contains only two cards:
one that is valued 1 and one that is valued 10. In the same round, the dealer draws one
card from this special deck—again without showing it to you. However, the dealer does
inform you of the total point value of all three cards on the table. Your task is to guess
whether the card from the special deck is a 1 or a 10.

While this may sound like a rather complicated affair, the odds are actually hugely in
favor of the player once you do an analysis of the likelihood ratios. So don’t expect to see
this game offered in Vegas any time soon.

Instead, let us analyze this game—we happen to call it Chittagong—for educational
purposes. The highest possible point value in the game is 27, and it can happen only if
you get the 10 in the special deck and the 8 and 9 in the normal deck. So there is only one
way to arrive at this value. Similarly, the lowest possible point value is 6—by getting 1 in
the special deck as well as 2 and 3 in the normal deck. This case is also unique.
Everything else falls somewhere in between. So let us construct a table where we explore
these possibilities (see Table 10.3).

SUGGEST ION FOR EXPLORAT ION

Can you re-create Table 10.3 with MATLAB using the permutation functions?

21910.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

You can immediately see that vast regions of the table are not even in play. If the total
value is below 15, you know that the special card had to be a 1. Moreover, if the total
value is above 18, you know that the special card had to be a 10. Only four values are up
to guessing, and even here, the odds are very good: As the player, you should guess 1 for
15 and 16, but 10 for 17 and 18. This state of affairs is due to the large difference between
1 and 10, relative to the possible range of normal values (5 to 17). In other words, d0 is
very high in this game. This becomes immediately obvious when you plot the frequency
distribution as histograms (105 blue, 15 black), as shown in Figure 10.5. This
figure should look vaguely familiar (compare it to Figure 6.4).

TABLE 10.3 Exploring the Likelihood Ratios in the Chittagong Game

Total points

(TP)

Possible cases (5probability) in which

special deck card is 10

Possible cases (5probability) in

which special deck card is 1

Likelihood

ratio (LR)

6 0 1 0

7 0 1 0

8 0 2 0

9 0 2 0

10 0 3 0

11 0 3 0

12 0 4 0

13 0 3 0

14 0 3 0

15 1 2 1/25 0.5

16 1 2 1/25 0.5

17 2 1 2/15 2

18 2 1 2/15 2

19 3 0 inf

20 3 0 inf

21 4 0 inf

22 3 0 inf

23 3 0 inf

24 2 0 inf

25 2 0 inf

26 1 0 inf

27 1 0 inf

220 10. SIGNAL DETECTION THEORY

II. DATA COLLECTION WITH MATLAB

Reducing the mean difference by 4 does change the distance between the distribution
as well as the overall range. Suppose the cards in the special deck are replaced with two
cards worth 0 and 5 points, respectively. What does the histogram of the frequency distri-
butions look like now? (See Figure 10.6.)

The table of likelihood ratios, shown in Table 10.4, reflects this change.
As you can see, there is an intuitive and clear connection between likelihood ratio and

d0. Of course, this relationship has been worked out formally. We will forgo the derivation
here in the interest of getting back to neuroscience.

4

3.5

3

2.5

2

1.5

1

0.5

0
6 8 10 12 14 16 18 20 2822 24 26

FIGURE 10.5 Histogram of fre-
quency distributions.

4

3.5

3

2.5

2

1.5

1

0.5

0
6 8 10 12 14 16 18 20 22

FIGURE 10.6 Histogram of fre-
quency distribution with a smaller
mean differences between the spe-
cial cards (05 black, 55 blue).

22110.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

In this simple case, you can just set the criterion at the ratio between the probabilities. If
this ratio is smaller than 1, guess 0. If it is larger, guess 5.

In the technical literature, the likelihood ratio takes more factors into account: the prior
probability as well as payoff consequences. Let us illustrate this case. Suppose there are
not 2, but 10 cards in the special deck: You know that 9 have a value of 5, 1 has a value
of 0. Hence, there is an a priori chance of 9/10 that the card will have a value of 5, and
this does influence the likelihood ratio, as it should. Taking payoff consequences into
account makes good sense because not all outcomes are equally good or bad (see the dis-
cussion at the beginning of the chapter). A casino could still make money off this game by
adjusting the payoff matrix. For example, it could make the wins very small (as they are
expected to happen often in a game like this), but the rare losses could be adjusted such
that they are rather costly. A player has to take these considerations into account when
playing the game and setting an optimal criterion value.

TABLE 10.4 Revisiting Likelihood Ratios

Total points

(TP)

Possible cases

(5probability) in
which special deck card

is 5

Possible cases

(5probability) in
which special deck card

is 0

Likelihood

ratio (LR)

5 0 1 0

6 0 1 0

7 0 2 0

8 0 2 0

9 0 3 0

10 1 3 1/35 0.33

11 1 4 1/45 0.25

12 2 3 2/35 0.66

13 2 3 2/35 0.66

14 3 2 3/25 1.33

15 3 2 3/25 1.33

16 4 1 4/15 4

17 3 1 3/15 3

18 3 0 inf

19 2 0 inf

20 2 0 inf

21 1 0 inf

22 1 0 inf

222 10. SIGNAL DETECTION THEORY

II. DATA COLLECTION WITH MATLAB

To make this point more explicit, the likelihood ratio can be defined as follows:

lijðeÞ5
pðejsiÞ
pðejsjÞ

ð10:1Þ

So the likelihood ratio of an event e is the ratio of two conditional probabilities. One is
the probability of the event given state si; the other, the probability of the event given state
sj. lij is always a single real number.

Moreover, we already discussed a more general situation where the likelihood ratio
takes prior probabilities and payoffs into account:

lijðeÞ5
stim2frequency

12 stim2frequency
� value2of2correct2rejection2 value2of2false2alarm

value2of2hit2 value2of2miss
ð10:2Þ

This is particularly important for real life situations, where not all outcomes are equally
valuable or costly.

As we alluded to before, the likelihood ratio is closely linked to ROC curves.
Specifically, it is very important to characterize optimal behavior.

These considerations influence the likelihood ratio at which you should set your deci-
sion criterion. Importantly, there is a direct relationship between likelihood ratio and ROC
curve: The slope of the ROC curve at a given point corresponds to the likelihood ratio cri-
terion which generated the point (Green and Swets, 1966). In other words, an inspection of
the slope can reveal where the criterion should optimally be set.

Let us illustrate these claims by revisiting the distributions introduced at the beginning
of the chapter.

Use this code to plot the slope of the curves, analogous to Figure 10.2.

figure
x 5 0:0.01:10;
%Note that x is ordered. If you start with empirical data, you will have to sort them
%first.
y 5 normpdf(x,5,1.5)
z 5 (normpdf(x,6.5,1.5));
subplot(2,1,1)
for ii 5 1:1:length(x)
FA(ii) 5 sum(y(1,ii:length(y)));
HIT(ii) 5 sum(z(1,ii:length(y)));
end
FA 5 FA./100;
HIT 5 HIT./100;
plot(FA,HIT)
hold on
baseline 5 0:0.01:1;
plot(baseline,baseline,'color','k')
subplot(2,1,2)
for ii 5 1:length(x)-1
m1(ii) 5 FA(ii)-FA(ii1 1); %This recalls the

22310.3 EXERCISES

II. DATA COLLECTION WITH MATLAB

m2(ii) 5 HIT(ii)-HIT(ii1 1); %equation of a slope
end
m3 5 m1./m2; %Dividing them
plot(m3)

The slope of the ROC curve is plotted in the lower panel; see Figure 10.7.
The philosophical implications of signal detection theory are deep. The message is

that—due to the stochastic structure of the real world—infallibility is, in principle, impos-
sible in most cases. In essence, in the presence of uncertainty (read: in all real life situa-
tions), errors are to be expected and cannot be avoided entirely. However, signal detection
theory provides a precise analytical framework for optimal decision making in the face of
uncertainty, while also being able to take into account subjective value judgments (such as
preferring one kind of error over another).

As you might have noticed, we are really only scratching the surface here. Because
situations in which a signal detection theory perspective is useful are truly ubiquitous—
think of any kind of selection and quality control process, such as hiring decisions, admis-
sion decisions, marriage, dating, to say nothing of the myriad applications in materials sci-
ence—signal detection theory has become a bottomless well. This should not be
surprising, as it is arguably at the very heart of cognition itself. Yet, this led to a situation

0
0

10

20

30

40

50

0.2 0.4 0.80.6 1

0
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.80.6 1

FIGURE 10.7 ROC curve with
slope.

224 10. SIGNAL DETECTION THEORY

II. DATA COLLECTION WITH MATLAB

in which even specialists can be overwhelmed by the intricacies of the field. Hence, the
point of this brief treatment was to cover the conceptual essentials and their application.
We are confident that it is enough to get you started in applying signal detection theory
with MATLAB to problems in neuroscience.

For further reading, we highly recommend the classical and elaborate Signal Detection
Theory and Psychophysics by Green and Swets (1966); the latest edition is still available in
print. It nicely highlights the role of signal detection theory in modern cognitive science
with many colorful examples.

10.4 PROJECT

The project for this chapter is very straightforward. Many uses of signal detection in
neuroscience involve the measurement of some “internal response” in addition to measur-
ing a behavioral response (e.g., deciding whether a stimulus under the control of the
experimenter is present or not). We assume that you do not currently have access to mea-
sure a “deep” internal response, such as firing rate of certain neurons that are presumably
involved in the task. Instead, we ask you to redo the experiment in Chapter 8, but with a
twist. Instead of just asking whether a faint stimulus is present or not, now elicit 2 judg-
ments per trial: One whether the stimulus is present or not, the other how confident the
observer is that it was present or not, on a scale from 1 (not certain at all) to 9 (very cer-
tain). Replot the data in terms of certainty. Get two distributions of certainty (one for situa-
tions where the stimulus was present, the other where it was not present). After doing so,
please answer and explore the following questions:

Where does the internal criterion of the observer lie?
What is the d0 of the certainty distributions?
Construct the ROC curve for the data (including slope).
How sensitive is the observer? (Compare the area under the ROC curve with the area
under the diagonal reference curve.)
Can you increase d0 by showing a different kind of stimulus?
Can you shift the position of the criterion by biasing the payoff matrix for your
observer (e.g., rewarding the observer for hits)?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

normpdf
normcdf
sum

225MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

II. DATA COLLECTION WITH MATLAB

C H A P T E R

11

Frequency Analysis Part I: Fourier
Decomposition

11.1 GOALS OF THIS CHAPTER

This chapter introduces the most common method of decomposing a time series into
frequency components, Fourier analysis. You will learn about the Fourier transform and
the associated amplitude and phase spectra. The MATLAB® implementation of the fast
Fourier transform (FFT), an efficient algorithm for calculating Fourier transformations, will
be introduced and applied to the analysis of human speech sounds.

11.2 BACKGROUND

Figure 11.1 shows typical recordings of two human vowel sounds. How can you charac-
terize these different sounds? Frequency analysis provides a way to examine the relative
contributions of various frequencies to an overall signal. In the case of an auditory signal,
a given frequency component would be termed pitch.

11.2.1 Real Fourier Series

Take some continuous function f. We can approximate such a function with a weighted
series of sinusoids of various frequencies. Such a series is termed the real Fourier series:

fðtÞ5 a0
2

1
XN
n51

an cosðntÞ1
XN
n51

bn sinðntÞ ð11:1Þ

Here, the coefficients an and bn represent the relative strength of each frequency compo-
nent n/2π. [a0 represents the nonoscillatory component of f(t).] So, given f(t), determining the
coefficients an and bn allows for the representation of f(t) as a series sum of sinusoids.

229MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00011-4 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00011-4

We will exploit two special properties of the sine and cosine functions to find the Fourier
series coefficients an and bn. Over the interval 2π to π, cosine and sine functions with differing
frequencies have the special property of orthogonality. The integral of the product of two mutu-
ally orthogonal functions evaluates to zero. So, the integral of the product of cosine or sine
functions with differing frequencies results in zero over this interval. Another interesting prop-
erty of sine and cosine is that the integral of the square of a cosine or sine function over this
integral is π.

To find the strength, am, of a cosine component m, multiply by the corresponding cosine
function and integrate:

ðπ

2π

fðtÞcos ðmtÞdt5
ðπ

2π

a0
2
cos ðmtÞdt1

XN
n51

ðπ

2π

cos ðmtÞan cos ðntÞdt1
XN
n51

ðπ

2π

cos ðmtÞbn sin ðntÞdt

ð11:2Þ
All terms on the right side except the cosine term where m5 n yield zero:

ðπ

2π

fðtÞ cos ðmtÞdt5 am

ðπ

2π

cos2ðmtÞdt ð11:3Þ

0 0.5 1 1.5 2 2.5 3 3.5
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time, in secs

0 0.5 1 1.5 2 2.5 3 3.5

Time, in secs

A
m

pl
itu

de

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

A
m

pl
itu

de

FIGURE 11.1 Acoustic time series representing two different human vowel sounds.

230 11. FREQUENCY ANALYSIS PART I: FOURIER DECOMPOSITION

III. DATA ANALYSIS WITH MATLAB

The right side integral evaluates to one over the integration range, yielding an expres-
sion for the Fourier series term coefficient:

ðπ

2π

fðtÞ cos ðmtÞdt5πam ð11:4Þ

am 5
1

π

ðπ

2π

fðtÞ cos ðmtÞdt ð11:5Þ

In general, the interval of f(t) will not be 2π to π. For an interval centered on x with
length 2L, the expression becomes

am 5
1

L

ðx1L

x2L

fðtÞ cos π
L
mt

� �
dt ð11:6Þ

A similar procedure using sine functions yields the coefficients for the sine terms of the
Fourier series.

11.3 EXERCISES

EXERCISE 11.1

Write a MATLAB function to calculate

coefficients for a real Fourier transform.

Hint: The function will need to shift the

interval so that the interval encompasses

the entire time series. In other words, x5 0

and L5half the range of t.

11.3.1 Complex Fourier Transform

Euler’s identity,

eiωt 5 cos ωt1 i sin ωt ð11:7Þ
provides a straightforward way to formulate complex Fourier series representation for a
given function, f(t):

fðtÞ5
XN

n52N

cne
int ð11:8Þ

Similar to the real transform, coefficients for the complex Fourier transform can be
found by

23111.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

cm 5
1

2π

ðπ

2π

fðtÞe2imtdt ð11:9Þ

for a given coefficient m over the interval 2 π to π. Over the interval x2 L to x1 L, this
becomes

Cm 5
1

2L

ðx1L

x2L

fðtÞe2ðiπmt=LÞdt ð11:10Þ

EXERCISE 11.2

Write a MATLAB function to calculate

coefficients for a complex Fourier transform.

This is essentially the discrete

Fourier transform (DFT):

Fk 5
1

N

XN21

n50

fne
2i2πnN k ð11:11Þ

where k ranges from 0 to N2 1, N is the

number of points, and fn is the value of the

function at point n.

Let’s look at how this method of the Fourier transform scales with N. Given a time
series with N values, this method requires a multiplication of the series and the corre-
sponding Fourier component and subsequent sum for each coefficient. Assuming a num-
ber of coefficients equivalent to N, then you have a process that scales with N2. In other
words, as N increases, the time required to compute the Fourier transform increases as N2.

11.3.2 Fast Fourier Transform

With a few special tricks, a faster algorithm, the fast Fourier transform (FFT) that scales
in N log N time can be formulated. One of these tricks involves taking advantage of data-
sets exactly 2N elements long. The increase in processing speed has made the FFT ubiqui-
tous in signal processing. While a complete derivation of the algorithm is beyond the
scope of this book, invoking the MATLAB implementation of the FFT will be discussed.

MATLAB provides an FFT function fft(X), where X is a vector in time space. fft returns
the frequency space representation of X.

To visualize the importance of the difference in scaling, execute the following code:

figure
hold on
N 5 1:10 * 100;
plot(N, N.̂ 2, 'b')
plot(N, N.*log(N), 'r')

232 11. FREQUENCY ANALYSIS PART I: FOURIER DECOMPOSITION

III. DATA ANALYSIS WITH MATLAB

EXERCISE 7.3

If N represents sample size, what can

you observe about the benefits of scaling as

N grows? Where does the efficiency of the

FFT algorithm benefit most, for large N or

small N?

11.3.3 The Inverse DFT

As you might imagine, there is an inverse to the DFT:

fn 5
XN21

k50

Fke
i2πnN k ð11:12Þ

MATLAB provides ifft() to perform the inverse discrete Fourier transform.

EXERCISE 7.4

Generate a single sine wave. Use fft() to

generate the discrete Fourier transform. Use

ifft() to retrieve the original sine wave from

the DFT.

11.3.4 Amplitude Spectrum

Often when you are using Fourier analysis, the amplitude spectrum is one of the first
analyses performed. The amplitude spectrum graphs amplitude against frequency. In
terms of the Fourier series representation, the amplitude spectrum depicts the magnitude
of the coefficients at various frequencies. As such, it depicts the relative strengths of the
various frequency components.

The following code generates a time series composed of 10 sine waves whose frequen-
cies and amplitudes vary systematically.

L 5 1000;
X 5 zeros(1,L);
sampling_interval5 0.1;
t 5 (1:L) * sampling_interval;
for N 5 1:10
X 5 X1 N * sin (N*pi*t);
end
plot(t, X);
Y 5 fft(X)/L;

Now, the variable Y contains the normalized FFT of X. Note the normalization factor L.
Displaying the amplitude spectrum of X requires plotting the amplitudes at various

23311.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

frequencies. Note that fft returns only a single value, the transform coefficients. Now, how
do you determine the frequency scale?

The return value of the FFT assumes that frequency is evenly spaced, from 0 to a theo-
retical result called the Nyquist limit. Nyquist demonstrated that a discrete sampling of a
continuous process can capture frequencies no higher than half the sampling frequency.
Since the code above has the sampling interval, this Nyquist limit is half the inverse of
the sampling interval.

The following code calculates the Nyquist limit for the time series:

NyLimit 5 (1 / sampling_interval)/ 2;

When viewing the FFT, it is important to remember that the result is the complex trans-
form. Thus, simply using the result of the FFT as a set of real coefficients can cause a num-
ber of problems. To display the amplitude spectrum, the absolute value of the complex
coefficients will be used. The values returned by fft are the coefficients for frequencies
from the negative Nyquist limit to the positive Nyquist limit. If the time series data are
purely real, then the resultant transform will have even symmetry. That is, the transform
will be symmetrical across the abscissa. So, in this very frequent case, only the first half of
the result of fft is used. The following code employs linspace to generate frequency values
and plots the amplitude spectrum. linspace generates a linearly spaced sequence of values
given initial and final values. Here, the initial and final values are 0 and 1, with a value
count of L/2. The resultant vector is scaled by the Nyquist limit to generate the frequency
vector.

F 5 linspace(0,1,L/2)*NyLimit;
plot(F, abs(Y(1:L/2)));

11.3.5 Power

Power at a given frequency is defined as

ΦðωÞ5 jFðωÞj2 5 FðωÞF�ðωÞ ð11:13Þ
where F* is the complex conjugate of F. To do this in MATLAB, use the function conj to
return the complex conjugate of a series of complex values.

Here is a plot of the power spectrum of the time series generated for the amplitude
spectrum:

plot(F, (Y(1:L/2).*conj(Y(1:L/2)));

11.3.6 Phase Analysis and Coherence

A power spectrum alone is not a complete representation of the information in the orig-
inal signal. The various Fourier components can have various phases relative to one
another, as illustrated in Figure 11.2.

You can plot relative phase by frequency by plotting the inverse tangent of the ratio
between the imaginary component and the real component. Why is this the case? Imagine

234 11. FREQUENCY ANALYSIS PART I: FOURIER DECOMPOSITION

III. DATA ANALYSIS WITH MATLAB

the complex plane, with pure real values along the abscissa (x-axis) and pure imaginary
values along the ordinate (y-axis). Any complex value in your 1D Fourier transform can
be represented with a coordinate pair. The magnitude of the value is simply the distance
from the origin to the coordinates, or the complex modulus. The phase is the angle formed
by the abscissa and the line passing through the origin and the complex point. Thus, using
basic trigonometry, the phase angle is tan21 imag

real

� �
.

How can you represent this in MATLAB?

L 5 1000;
X 5 zeros(1,L);
sampling_interval5 0.1;
t 5 (1:L) * sampling_interval;
for N 5 1:10
X 5 X1 N * sin (N*pi*t);
end
plot(t, X);
Y 5 fft(X)/L;
phi 5 atan(imag(Y)./real(Y));
F 5 linspace(0,1,L/2)*NyLimit;
plot(F, phi(1:L/2));

EXERCISE 11.5

Compare the phase spectrum generated

in the preceding exercises with the phase

spectrum of the corresponding cosine func-

tion. Compare their power spectra.

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

sin(x)
sin(x+1)

FIGURE 11.2 Phase difference
between two sinusoids with the
same frequency.

23511.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

11.4 PROJECT

In this project, you will be asked to use Fourier decomposition to analyze vowel sounds
produced by human speakers. On the companion website, you will find five examples of
vowel sounds as produced by male American English speakers. Each sound corresponds
to one of the vowel sounds in Table 11.1. The formant frequencies in Table 11.1 note the
average formant frequencies as spoken by a male speaker of American English. You will
use power spectra of these sounds to classify the recordings as one of these vowel sounds
in the table.

To complete this project, you need to understand how formants relate to frequency
analysis. The human vocal tract has multiple cavities in which speech sounds resonate. As
such, most sounds have multiple strong frequency components. In classifying speech
sounds, the lowest strong frequency band is termed the first formant. The next highest is
termed the second formant, and so on.

Vowels lend themselves to a particularly simple characterization through their for-
mants. Typically, vowel sounds have distinguishable first and second formants. Table 11.1
shows first and second formants for four vowel sounds in American English. Thus, the
short “i” sound would have strong frequency representation at 342 Hz and at 2322 Hz.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

fft
ifft
conj

TABLE 11.1 Average First and Second Formant Frequencies for Selected American
English Vowels

Vowel sound First formant Second formant

Bit 342 2322

But 623 1200

Bat 588 1952

Boot 378 997

(Data from Hillenbrand et al., 1995.)

236 11. FREQUENCY ANALYSIS PART I: FOURIER DECOMPOSITION

III. DATA ANALYSIS WITH MATLAB

C H A P T E R

12

Frequency Analysis Part II:
Nonstationary Signals and

Spectrograms

12.1 GOAL OF THIS CHAPTER

The goal of this chapter is to extend Fourier analysis as covered in the previous chapter
to nonstationary signals. The short-time Fourier transform will be introduced.
Nonstationary examples will include applications to time-varying auditory signals and the
EEG during sleep.

12.2 BACKGROUND

Figure 12.1 depicts the vocalizations of a zebra finch. How is this dissimilar from the
sound signals you have examined thus far?

Note that different portions of the song have different envelopes with clearly defined
breaks. If they are taken separately, you might imagine these subsections to have different
Fourier spectra. In fact, they do. Figure 12.2 shows the Fourier spectrum for two subsec-
tions of song. The two subsections have very different distributions of power over
frequency.

A Fourier transform of the full song returns the power distribution over the entire song.
Any localization of frequency information to a time point or an interval is lost. Using the
example of the bird song here, a Fourier transform of the entire song would eliminate any
ability to associate frequency components with a given syllable. How, then, can you
extend the techniques discussed earlier to such complex signals?

237MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00012-6 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00012-6

12.2.1 The Fourier Transform: Stationary and Ergodic

When applied to a signal, the term stationary indicates that certain statistical properties
of the signal are uniform throughout. In other words, a subset of the signal is sufficient for
analysis of the entire signal. The distribution of power over frequency remains the same
over the whole signal.

A similar idea is the concept of ergodicity. Imagine an ensemble of related signals. Going
with the example of zebra finch vocalizations, an appropriate ensemble would be the set
of vocalizations from a set of birds. An ergodic ensemble is one in which each sample and
the ensemble approach the same mean. In other words, analyzing one sample or a subset
of the signals from the group can approximate the analysis of the ensemble. Ergodicity
and stationarity are independent qualities. Neither implies the other.

The Fourier transform assumes a stationary signal. Unfortunately, many biological sig-
nals, including the birdsong in Figure 12.1, are nonstationary.

12.2.2 Windows

How can you employ the Fourier transform to a nonstationary signal? If you assume
that the Fourier spectrum will change relatively little over a small interval of the signal,
you could divide the overall signal into windows and calculate the Fourier transform for

0 0.5 1 1.5 2 2.5 3
−6000

−4000

−2000

0

2000

4000

6000

Time, in seconds

A
m

pl
itu

de

FIGURE 12.1 The sound amplitude of a zebra finch vocalization as a function of time.

238 12. FREQUENCY ANALYSIS PART II: NONSTATIONARY SIGNALS AND SPECTROGRAMS

III. DATA ANALYSIS WITH MATLAB

each window separately. If a signal is relatively stationary over short intervals, or quasista-
tionary, this approach will often produce fruitful results. While many biological signals
are not truly stationary, many are quasistationary and amenable to this approach.

However, this approach breaks down somewhat at the interval boundaries, due to the
stationary assumptions of the Fourier transform. Choosing overlapping intervals mitigates
this somewhat. This is the basis for the short-time Fourier transform (STFT).

While a simple flat subset of the original time series might be the most straightforward
window, an appropriate choice of window shape can amplify or minimize characteristics
of the time series. For example, windows with tapered ends are used to minimize artifacts
from the edges of the window. This suggests a generalized window function, w(t), which
returns the value of the window at a given value of t. For values outside the window, w(t)
should return values equal to or close to 0.

Mathematically, the STFT is represented as:

Xðτ;ωÞ5
ðN

2N

xðtÞwðt2 τÞe2jωtdt ð12:1Þ

0

200

400

600

800

P
ow

er

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5000

10000

15000

Frequency

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency

P
ow

er

FIGURE 12.2 The power spectra of two portions of the zebra finch vocalizations depicted in Figure 12.1.

23912.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

for a continuous signal. In this case, we are more interested in the discrete STFT,

Xðm;ωÞ5
XN

n52N

xðnÞwðn2mÞe2jωn ð12:2Þ

As mentioned previously, there are many alternatives to the simple squared off window
for calculating an STFT. We will briefly discuss three. The Hamming window function is
commonly used:

wðnÞ5 0:538362 0:46164 cos
2πn
N2 1

� �
ð12:3Þ

where N is the number of points and n varies over the interval.
The Signal Processing Toolbox of the MATLAB® software provides the function ham-

ming, which returns a Hamming window of the desired length:

L 5 100;
w 5 hamming(L);
plot(1:L, w)

Note that the Hamming window has a high amplitude at the center and low amplitude
at the ends. This attenuation reduces the artifacts from the edge of the window interval.
Another window function is the Hann window, whose functional form is similar to the
Hamming window:

wðnÞ5 0:52 0:5 cos
2πn
N2 1

� �
ð12:4Þ

Like the Hamming window, the shape of the Hann window is used to reduce artifacts
introduced at the edges of the finite windows from the signal. Gaussian window functions
are often used as well:

wðnÞ5 e2n2 ð12:5Þ
A short-time Fourier transform using a Gaussian window function is sometimes

denoted as a Gabor transform. A Gabor function is the product of a sinusoid and a
Gaussian function. The Gaussian function causes the amplitude of the sinusoid to dimin-
ish away from the origin, but near the origin, the properties of the sinusoid dominate. By
applying a Gaussian window and a Fourier transform to the time series, you are, in effect,
applying a Gabor function filter to the data.

12.3 EXERCISES

As a part of the Signal Processing Toolbox, MATLAB provides the function spectro-
gram, which calculates a short-time Fourier transform using a Hamming window. The
data for Figure 12.1 is available on the companion web site. Download the file song1.wav,
and load the file with wavread as follows:

[amp, fs, nbits] 5 wavread('song1.wav');

The function wavread loads a sound file in WAVE format and returns the data as
amplitude information ranging from 21 to 11. Here, you store the amplitude information

240 12. FREQUENCY ANALYSIS PART II: NONSTATIONARY SIGNALS AND SPECTROGRAMS

III. DATA ANALYSIS WITH MATLAB

in the variable amp. The sampling rate is returned in fs, and the number of bits per sample
(resolution) is stored in nbits.

Now type

spectrogram(amp, 256, 'yaxis')

You should see something like Figure 12.3. The default operation of spectrogram calcu-
lates power of the signal by dividing the whole signal into eight portions with overlap and
windowing the portion with a Hamming window. Here, the specified window size was
256. The optional parameter ‘yaxis’ specifies that frequency should be on the y-axis rather
than x-axis. If no return values are specified, the default operation renders the power spec-
tral density over time using “hotter” colors (red, yellow, etc.) to designate frequency bands
of greater energy.

If a sampling frequency is not specified, the time scale will not be correct. To show the
correct time space for the loaded song, type

.. spectrogram(amp, 256, [], [], fs, 'yaxis')

Here, the empty brackets signify that the default settings for the window overlap, and
FFT size should remain.

Also, spectrogram can return the power spectral density:

.. [S, F, T, P] 5 spectrogram(X);

.. mesh(P)

2

2.5

3

1.5

N
or

m
al

iz
ed

 fr
eq

ue
nc

y
(>

π
ra

d/
sa

m
pl

e)

1

0.5

0
20001000 3000 4000 5000

Time
6000 7000 8000 9000

FIGURE 12.3 The spectrogram of the bird vocalization using the spectrogram function.

24112.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

The preceding code generates a 3D plot of the spectrogram, where z magnitude, rather
than color, represents power.

EXERCISE 12.1

In the bird song sample, try to determine

where the sound changes using the time

series data alone. Do the same with the

STFT. Do your results agree?

EXERCISE 12.2

Examine the result of the spectrogram

with varying window sizes for the follow-

ing time series:

.. t 5 0:0.05:1;

.. X 5 [sin(5*t) sin(50*t) sin(100*t)];

Try values ranging from 16 to 1024 for

the Hamming window width. How does

the representation change with different

Hamming window widths? Why might this

occur?

12.3.1 Limitations of the STFT

The STFT is a fine resolution to the problem of determining the frequency spectrum of
signals with time-varying frequency spectra. There are some limitations. Small frequency
fluctuations are difficult to detect with the STFT because each subset of the signal is
assumed to be stationary. Since the reported frequency distribution at a time point results
from the analysis of the entire window, choosing a smaller window does allow for better
localization in time. However, a smaller window allows for fewer samples in each Fourier
transform, which ultimately reduces frequency resolution, especially for lower frequencies.
In other words, a trade-off exists between frequency and time localization.

The STFT is best employed when the fluctuations in frequency occur over a fairly uni-
form time scale. This allows selecting a single window size without substantial loss of
information.

12.4 PROJECT

Typical sleep in human adults includes the well-known REM sleep as well as four well-
characterized stages of non-REM sleep, or NREM sleep. During wakefulness, alpha waves
dominate the EEG, in the frequency range 8 to 13 Hz. As the person enters the first stage
of non-REM sleep, the dominant wave type transitions from alpha waves to theta waves,
in the range of 4 to 7 Hz. This is the first stage of non-REM sleep.

242 12. FREQUENCY ANALYSIS PART II: NONSTATIONARY SIGNALS AND SPECTROGRAMS

III. DATA ANALYSIS WITH MATLAB

The second and third stages of non-REM sleep are characterized by sleep spindles, at 12
to 16 Hz, and the appearance of delta waves, ranging in frequency from 0.5 to 4 Hz. The
fourth stage of sleep is characterized by a majority power distribution in the delta wave
band. The third and fourth stages of NREM sleep are also termed slow wave sleep, to
denote the prevalence of the low frequency delta waves in these two stages.

On the companion web site, you can find three EEGs from patients falling asleep. Using
spectrogram and any other frequency analysis tools learned thus far, try to determine
when the people enter each of the NREM stages of sleep.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

hamming
spectrogram
wavread

243MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

III. DATA ANALYSIS WITH MATLAB

C H A P T E R

13

Wavelets

13.1 GOALS OF THIS CHAPTER

In this chapter, you will be introduced to the use of wavelets and wavelet transforms as
an alternative method of spectral analysis. We will discuss a number of common wavelets
and introduce the Wavelet Toolbox of the MATLAB® software.

13.2 BACKGROUND

In Chapter 12, “Frequency Analysis Part II: Nonstationary Signals and Spectrograms,”
introduced the short-time Fourier transform (STFT) to decompose the frequency composi-
tion of nonstationary signals. Under certain situations, though, the STFT results in a less-
than-optimal breakdown of frequency as a function of time. With increased precision in
frequency distribution, localization in time becomes less precise. In other words, there is a
time�frequency precision tradeoff. The reverse is also true: better temporal localization
reduces the precision of the frequency distribution. This may bring to mind the well-
known relationship of position and momentum of the Heisenberg uncertainty principle.

One of the benefits of the STFT is that the transform window can be chosen to optimize
the resolution of frequency or localization of that frequency in time. A larger window
allows for better frequency resolution, and a smaller window allows for better temporal
resolution. However, for the STFT, the window size is constant throughout the algorithm.
So, while the STFT can optimize for frequency or time in a given signal, the choice in the
time-frequency tradeoff holds for the entire signal. This can pose a problem for some non-
stationary signals. The wavelet transform provides an alternative to the STFT that often
provides a better frequency/time representation of the signal.

13.2.1 What is a Wavelet?

A wavelet is a function that satisfies at least the following two criteria:

1. The integral of the function ψ(x) over all x is 0.

245MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00013-8 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00013-8

ðN

2N

ψðxÞdx5 0 ð13:1Þ

2. The square of ψ(x) has integral 1. A function adhering to this property is called square-
integrable.

ðN

2N

ψðxÞdx5 1 ð13:2Þ

Fulfilling the first criterion mandates that the wavelet function has an equal area above
and below zero. Fulfilling the second criterion mandates that the function approach zero
at positive and negative infinity. Because of this second criterion, the function decays
away from the origin, unlike sinusoidal or other infinite waves (thus, wavelet).

13.2.2 The Continuous Wavelet Transform

The continuous wavelet transform (CWT) is analogous to the continuous Fourier transform:

Wðs; tÞ �
ðN

2N

xðuÞψs;tðuÞdu ð13:3Þ

Here, the parameter t is the typical t in the time series x(t). The parameter s is called
scale and is analogous to frequency for Fourier transforms. The wavelet function itself var-
ies with both s and t:

ψs;tðxÞ �
1ffiffi
s

p ψ� x2 t

s

� �
ð13:4Þ

The inclusion of t and s allows the function to be scaled and translated (shifted) for different
values of s and t. The original wavelet function (untranslated and unscaled) is often termed
the mother wavelet, since the set of wavelet functions is generated from that initial function.

The scaling provides a significant benefit over the short-time Fourier transform. The
multiple scales of the wavelet transform permit the equivalent of large- or small-scale
transform windows in the same time series. The preceding transform can be approximated
for a discrete time series.

13.2.3 Choosing a Wavelet

A number of wavelet functions are commonly used in data analysis. Here are two used
primarily for spectral analysis.

Morlet wavelet (for large ω0):

ψðtÞ5π21
4e2

1
2t
2

e2iω0t ð13:5Þ

246 13. WAVELETS

III. DATA ANALYSIS WITH MATLAB

The Morlet wavelet was originally developed to analyze signals with short, high-
frequency transients and long, low-frequency transients (see Figure 13.1).

Mexican hat wavelet:

ψðtÞ5 1ffiffiffiffiffiffi
2π

p
σ3

12
t2

σ2

� �
e
2t2

2σ2 ð13:6Þ

The Mexican hat wavelet has poorer frequency resolution than the Morlet wavelet, but
often better temporal resolution.

13.2.4 Scalograms

The scalogram depicts the strength of a particular wavelet transform coefficient at a
point in time. As such, it is the wavelet analog of the spectrogram.

The scalogram in Figure 13.2 shows the continuous wavelet transform of the following
signal with a Morlet wavelet (sigma5 10). This code generates a time series with three
long blocks of time at 100, 500, and 1000 Hz. At every half second, a 0.05 transient at
1000 Hz is inserted.

−20 −15 −10 −5 0 5 10 15 20

−20 −15 −10 −5 0 5 10 15 20

−20 −15 −10 −5 0 5 10 15 20

−1

−0.5

0

0.5

1
Scale = 1

−1

−0.5

0

0.5

1
Scale = 5

−1

−0.5

0

0.5

1
Scale = 10

FIGURE 13.1 Morlet wavelet at various scales

24713.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

Fs 5 5000;
total_time 5 5;
t 5 (1/Fs):(1/Fs):(total_time/3);
f 5 [100 500 1000];
x 5 [cos(f(1)*2*pi*t) cos(f(2)*2*pi*t) cos(f(3)*2*pi*t)];
t 5 (1/Fs):(1/Fs):total_time;
%add short transients
trans_time 5 0:(1/Fs):0.05;
trans_f 5 1000;
for secs 5 0.5:0.5:4
trans 5 cos(trans_f*2*pi*trans_time);
x((secs*Fs):(secs*Fs1 length(trans)2 1)) 5 trans;
end

Be aware that the relationship between scale and frequency is an inverse one and that
frequency increases with decreasing scale. Also, note how the frequency resolution
improves for the higher frequency band in the later third of the series. This corresponds to
the 1000 Hz section of the time series.

The code to generate and plot the CWT follows.
In my_cwt.m:

function coefs 5 simple_cwt(t, x, mother_wavelet, max_wavelet, scales, params)
% Generates coefs for a continuous wavelet transform
% t, x are time and data points for time series data
% mother_wavelet is a function, taking parameters (t, params),
% where the value of params depends on the specific function used

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

20

40

60

80

100

120

140

160

180

200 FIGURE 13.2 Scalogram for sinu-
soid1 transient signal in text.

248 13. WAVELETS

III. DATA ANALYSIS WITH MATLAB

% max_wavelet is the maximum range of the wavelet function (beyond which
% the wavelet is essentially zero)
% scales is a vector of desired scales
% params is the parameter for the mother wavelet function
max_t 5 max(t);
dt 5 t(2)-t(1);
full_t 5 2 (max_t/2):dt:(max_t/2);
coefs 5 zeros(length(scales), length(x));
points 5 length(x);
t_scale 5 linspace(2max_wavelet, max_wavelet, points);
dt 5 (max_wavelet*2)/(points2 1);
mom_wavelet 5 feval(mother_wavelet, t_scale, params);
row 5 1;
for scale 5 scales
time_scale 5 [11 floor([0:scale*max_wavelet*2]/(scale*dt))];
wavelet 5 mom_wavelet(time_scale);
w 5 conv(x,wavelet)/sqrt(scale);
mid_w 5 floor(length(w)/2);
mid_x 5 floor(length(x)/2);
w 5 w(((2mid_x:mid_x)1mid_w));
scale % print scale to show progress
coefs(row,:) 5 abs(w);
row 5 row1 1;
end

In my_morlet.m:

function m5morlet(t, params)
sigma 5 params(1);
m 5 pi^2 0.25*exp(2 i*sigma.*t2 0.5*t.^2);

In plot_cwt.m:

function plot_cwt(t, coefs, scales)
imagesc(t, scales, coefs);
colormap(hot);
axis xy;
end

Here, imagesc generates an imagemap from two vectors of data. Given parameters x, y,
and c, imagesc generates a colored area of color(n,m) centered at x(n) and y(m). So, here in
plot_cwt, at values of t and coefs, the corresponding scales value is used to assign a color.

To generate the scalogram, type:

scales 5 1:200;
coefs 5 my_cwt(t, x, @my_morlet, 10, scales, [10]);
plot_cwt(t, coefs, scales);

24913.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

13.2.5 The Discrete Wavelet Transform

In addition to the continuous wavelet transform, there is a transformation termed the
discrete wavelet transform (DWT). However, the DWT is not merely a discretized continuous
wavelet transform. Instead, the discrete wavelet transform calculates only a subset of the
possible scales, usually dyadic values (successive values in 2n, i.e., 1, 2, 4, 8, 16, 32, etc.).
Moreover, the DWT is usually calculated using an algorithm called the pyramid algorithm,
in which the data series is recursively split in two and reprocessed.

An exploration of the pyramid algorithm is beyond the scope of this chapter. For a
thorough discussion, see Percival and Walden (2000). The DWT has been used to denoise
signals and to cluster neural spikes for sorting (Quiroga, Nadasdy, and Ben-Shaul, 2004).

13.2.6 Wavelet Toolbox

Wavelet Toolbox provides an implementation of the DWT and a number of appropriate
wavelets. Analyses using the discrete wavelet transform use different wavelets than analy-
ses with the continuous transform. The Haar wavelet and the Daubechies wavelet are
among the most widely used.

In the following commands, ‘wname’ corresponds to the name of a specific wavelet
included in Wavelet Toolbox. Possible choices are ‘dbN’ for Daubechies N, ‘haar’ for Haar,
‘morl’ for Morlet, and ‘mexh’ for the Mexican hat. To view all supported wavelets, use help
waveform.

coefs 5 cwt(S, SCALES, 'wname')

The function cwt performs a continuous wavelet transform on the dataset S. The scales
given as SCALES are used, and the wavelet is given by ‘wname’. The function cwt will also
automatically plot the scalogram if given the parameter ‘plot’ at the end:

coefs 5 cwt(x, 1:200, 'morl', 'plot')
[cA. cD] 5 dwt(X, 'wname')
X 5 idwt(cA, cD, 'wname')

The functions dwt and idwt perform a single level decomposition and synthesis given
the wavelet name.

[C, L] 5 wavedec(X, N, 'wname')
X 5 waverec(C, L, 'wname')

The functions wavedec and waverec perform multilevel decomposition and synthesis
given wavelet name and level N. Note that N cannot be greater than the exponent of the
largest power of 2 less than the size of X. The C vector contains the transform, and the L
vector contains bookkeeping information used by wavedec and waverec to find the posi-
tion of the parts of the transform in C.

Here is an example plotting scales 2 through 7 for a Debauches 4 wavelet:

250 13. WAVELETS

III. DATA ANALYSIS WITH MATLAB

% here size(s) 5 128
[C, L] 5 wavedec(s, 7, 'db4');
for scale 5 2:7
subplot(7,1,scale)
c_sub 5 (2^(scale2 1)):(2^scale);
t_sub 5 linspace(1, time, time/size(c_sub));
plot(t_sub, C(c_sub))
end
wavedemo

The wavedemo function opens an automated tour of Wavelet Toolbox, showing various
transforms and functions provided by the toolbox.

13.3 EXERCISES

EXERCISE 13.1

Which of the following MATLAB func-

tions can be wavelet functions? Why or

why not? function x 5 f_one(t)

x 5 cos(t);

end

function x 5 f_two(t)

if (x , 0 or x . pi/2)

x 5 0;

else

x 5 cos(t);

end

end

function x 5 f_three(t)

x 5 sqrt(2) * t * exp(2 t^2/2) / pi^4;

end

function x 5 f_four(t)

x 5 sqrt(2) * t^2 * exp(2 t^2/2) / pi^4;

end

function x 5 f_five(t)

x 5 (x . 21 && x , 0) * 211 (x . 0

&& x , 1);

end

EXERCISE 13.2

Generate the scalogram in Figure 13.2.

Generate a spectrogram and compare. How

clearly does each render the transients? The

primary frequencies?

25113.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

EXERCISE 13.3

Write a Mexican hat mother wavelet

function compatible with the previous con-

tinuous wavelet transform code. Generate a

scalogram of the sinusoid1 transient signal

used in Figure 13.2. Compare Mexican hat

transform to the Morlet transform.

EXERCISE 13.4

Download the EEG signal wavelet, eeg,

from the companion website. Generate sca-

lograms using the Mexican hat and Morlet

wavelet transforms. Compare to a spectro-

gram generated with spectrogram().

13.4 PROJECT

In Chapter 12, “Frequency Analysis Part II: Nonstationary Signals and Spectrograms,”
you used the short-time Fourier transform to look for sleep state transitions. Here, you
will be asked to examine the same data files using the continuous wavelet transform and
Morlet and Mexican hat wavelets. Compare and contrast your findings with what you
found using only the STFT.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

cwt
dwt
idwt
wavedec
waverec

252 13. WAVELETS

III. DATA ANALYSIS WITH MATLAB

C H A P T E R

14

Introduction to Phase Plane Analysis

14.1 GOAL OF THIS CHAPTER

The goal of this chapter is to examine the cone and horizontal cell system using a quali-
tative visualization technique called phase plane analysis; this system will be discussed fur-
ther in Chapter 28, “Models of the Retina.” The techniques presented here will be used
again in Chapter 15, “Exploring the Fitzhugh-Nagumo Model.”

14.2 BACKGROUND

In this chapter you will be studying a retinal feedback model; this model is described
further in Chapter 28, “Models of the Retina.” The system is represented as follows:

d ~C

dt
5

1

τC
ð2 ~C2 k ~HÞ ð14:1Þ

d ~H

dt
5

1

τH
ð2 ~H1 ~CÞ ð14:2Þ

Typical values for these parameters are τC5 0.025 sec, τH5 0.08 sec, and k5 4. Now
assume that the light intensity is L5 10 (i.e., daylight). For your initial conditions, choose
that C(0)5H(0)5 0. Finally, be aware that:

~C5C2
L

k1 1
and ~H5H2

L

k1 1
ð14:3Þ

For further details of the basic biology of this system, see Chapter 28, “Models of the
Retina.” In that chapter, we will examine in more detail the model of retinal feedback between
cone cells and horizontal cells of the retina, shown in Equations 14.1 and 14.2. Although the
explicit solutions determined in that chapter are more informative, many more complicated
systems (such as the Fitzhugh-Nagumo system presented in Chapter 15, “Exploring the
Fitzhugh-Nagumo Model”) can only be qualitatively described. When we describe a system

253MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00014-X © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00014-X

qualitatively, we look for steady-state values of the solutions (often called fixed points) and try
to classify the dynamics of the solution that led to these steady-state values. In Chapter 28,
“Models of the Retina,” we will consider the following system in more detail:

dx

dt
5 x1 y ð14:4Þ

dy

dt
5 4x1 y ð14:5Þ

which has eigenvalues 21 and 3 and has the solution:

xðtÞ5C1e
3t 1C2e

2t ð14:6Þ
yðtÞ5 2C1e

3t 2 2C2e
2t ð14:7Þ

This solution can be described qualitatively. If you wait long enough, then this system
will approach one of two states. If C15 0, then:

limt-NxðtÞ5 limt-NyðtÞ5 0 ð14:8Þ
Therefore, one says that (x, y)5 (0, 0) is a steady-state or fixed point of the system. For

C1 6¼ 0, then:

limt-NxðtÞ5 limt-NyðtÞ5N ð14:9Þ
Therefore, the only finite steady-state solution to this system is (x, y)5 (0, 0). Regardless

of how you choose C1 and C2, there are no other steady-state values for this system. Since
the initial conditions determine C1 and C2, then those initial conditions that lead to C15 0
will have solutions that steadily tend toward the fixed point (0, 0), while all others will
steadily tend toward infinity (i.e., away from the fixed point at the origin). A fixed point
with this property—that is, with some initial conditions leading to the fixed point and
others leading away from it—is called a saddle point. This simple qualitative description of
identifying the steady state(s) of the solution, the dynamics of what initial conditions lead
to the steady state(s), and how it is reached steadily or in an oscillatory fashion can all be
determined from a phase plane analysis of the system.

The first step in phase plane analysis is to set up a phase plane. The axes for the plane
represent the state variables characterizing the system. In the preceding example, the
phase plane is constructed with y as the ordinate and x as the abscissa. Next, the -x- and
y-nullclines are plotted. The x-nullcline is the curve in the x-y plane, where:

dx

dt
5 0

A similar definition applies for the y-nullcline. Intersections of these nullclines represent
points where:

dx

dt
5

dy

dt
5 0

so x and y are no longer changing with time. In other words, these intersections represent
steady-state values or fixed points of the system. Next, a vector field is constructed by
assigning the following vector to every point on the x-y plane:

254 14. INTRODUCTION TO PHASE PLANE ANALYSIS

III. DATA ANALYSIS WITH MATLAB

dx

dt

dy

dt

" #T

Notice that this vector field can be determined without knowing the solution to the sys-
tem. Since the slope of these vectors is:

m5
dy

dt

�
dx

dt
5

dy

dx
ð14:10Þ

by the chain rule, the vector field must be tangent to any solution (x, y) of the system. This
allows you to use the vector field to calculate the solution of the system for any initial con-
dition (xo,yo). Such a solution when plotted on the phase plane is called a trajectory. The
phase plane, nullclines, vector field, and several trajectories are shown in Figure 14.1 for
the system in Equations 14.4 and 14.5.

x’ = x + y
y’ = 4 x + y

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

Cursor position: (1.79, –15.8)

The backward orbit from (–2.7, –4.8) left the computation window.
Ready.
The forward orbit from (1.9, –5.4) left the computation window.
The backward orbit from (1.9, –5.4) left the computation window.
Ready.

FIGURE 14.1 Phase plane of a linear system showing saddle node stability.

25514.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

In the figure, the nullclines are plotted as dashed lines. Notice that these nullclines
intersect at the point (x, y)5 (0, 0) indicating that this is the steady-state of the system in
agreement with what was predicted by considering the explicit solutions (Equations 14.6
and 14.7). Any linear system of ordinary differential equations described by a matrix with
real eigenvalues of opposite sign (recall that the eigenvalues for this system are 21 and 3)
will have a saddle point at the intersection of its nullclines.

If the matrix describing the linear system has real eigenvalues that are both negative,
then the fixed point is called a nodal sink. The classic phase portrait of a nodal sink is
shown in Figure 14.2.

If the matrix describing the linear system has real eigenvalues that are both positive,
then the fixed point is called a nodal source. The classic phase portrait of a nodal source is
shown in Figure 14.3. Notice the difference in the direction of the arrows in the vector field
in this figure.

x’ = −x
y’ = −3y

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

Cursor position: (−9.75, 12)

The forward orbit from (−2.9, −3.8) a possible eq. pt. near (−5.6e-014, −5.1e-020).
The backward orbit from (−2.9, −3.8) left the computation window.
The forward orbit from (−6.1, −4.1) a possible eq. pt. near (−8.4e-014, −2e-020).
The backward orbit from (−6.1, −4.1) left the computation window.
Ready.

FIGURE 14.2 Phase plane of a linear system showing nodal sink stability.

256 14. INTRODUCTION TO PHASE PLANE ANALYSIS

III. DATA ANALYSIS WITH MATLAB

If the matrix describing the linear system has imaginary eigenvalues that have negative
real parts, then the fixed point is called a spiral sink. The classic phase portrait of a spiral
sink is shown in Figure 14.4.

If the matrix describing the linear system has imaginary eigenvalues that have positive
real parts, then the fixed point is called a spiral source. The classic phase portrait of a spiral
source is shown in Figure 14.5.

These five types of equilibria are collectively known as the generic equilibria. There are
also five nongeneric equilibria. The most important nongeneric equilibrium is called a cen-
ter. It occurs when the eigenvalues of the matrix are purely imaginary. The classic phase
portrait of a center is shown in Figure 14.6.

Cursor position: (−9.58, 12.1)

The backward orbit from (−2.5, −5.1) a possible eq. pt. near (−6e-014, 8.1e-019).
Ready.
The forward orbit from (−4.3, −4.9) left the computation window.
The backward orbit from (−4.3, −4.9) a possible eq. pt. near (−7e-014, −3.7e-020).
Ready.

x’ = −x
y’ = 3y

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

FIGURE 14.3 Phase plane of a linear system showing nodal source stability.

25714.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

14.3 EXERCISES

The phase portraits in the preceding section were drawn using a downloadable M-file
called pplane7.m. The phase plane consists of three basic features: the nullclines intersect-
ing at the fixed point of the system, the vector field showing how the solutions change
over time, and trajectories showing how the solution approaches its steady-state from a
given initial condition. The first exercise of this chapter will involve writing a simple ver-
sion of pplane7. Several functions built into MATLAB will aid in coding each of the basic
features of the phase plane mentioned previously.

Plotting the nullclines of the system requires no more than the basic plotting commands
used throughout previous chapters. Plotting the vector fields can be greatly aided by the
functions meshgrid() and quiver(). The function meshgrid takes two vector arguments x
and y, and returns two square matrices X and Y such that each row of X is a copy of the

Cursor position: (−11.3, 12.2)

The backward orbit from (−0.82, −3.2) left the computation window.
Ready.
The forward orbit from (4.2, −4.6) a possible eq. pt. near (1.5e-014, −1e-014).
The backward orbit from (4.2, −4.6) left the computation window.
Ready.

x’ = 4x − 3y
y’ = 15x − 8y

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

FIGURE 14.4 Phase plane of a linear system showing spiral sink stability.

258 14. INTRODUCTION TO PHASE PLANE ANALYSIS

III. DATA ANALYSIS WITH MATLAB

vector x, and each column of Y is a copy of the vector y. This function is useful for evaluat-
ing functions of two variables. For example, suppose you wanted to evaluate the function
f(x,y)5 x1 y. You could do this using for loops; for example, you could type

.. x5 [0:0.1:10];

.. y5 x;

.. for ii5 1:length(x)

.. for jj5 1:length(y)

.. f(ii,jj)5 x(ii)1 y(jj);

.. end;

.. end;

which produces the same results as the commands

Cursor position: (−9.28, 12.2)

The backward orbit from (−1.5, 6.1) a possible eq. pt. near (−6.6e-016, −1.7e-014).
Ready.
The forward orbit from (4.7, 4.5) left the computation window.
The backward orbit from (4.7, 4.5) a possible eq. pt. near (−6.9e-015, −7.1e-015).
Ready.

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y
x’ = 2x − y
y’ = 2x

FIGURE 14.5 Phase plane of a linear system showing spiral source stability.

25914.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

.. x5 210:10;

.. y5 x;

.. [X, Y]5meshgrid(x,y);

.. f5X1Y;

Evaluating functions of two variables is important in this chapter because the model you
wish to study (Equations 14.1 and 14.2) expresses the derivatives as functions of the two

variables: ~C and ~H. By comparing the matrix f as defined in the preceding code to Equation

14.1, you see that f holds the values of the derivative
dx

dt
for several values of x and y. You

could define a matrix g that holds the y-derivative by using the following command:

.. g5 4X1Y;

Cursor position: (−11.1, 12.2)

The backward orbit from (3, −4.7) a nearly closed orbit.
Ready.
The forward orbit from (4.1, −8.6) a nearly closed orbit.
The backward orbit from (4.1, −8.6) a nearly closed orbit.
Ready.

x’ = − y
y’ = x

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

FIGURE 14.6 Phase plane of a linear system showing center stability

260 14. INTRODUCTION TO PHASE PLANE ANALYSIS

III. DATA ANALYSIS WITH MATLAB

Once you have evaluated these derivatives using meshgrid, we can plot a vector field
using the quiver command. If you have the matrices X, Y, f, and g defined as shown here,
then type this command:

..quiver(X,Y,f,g);

You should get the result shown in Figure 14.7.
The function quiver works by plotting a vector on the plane at points (x, y) with compo-

nents (f, g).
You can plot the trajectory of a system given an initial condition in several ways. One

method is to use a numerical solver such as the ode_euler() or RK4() functions you will write
in Chapter 25, “Voltage-Gated Ion Channels,” to solve for x and y given some initial condition
and then plot x versus y. Another method would be to calculate the derivatives of x and y at
the initial condition, move the system a short distance in the direction indicated by the deriv-
ative, and then repeat over many time steps. Either method will work, and both can be done
with no more than the basic functions introduced in Chapter 2, “MATLAB Tutorial.”

EXERCISE 14.1

Write a function phase_plane(A, init)

that takes a matrix and performs a phase

plane analysis for the linear system,

u0 5Au. The function should plot a phase

–10 –8 –6 –4 –2 0 2 4 6 8 10
–10

–8

–6

–4

–2

0

2

4

6

8

10

FIGURE 14.7 Vector field created by the quiver() command.

26114.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

plane with axes x and y, plot the nullclines,

create the vector field, and plot the phase

plane trajectory that passes through the ini-

tial condition. Finally, the program should

output the type of equilibrium point, saddle

point, spiral sink, etc. If the equilibrium

point is nongeneric, then the program can

just output nongeneric as the class type.

This is quite a complicated program, so you

may want to write several smaller functions

that can be called within phase_plane—for

example, a separate function that will sim-

ply classify the fixed point and then another

that will create a vector field, etc. Hint: The

Boolean function isreal() will return 0 if the

argument is not a real number and 1 if it is.

This function might be useful for deciding

whether or not the eigenvalues of A are

real, so that the fixed point of the system

can be classified.

14.4 PROJECT

Use your phase_plane program to analyze the retinal model described at the beginning
of this chapter. The matrix describing this linear system is:

21

τC
2 k

τC
1

τH
21

τH

2
6664

3
7775

Identify what kind of behavior the fixed point exhibits. Repeat using the parameters for
dim light:

τC 5 0:1 sec; τH 5 0:5 sec; and k5 0:5

What is the behavior of the fixed point now?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

isreal
quiver
eig

262 14. INTRODUCTION TO PHASE PLANE ANALYSIS

III. DATA ANALYSIS WITH MATLAB

C H A P T E R

15

Exploring the Fitzhugh-Nagumo
Model

15.1 GOAL OF THIS CHAPTER

In this chapter we will use the techniques of phase plane analysis to analyze a simpli-
fied model of action potential generation in neurons known as the Fitzhugh-Nagumo (FN)
model. Unlike the Hodgkin-Huxley model, which has four dynamical variables (see
Chapter 27, “Modeling of a Single Neuron”), the FN model has only two, so the full
dynamics of the FN model can be explored using phase plane methods.

15.2 BACKGROUND

The FN model can be created from the Hodgkin-Huxley model by combining the vari-
ables V and m into a single variable v and combining the variables n and h into a single
variable r. The four equations of the Hodgkin-Huxley model then become the two-
equation system (Fitzhugh, 1961)

dv

dt
5 cðv2 1

3
v3 1 r1 IÞ ð15:1Þ

dr

dt
52

1

c
ðv2 a1 brÞ ð15:2Þ

where a, b, c, and I are parameters of the model.
In Chapter 14, “Introduction to Phase Plane Analysis,” we analyzed a system of linear

differential equations that had the following general form:

dx

dt
5 ax1 by ð15:3Þ

263MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00015-1 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00015-1

dy

dt
5 cx1 dy ð15:4Þ

In the current chapter we would like you to consider more complicated differential
equations (such as those of the FN model). Suppose that you have a system of differential
equations of the form:

dx

dt
5 fðx; yÞ ð15:5Þ

dy

dt
5 gðx; yÞ; ð15:6Þ

where f and g are more complicated functions of x and y. You begin by plotting the x- and
y-nullclines, which are given by f(x, y)5 0 and g(x, y)5 0, respectively. These nullclines
may intersect never, once, or more than once. If the nullclines never intersect, then the sys-
tem has no finite steady-state solutions. If there is one point of intersection, then there is
only one steady-state solution. Linear systems have at most one steady-state solution
(unless they are degenerate). Nonlinear systems, however, can have any number of
steady-state values. This will be important in your understanding the trajectories, which
may be seen in nonlinear systems. A vector field and trajectories given initial conditions
can be calculated for nonlinear systems in the exact same manner as calculated for linear
systems. Lastly, you can classify the fixed points (steady-state values) as you did in
Chapter 14, “Introduction to Phase Plane Analysis.” You perform this by linearizing the
functions f and g about each fixed point. You assume that the functions f and g have
Taylor expansions, so:

fðx; yÞ5 fðxss; yssÞ1
@fðxss; yssÞ

@x
ðx2 xssÞ1

@fðxss; yssÞ
@y

ðy2 yssÞ1 higher order terms; ð15:7Þ

and

gðx; yÞ5 gðxss; yssÞ1
@gðxss; yssÞ

@x
ðx2 xssÞ1

@gðxss; yssÞ
@y

ðy2 yssÞ1 higher order terms: ð15:8Þ

As you approach the fixed points, the higher order terms tend to zero since x 2 xss,
y2 yss,, 1. Additionally, f(xss,yss)5 g(xss,yss)5 0, so:

fðx; yÞ � @fðxss; yssÞ
@x

ðx2 xssÞ1
@fðxss; yssÞ

@y
ðy2 yssÞ and ð15:9Þ

gðx; yÞ � @gðxss; yssÞ
@x

ðx2 xssÞ1
@gðxss; yssÞ

@y
ðy2 yssÞ: ð15:10Þ

Substituting these equations into Equations 15.1 and 15.2 yields:

dx

dt
5

dðx2 xssÞ
dt

5
@fðxss; yssÞ

@x
ðx2 xssÞ1

@fðxss; yssÞ
@y

ðy2 yssÞ ð15:11Þ

dy

dt
5

dðy2 yssÞ
dt

5
@gðxss; yssÞ

@x
ðx2 xssÞ1 @gðxss; yssÞ

@y
ðy2 yssÞ: ð15:12Þ

264 15. EXPLORING THE FITZHUGH-NAGUMO MODEL

III. DATA ANALYSIS WITH MATLAB

Expressing this system as a matrix equation gives:

ðx2 xssÞ0
ðy2 yssÞ0

� �
5

@fðxss; yssÞ
@x

@fðxss; yssÞ
@y

@gðxss; yssÞ
@x

@gðxss; yssÞ
@x

2
6664

3
7775 � ðx2 xssÞ

ðy2 yssÞ
� �

: ð15:13Þ

If you let:

u5
ðx2 xssÞ
ðy2 yssÞ

� �
and J5

@f

@x

@f

@y

@g

@x

@g

@y

2
6664

3
7775 ð15:14Þ

then you can write Equation 15.13 as:

u0 5 Jjðxss ;yssÞ � u: ð15:15Þ
The matrix J is called the Jacobian matrix. It is a very important matrix in the mathemat-

ics of multivariable calculus. Equation 15.15 tells you that to a first-order approximation
the nonlinear system in Equations 15.5 and 15.6 can be approximated by the linear system
of Equation 15.15. The eigenvalues of the Jacobian matrix (evaluated at the fixed point)
allow you to classify the fixed point as a saddle point, spiral sink, etc. Equation 15.15 is an
approximation to the nonlinear system. You might wonder at what point the approxima-
tion breaks down. There is a theorem that we will state without proof which says that
when the dynamics of the fixed point of the linear system in Equation 15.12 is a generic
fixed point, then the fixed point of the nonlinear system in Equations 15.1 and 15.2 has the
same dynamics. If the linear system has a nongeneric fixed point such as a center, then no
conclusion can be drawn about the dynamics of the fixed point of the nonlinear system.
See Chapter 14, “Introduction to Phase Plane Analysis,” for a review of generic and non-
generic equilibria.

Note that information about the dynamics of the fixed point applies only to a limited
neighborhood centered about the fixed point. A spiral source, for example, can spiral out
to infinity or spiral out and approach a circular orbit. The latter case is called a limit cycle.
Nonlinear systems in higher dimensions (three or more) can have even more complicated
dynamics, not all of which have currently been discovered. The best studied dynamics of
higher order nonlinear systems include Lorenz attractors and chaos.

15.3 EXERCISES

In this chapter we will explore the pplane program written by Dr. John C. Polking of
Rice University. This program was used to make the figures in the Background section of
Chapter 14, “Introduction to Phase Plane Analysis,” and the latest version can be

26515.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

downloaded free at http://math.rice.edu/Bdfield/. After downloading the script, you
can run it by typing the following:

.. pplane8;

Entering this command will open the pplane8 Setup window shown in Figure 15.1.
Set up the FN model by changing the variables x and y to v and r according to

Equations 15.1 and 15.2. The parameter values you can use for now are a 0.7, b 0.8, c 3,
and I 0. Set the display window such that v ranges from �3 to 3 and r ranges from �2 to
4. Leave the other settings the same. If you have done this correctly, the Setup window
will look like the one in Figure 15.2.

Now click the Proceed button, and a pplane8 Display window will come up, as shown
in Figure 15.3.

Next, open the Solutions menu and click Show nullclines. This will display the v-null-
cline in magenta and the r-nullcline in red. The phase plane will now look like the one
shown in Figure 15.4.

Next, open the Option menu, select Solution Direction, and then select Forward. This
will ensure that when an initial condition is provided to the system, the trajectory will be
plotted only as time moves forward. Finally, open the Solutions menu and select Find an
Equilibrium Point. This will turn the mouse pointer into a crosshair. Place the crosshair
near the intersection of the nullclines and click. An Equilibrium point data window will
open, revealing that the equilibrium is located at (v, r)5 (1.1994, �0.62426). If you would
like to enter in an initial condition to see a trajectory in the phase plane, you have two
options. First, you can open the Solutions menu and then click Keyboard Input. This will

FIGURE 15.1 pplane8 Setup window.

266 15. EXPLORING THE FITZHUGH-NAGUMO MODEL

III. DATA ANALYSIS WITH MATLAB

http://math.rice.edu/∼dfield/
http://math.rice.edu/∼dfield/

allow you to enter the initial conditions. After you click Compute, a trajectory in blue is
depicted on the phase plane in the pplane8 Display window. Alternatively, you can click
Solutions and then select Plot several solutions. Again, the mouse pointer is converted to a
crosshair. You can now click on the phase plane at the point representing the initial condi-
tion and press Enter. Several trajectories are shown in the phase plane in Figure 15.5.

Finally, you can obtain the voltage trace from the phase plane by opening the Graph
menu and selecting v vs t. This will again convert the mouse pointer into a crosshair. Use
the crosshair to select any trajectory on the phase plane. A pplane8 t-plot such as the one
in Figure 15.6 will appear.

The plot in Figure 15.6 shows that if you change the membrane potential of the neuron
to 2.4, it decays back down to the equilibrium value 1.1994 as previously determined. This
is analogous to giving a neuron a subthreshold depolarizing stimulus. After the brief
depolarizing stimulus, the neuron’s membrane potential will exponentially relax back
down to its equilibrium resting potential.

EXERCISE 15.1

Is the equilibrium point in the preceding

model system stable (i.e., are trajectories

attracted to this point or repelled from it)?

FIGURE 15.2 pplane8 Setup window with FN model.

26715.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

15.4 PROJECT

In this project, you will explore the Fitzhugh-Nagumo model that you setup with
pplane8 by injecting different levels of current and examining how the behavior of the
model neuron mimics that of a real neuron. Specifically, you should do the following:

Change the injected current value to I5�0.2 in the Setup window and click Proceed.
Follow the previous instructions to display the nullclines. Calculate a trajectory in the
Forward direction with the initial condition (v, r)5 (1.1994, �0.62426). Is this point still
stable?
Determine what v versus t looks like for a trajectory on this phase plane. Would
you classify the injected input of2 0.2 as a superthreshold or subthreshold
stimulus? Does this neuron exhibit subthreshold oscillations for this value of injected
current?

FIGURE 15.3 pplane8 Display window.

268 15. EXPLORING THE FITZHUGH-NAGUMO MODEL

III. DATA ANALYSIS WITH MATLAB

Change the injected current value to I520.4 in the Setup window and click Proceed.
Follow the previous instructions to display the nullclines. Calculate a trajectory in the
Forward direction with the initial condition (v, r)5 (1.1994,2 0.62426). Is this point still
stable? Plot several trajectories on this phase plane. Since the nullclines intersect at only
a single point, there are no other equilibrium points for this system, but trajectories may
be attracted to some other closed orbit—for example, a circular orbit. Are these
trajectories attracted to a closed orbit?
Determine what v versus t looks like for a trajectory that is attracted to a closed orbit,
also called a limit cycle. Would you classify this injected stimulus as a superthreshold or
subthreshold stimulus?
Finally, repeat the analysis for I521.6 and examine v versus t. Does this neuron spike
continuously as it did before? Neurons are known to exhibit a phenomenon called
excitation block, whereby increasing the current injection can often repress repetitive
firing behavior.

FIGURE 15.4 Phase plane with v- and r-nullclines depicted.

26915.4 PROJECT

III. DATA ANALYSIS WITH MATLAB

FIGURE 15.5 Phase plane with sample trajectories.

FIGURE 15.6 pplane8 t-plot showing volt-
age over time.

270 15. EXPLORING THE FITZHUGH-NAGUMO MODEL

III. DATA ANALYSIS WITH MATLAB

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

pplane8 (free script by John C. Polking available at http://math.rice.edu/Bdfield/)

271MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

III. DATA ANALYSIS WITH MATLAB

http://math.rice.edu/∼dfield/
http://math.rice.edu/∼dfield/

C H A P T E R

16

Convolution

16.1 GOALS OF THIS CHAPTER

The purpose of this chapter is to familiarize you with the convolution operation. You
will use this operation in the context of receptive fields in the early visual system as input
response filters whose convolution with an input image approximates certain aspects of
your perception. Specifically, you will reproduce the Mach band illusion and explore the
Gabor filter as a model for the receptive field of a simple cell in the primary visual cortex.

16.2 BACKGROUND

A convolution is the mathematical operation used to find the output y(t) of a linear time-
invariant system from some input x(t) using the impulse response function of the system
h(t), where h(t) is defined as the output of a system to a unit impulse input. It is defined as
the following integral:

yðtÞ5 hðtÞ � xðtÞ5
ðN

2N

hðτÞxðt2 τÞdτ ð16:1Þ

This can be graphically interpreted as follows. The function h(τ) is plotted on the τ-axis,
as is the flipped and shifted function x(t2 τ), where the shift t is fixed. These two signals
are multiplied, and the signed area under the curve of the resulting function is found to
obtain y(t). This operation is then repeated for every value of t in the domain of y. It turns
out that it doesn’t matter which function is flipped and shifted since h * x5 x * h.

You can also define a convolution for data in two dimensions:

yðk; tÞ5 hðk; tÞ � xðk; tÞ5
ðN

2N

ðN

2N

hðτ;KÞxðk2K; t2 τÞdKdτ ð16:2Þ

273MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00016-3 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00016-3

Basically, you take a convolution in one dimension to establish the k dependence of the
result y and then use that output (which is a function of k, t and τ) to perform another con-
volution in the second dimension. This second convolution provides the t dependence of
the result, y. It is important that you understand how to apply this to a two-dimensional
data function because in this chapter you will be working with two-dimensional images.
In the MATLAB® software, since you are working with discrete datasets, the integral
becomes a summation, so the definition for convolution in 2D at every point becomes

yðn1; n2Þ5
XN

k152N

XN
k252N

hðk1; k2Þxðn1 2 k1; n2 2 k2Þ ð16:3Þ

Again, this is easier to understand pictorially. What you are doing in this algorithm is
taking the dataset x, which is a matrix; rotating it by 180 degrees; overlaying it at each
point in the matrix h that describes the response filter; multiplying each point with the
underlying point; and summing these points to produce a new point at that position.
You do this for every position to get a new matrix that will represent the convolution of h
and x.

16.2.1 The Visual System and Receptive Fields

In this section we discuss in general the anatomy of the visual system and the input
response functions that explain how different areas of the brain involved in this system
might “perceive” a visual stimulus.

Light information from the outside world is carried by photons that enter the eyes and
cause a series of biochemical cascades to occur in rods and cones of the retina. This bio-
chemical cascade causes channels to close which leads to a decrease in the release of neu-
rotransmitter onto bipolar cells. In general, there are two fundamental varieties of bipolar
cells. On-bipolar cells become depolarized in response to light and off-bipolar cells become
hyperpolarized in response to light. The bipolar cells then project to the ganglion cells
which are the output cells of the retina. The response to light in this main pathway is also
influenced by both the horizontal and amacrine cells in the retina. There are many types
of retinal ganglion cells that respond to different visual stimuli.

A stimulus in the visual field will elicit a cell’s response (above the background firing
rate) only if it lies within a localized region of visual space, denoted by the cell’s classical
receptive field. In general, the ganglion cells have a center-surround receptive field due to
the types of cells that interact to send information to these neurons. That is, the receptive
field is essentially two concentric circles, with the center having an excitatory increase (1)
in neuronal activity in response to light stimulus and the surround having an inhibitory
decrease (2) in neuronal activity in response to light stimulus, or vice versa. The response
function of the ganglion cells can then be modeled using a Mexican hat function, also
sometimes called a difference of Gaussians function.

In the main visual pathway, the ganglion cells send their axons to the lateral geniculate
nucleus (LGN) in the thalamus, which is in charge of regulating information flow to the
cortex. These cells also are thought to have receptive fields with a center-surround archi-
tecture. LGN cells project to the primary visual cortex (V1). In V1, simple cells are thought

274 16. CONVOLUTION

III. DATA ANALYSIS WITH MATLAB

to receive information from LGN neurons in such a way that they respond to bars of light
at certain orientations and spatial frequencies. This can similarly be described as a Gabor
function—a two-dimensional Gaussian filter whose amplitude is modulated by a sinusoi-
dal function along an axis at a given orientation. Thus, different simple cells in V1 respond
to bars of light at specific orientations with specific widths (this represents spatial fre-
quency; see Dayan and Abbott, 2001). These and other cells from V1 project to many other
areas in the cortex thought to represent motion, depth, face recognition, and other fascinat-
ing visual features and perceptions.

16.2.2 The Mach Band Illusion

Using your knowledge of the receptive fields or the response functions of the visual
areas can help you understand why certain optical illusions work. The Mach band illusion
is a perceptual illusion seen when viewing an image that ramps from black to white. Dark
and light bands appear on the image where the brightness ramp meets the black and
white plateau, respectively. These bands are named after Ernst Mach, a German physicist
who first studied them in the 1860s. They can be explained with the center-surround
receptive fields of the ganglion or LGN cells (Ratliff, 1965; Sekuler and Blake, 2002); we
will use this model in this chapter although alternative explanations exist (for example,
see Lotto, Williams, and Purves, 1999).

Distance

B
rig

ht
ne

ss

+

– –

+

–

+

–

+

–

+

FIGURE 16.1 The Mach band illusion. Top of figure: the visual stimulus with various center-surround recep-
tive fields superimposed. Bottom of figure: the actual brightness of the visual stimulus (black solid line) and the
perceived brightness of the optical illusion (blue dotted line).

27516.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

The illusion is demonstrated in Figure 16.1. At the initiation of the stimulus brightness
ramp, a dark band, darker than the dark plateau to the left, is usually perceived. At the
termination of the brightness ramp, a light band is perceived brighter than the light pla-
teau to its right. Figure 16.1 shows the center-surround receptive fields of sample neurons,
represented by concentric circles, superimposed on the stimulus image. The center disk is
excitatory, and the surrounding annulus is inhibitory, as indicated by the plus and minus
signs. When the receptive field of a neuron is positioned completely within the areas of
uniform brightness, the center receives nearly the same stimulation as the surround; thus,
the excitation and inhibition are in balance. A receptive field aligned with the dark Mach
band has more of its surround in a brighter area than the center, and the increased inhibi-
tion to the neuron results in the perception of that area as darker. Conversely, the excita-
tion to a neuron whose receptive field is aligned with the bright Mach band is increased,
since more of its center is in a brighter area than the surround. The decreased inhibition to
such a neuron results in a stronger response than that of the neuron whose receptive field
lies in the uniformly bright regime and thus the perception of the area as brighter.

16.3 EXERCISES

The goal for this chapter is to reproduce the Mach band optical illusion. First, you will
create the visual stimulus. Then you will create a center-surround Mexican hat receptive
field. Finally, you will convolve the stimulus with the receptive field filter to produce an
approximation of the perceived brightness.

You begin by creating the M-file named ramp.m that will generate the visual input (see
Figure 16.2). The input will be a 643 128 matrix whose values represent the intensity or
brightness of the image. You want the brightness to begin dark, at a value of 10, for the first

10

20

30

40

50

60

20 40 60 80 100 120

FIGURE 16.2 The brightness
ramp stimulus used as visual input.

276 16. CONVOLUTION

III. DATA ANALYSIS WITH MATLAB

32 columns. In the next 65 columns, the value will increase at a rate of one per column, and
the brightness will stay at the constant value of 75 for the rest of the matrix. Open a new
blank file and save it under the name ramp.m. In that file enter the following commands:

%ramp.m
% This script generates the image that creates the Mach band visual illusion.
In5 10*ones(64,128); %initiates the visual stimulus with a constant value of 10
for ii5 1:65

In(:,321 ii)5 101 ii;
%ramps up the value for the middle matrix elements (column 33 to column 97)

end
In(:,98:end)5 75; %sets the last columns of the matrix to the final brightness value of 75
figure
imagesc(In); colormap(bone); set(gca, 'fontsize',20) %view the visual stimulus

Notice how the function imagesc creates an image whose pixel colors correspond to the
values of the input matrix In. You can play with the color representation of the input data
by changing the colormap. Here, you use the colormap bone, since it is the most appropri-
ate one for creating the optical illusion, but there are many more interesting options avail-
able that you can explore by reading the help file for the function colormap.

You’ve just created an M-file titled ramp that will generate the visual stimulus. Note,
however, that you use a for loop in ramping up the brightness values. Although it doesn’t
make much of a difference in this script, it is good practice to avoid using for loops when
programming in MATLAB if possible, and to take advantage of its efficient matrix manip-
ulation capabilities for faster run times (see Chapter 4.4.5.1, “Vectorizing Matrix
Operations”). How might you eliminate the for loop in this case? One solution is to use
the function cumsum. Let’s see what it can do:

.. z5 ones(3,4)
z 5

1 1 1 1
1 1 1 1
1 1 1 1

.. cumsum(z)
ans 5

1 1 1 1
2 2 2 2
3 3 3 3

The function will cumulatively add the elements of the matrix by row, unless you spec-
ify that dimension along which to sum should be the second dimension, or by column:

.. cumsum(z,2)
ans 5

1 2 3 4
1 2 3 4
1 2 3 4

27716.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

You will want this cumulative sum by columns for this ramp function. Now rewrite the
code in proper style for MATLAB without the for loop:

%ramp.m
% This script generates the image that creates the Mach band visual illusion.
In5 10*ones(64,128); %initiates the visual stimulus with a constant value of 10
% now ramp up the value for the middle matrix elements using cumsum
In(:,33:97)5 101 cumsum(ones(64,65),2);
In(:,98:end)5 75; %sets the last columns of the matrix to the end value of 75
figure; imagesc(In); colormap(bone); set(gca, 'fontsize',20) %view the visual stimulus

You can look at how the values of the brightness increase from left to right by taking a
slice of the matrix and plotting it, as shown in Figure 16.3. Look at the 32nd row in particular.

.. plot(In(32,:),'k','LineWidth',3); axis([0 128 0 85]); set(gca,'fontsize',20)

Next, you will create a script titled mexican_hat.m that will generate a matrix whose
values are a difference of Gaussians. For this exercise, you will make this a 53 5 filter, as
shown in Figure 16.4.

% mexican_hat.m
% this script produces an N by N matrix whose values are
% a 2 dimensional Mexican hat or difference of Gaussians
%
N 5 5; %matrix size is NXN
IE5 6; %ratio of inhibition to excitation
Se5 2; %variance of the excitation Gaussian
Si5 6; %variance of the inhibition Gaussian
S 5 500;%overall strength of Mexican hat connectivity
%
[X,Y]5meshgrid((1:N)-round(N/2));
% 2 floor(N/2) to floor(N/2) in the row or column positions (for N odd)
% 2N/21 1 to N/2 in the row or column positions (for N even)

80

70

60

50

40

30

20

10

0
0 20 40 60 80 100 120

FIGURE 16.3 The brightness values in a slice
through the ramp stimulus shown in Figure 16.2.

278 16. CONVOLUTION

III. DATA ANALYSIS WITH MATLAB

%
[THETA,R] 5 cart2pol(X,Y);
% Switch from Cartesian to polar coordinates
% R is an N*N grid of lattice distances from the center pixel
% i.e. R5 sqrt((X).^21 (Y).^2)1 eps;
EGauss 5 1/(2*pi*Se^2)*exp(-R.^2/(2*Se^2)); % create the excitatory Gaussian
IGauss 5 1/(2*pi*Si^2)*exp(-R.^2/(2*Si^2)); % create the inhibitory Gaussian
%
MH 5 S*(EGauss-IE*IGauss); %create the Mexican hat filter

figure; imagesc(MH) %visualize the filter
title('mexican hat "filter"','fontsize',22)
colormap(bone); colorbar
axis square; set(gca,'fontsize',20)

Now take a second look at some of the components of this script. The function
meshgrid is used to generate the X and Y matrices whose values contained the x and y
Cartesian coordinate values for the Gaussians:

.. X
X 5

2 2 2 1 0 1 2
2 2 2 1 0 1 2
2 2 2 1 0 1 2
2 2 2 1 0 1 2
2 2 2 1 0 1 2

.. Y
Y 5

2 2 2 2 2 2 2 2 2 2
2 1 2 1 2 1 2 1 2 1

0 0 0 0 0
1 1 1 1 1
2 2 2 2 2

1

Mexican hat “filter”

2

3

4

5

1 2 3 4 5

6

4

2

0

−2

−4

FIGURE 16.4 A 53 5 Mexican hat spatial filter.

27916.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

The function cart2pol converts the Cartesian coordinates X and Y into the polar coordi-
nates R and THETA. You use this function to create the 53 5 matrix R whose values are
the radial distance from the center pixel:

.. R
R 5

2.8284 2.2361 2.0000 2.2361 2.8284
2.2361 1.4142 1.0000 1.4142 2.2361
2.0000 1.0000 0 1.0000 2.0000
2.2361 1.4142 1.0000 1.4142 2.2361
2.8284 2.2361 2.0000 2.2361 2.8284

The THETA variable is never used; however, it gives the polar angle in radians:

.. THETA
THETA 5

2 2.3562 2 2.0344 2 1.5708 2 1.1071 2 0.7854
2 2.6779 2 2.3562 2 1.5708 2 0.7854 2 0.4636
3.1416 3.1416 0 0 0
2.6779 2.3562 1.5708 0.7854 0.4636
2.3562 2.0344 1.5708 1.1071 0.7854

Finally, you’re ready to generate the main script called mach_illusion.m to visualize
how the Mexican hat function/center-surround receptive field of the neurons in the early
visual system could affect your perception. In this simple model, the two-dimensional con-
volution of the input image matrix (generated by the ramp.m M-file) with the receptive
field filter (generated by the mexican_hat.m M-file) gives an approximation to how the
brightness of the image is perceived when filtered through the early visual system. This
operation should result in a dip in the brightness perceived at the point where the bright-
ness of the input just begins to increase and a peak in the brightness perceived at the point

0

80
Input brightness
Perceived brightness

60

40

20

0

20 40 60 80 100 120

FIGURE 16.5 The Mach band illusion generated using the Mexican hat filter on the ramp input.

280 16. CONVOLUTION

III. DATA ANALYSIS WITH MATLAB

where the brightness of the input just stops increasing and returns to a steady value, con-
sistent with the perception of Mach bands (see Figure 16.5). For a first pass, use the two-
dimensional convolution function, conv2, that is built into MATLAB. As described in
detail in the help section, this function will output a matrix whose size in each dimension
is equal to the sum of the corresponding dimensions of the input matrices minus one. The
edges of the output matrix are usually not considered valid because the value of those
points have some terms contributing to the convolution sum which involved zeros padded
to the edges of the input matrix. One way to deal with the problem of such edge effects is
to reduce the size of the output image by trimming the invalid pixels off the border. You
accomplish this by including the option 'valid' when calling the conv2 function:

%mach_illusion.m
clear all; close all
mexican_hat %creates the Mexican hat matrix, MH, & plots
ramp %creates image with ramp from dark to light, In, & plots
A5 conv2(In,MH,'valid'); %convolve image and Mexican hat
figure; imagesc(A); colormap(bone) %visualize the "perceived" brightness
%create plot showing the profile of both the input and the perceived brightness
figure; plot(In(32,:),'k','LineWidth',5); axis([0 128 210 95])
hold on; plot(A(32,:),'b-.','LineWidth',2); set(gca,'fontsize',20)
lh5 legend('input brightness','perceived brightness',2); set(lh,'fontsize',20)

Make sure that the mexican_hat.m and ramp.m M-files are in the same directory as the
mach_illusion.m M-file. Note that the size of the output is indeed smaller than the input:

.. size(A)
ans 5

60 124

For fun, you can learn more about how the convolution works by changing the 'valid'
option in the conv2 function call to either 'full' or 'same' and see how the output matrix A
changes. One way to minimize the edge effects of convolution is to pad the input matrix
with values that mirror the edges of the input matrix before performing the two-
dimensional convolution and returning only the valid part of the output, which will now
be the size of the original input matrix. The function conv2mirrored.m will do just this
trick. It has been written in a generic form to accept matrices of any size:

%conv2_mirrored.m
function sp 5 conv2_mirrored(s,c)
% 2D convolution with mirrored edges to reduce edge effects
% output of convolution is same size as leading input matrix
[N,M]5 size(s);
[n,m]5 size(c); %% both n & m should be odd
%
% enlarge matrix s in preparation for convolution with matrix c

28116.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

%via mirroring edges to reduce edge effects.
padn 5 round(n/2) - 1;
padm 5 round(m/2) - 1;
sp5 [zeros(padn,M1 (2*padm)); zeros(N,padm) s zeros(N,padm); zeros(padn,M1
(2*padm))];
sp(1:padn,:)5 flipud(sp(padn1 1:2*padn,:));
sp(padn1N1 1:N1 2*padn,:)5 flipud(sp(N1 1:N1padn,:));
sp(:,1:padm)5 fliplr(sp(:,padm1 1:2*padm));
sp(:,padm1M1 1:M1 2*padm)5 fliplr(sp(:,M1 1:M1padm));
%
% perform 2D convolution
sp 5 conv2(sp,c,'valid');

EXERCISE 16.1

Put the figures generated by the mach_

illusion.m script into a document, explain

each figure, and give a short summary of

the Mach band illusion as you understand

it.

EXERCISE 16.2

Rather than cumsum, you could have

also used the function meshgrid to effi-

ciently ramp up the brightness values from

dark to light when creating the matrix In.

Read the help file for meshgrid and rewrite

the ramp.m script using meshgrid rather

than cumsum.

EXERCISE 16.3

Create the function conv2_mirrored.m

using the code provided previously and

place it in the same directory as your other

files. Learn how the mirroring of the edges

of the input matrix is accomplished by

reviewing the help files on the functions

flipud and fliplr. What determines the size

of the mirrored-edge padding necessary

and why? Rewrite your main script

mach_illusion.m to use this convolution

function rather than the conv2 function.

Check that your output matrix A is now the

same size as the input matrix In.

282 16. CONVOLUTION

III. DATA ANALYSIS WITH MATLAB

EXERCISE 16.4

Change the slope of the ramp without

changing the beginning or ending values of

the input image. [Hint: The command lin-

space can be useful to find values of the

ramp that will go from 10 to 75 in, say, 30

steps rather than 65: linspace(10,75,30).]

How does increasing or decreasing the

slope affect the strength of the illusion?

EXERCISE 16.5

Convert the M-file named mexican_hat.

m into a function where the inputs are the

size of the matrix, the ratio of excitation to

inhibition, the variance of excitatory and

inhibitory Gaussians, and the overall

strength of the filter. Also make the appro-

priate changes to the main script that calls

this function, mach_illusion.m.

16.4 PROJECT

The receptive fields of simple cells in V1 reflect the orientation and spatial frequency
preference of the neurons. One way to model this is to use the Gabor function, which is
basically a two-dimensional Gaussian modulated by a sinusoid, as shown in Figure 16.6.

1. Observe how the receptive fields of simple cells in V1 modeled as Gabor functions with
various spatial frequency and orientation preferences filter an image of a rose, which

FIGURE 16.6 A Gabor function modeling the ori-
ented receptive field of a V1 neuron.

28316.4 PROJECT

III. DATA ANALYSIS WITH MATLAB

can be downloaded from the companion web site. Create two files, the gabor_filter.m
function and the gabor_conv.m script (using the following code), in the same directory
as the conv2_mirrored.m file. Also, place the rose.jpg image file in the same directory.
Now, run the gabor_conv.m script. It will take a convolution between the rose image
with a Gabor function of a given orientation (OR) and spatial frequency (SF). The input
parameters OR and SF will determine the orientation and spatial frequency of the filter.
Thus, you will essentially “see” how simple cells in V1 with a given orientation and
spatial frequency preference perceive an image. Try values of SF5 0.01, 0.05, and 0.1,
and OR5 0, pi/4, and pi/2. Put the resulting figures into a document and explain the
results. Try changing the Gabor filter from an odd filter to an even filter by using cos
instead of sin. How does this affect the output?

% gabor_filter.m
function f 5 gabor_filter(OR, SF)
% Creates a Gabor filter for orientation and spatial frequency
% selectivity of orientation OR (in radians) and spatial frequency SF.
%
% set parameters
sigma_x5 7;% standard deviation of 2D Gaussian along x-dir
sigma_y5 17;% standard deviation of 2D Gaussian along y-dir
%
% create filter
[x,y]5meshgrid(-20:20);
X5 x*cos(OR)1 y*sin(OR); %rotate axes
Y5 -x*sin(OR)1 y*cos(OR);
f5 (1/(2*pi*sigma_x*sigma_y)).*exp(-(1/2)*(((X/sigma_x).^2)1 ...
((Y/sigma_y).^2))).*sin(2*pi*SF*X);

%gabor_conv.m
clear all; close all
I5 imread('rose.jpg');
OR5 0; SF5 .01;
G5 gabor_filter(OR,SF);
figure
subplot(1,3,1); imagesc(G); axis square; colorbar; title ('Gabor function')
subplot(1,3,2); imagesc(I); title('original image')
subplot(1,3,3); imagesc(conv2_mirrored(double(I),G));
colormap(bone); title(['Convolved image OR5 ',num2str(OR),' SF5 ', num2str(SF)])

2. Now you can have some fun times with image processing and convolutions. Choose any
image and convolve it with a function or filter of your choosing. To avoid edge problems,
you can use the conv2_mirrored function provided, the conv2 function with the 'valid'
option (as in the exercises), or you can use the function imfilter from the Image Processing
Toolbox built into MATLAB, which does an operation similar to convolution. You can
create your own filter or choose a predesigned filter in MATLAB using the fspecial
function, also from the Image Processing Toolbox. You can learn more about these
functions through the online help. Hand in your code and picture of before and after the
filtering, along with an image of the filter used in the convolution.

284 16. CONVOLUTION

III. DATA ANALYSIS WITH MATLAB

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

imagesc
colormap
cumsum
meshgrid
cart2pol
conv2
flipud
fliplr

285MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

III. DATA ANALYSIS WITH MATLAB

C H A P T E R

17

Neural Data Analysis I: Encoding

17.1 GOALS OF THIS CHAPTER

The primary goal of this chapter is to introduce you to the fundamental methods of ana-
lyzing spike trains of single neurons used to characterize their encoding properties: raster
plots, peri-event time histograms, and tuning curves. While there are prepackaged tools
available for these methods, in this chapter you will program these tools yourself and use
them to analyze behavioral data recorded from a motor area of a macaque monkey.

17.2 BACKGROUND

In general, neuroscientists are interested in knowing what neurons are doing. More spe-
cifically, neuroscientists are often interested in neural encoding—how neurons represent sti-
muli from the outside world with changes in their firing properties. Let’s say you are
studying a neuron from a visual area. You would first present a research participant with
controlled visual stimuli with a number of known properties—orientation, luminance, con-
trast, etc. Using standard electrophysiological techniques, you then record the response of
the neuron to each stimulus. You can repeat the presentation of a given stimulus and then
see how similar (or different) the neuronal responses are. A raster plot is a simple method
to visually examine the trial-by-trial variability of these responses. You can examine what
features these responses have in common by averaging over all responses to create a peri-
event time histogram. Finally, to capture how the average response of the neuron varies
with some sensory feature, you can generate a tuning curve that maps the feature value
onto the average response of the neuron.

287MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00019-9 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00019-9

17.3 EXERCISES

17.3.1 Raster Plot

Because action potentials are stereotyped events, the most important information they
carry is in their timing, as opposed to their size or shape. A raster plot replaces each action
potential with a tick mark that corresponds to the time where the raw voltage trace crosses
some threshold.

Load the dataset for this chapter from the companion web site. Contained within that
dataset is a variable spike, which contains the firing times (in seconds) of a single neuron
for 47 trials of the same behavioral task. Here, you are examining a recording from a cell
in the motor cortex, and the task involves moving the hand from the same starting posi-
tion to the same ending position. For each trial, the spike times are centered so that the
start of movement coincides with a timestamp of 0 seconds. Because the neuron did not
fire the same number of times for each trial, the data are stored in a struct, which is a data
structure that can bundle vectors (or matrices) of different lengths. To access the spike
times for the first and second trials, type

t1 5 spike(1).times;
t2 5 spike(2).times;

If you look at the workspace, you can verify that the vectors t1 and t2 are not the same
length. Now plot the first trial as a raster (remember, you don’t have to type the comments
marked with "%"):

figure %Create a new figure
hold on %Allow multiple plots on the same graph
for ii 5 1:length(t1) %Loop through each spike time
line([t1(ii) t1(ii)], [0 1]) %Create a tick mark at x 5 t1(ii) with height of 1

end
ylim([0 5]) %Reformat y-axis for legibility
xlabel('Time (sec)'); ylabel('Trial #')

Even when you’re looking at one trial, it appears that the neuron fires sparsely at first
but then ramps up its firing rate a few hundred milliseconds before the start of movement.
Now plot the next trial:

for ii 5 1:length(t2)
line([t2(ii) t2(ii)], [1 2])

end

Your results should look like those in Figure 17.1.
The relationship between the firing rate and start of movement is not nearly as clear in

the second trial as in the first trial. However, in this chapter’s final project, you will want
to visualize data from all trials at once. One way is to simply write a loop to plot the raster
for each trial as above. Another way is to take advantage of a built-in MATLAB® function
called histc. This simply computes a histogram, meaning it counts how many values in a
vector fall in within a discrete set of intervals, or bins. If we select a small enough bin
width (say 5 ms), it will be very unlikely that we will have more than one spike in a given

288 17. NEURAL DATA ANALYSIS I: ENCODING

III. DATA ANALYSIS WITH MATLAB

bin, so we can convert our collection of spikes times into a matrix of zeros and ones, indi-
cating whether or not a spike is present for a given trial in a given time range. We can
then use the image plotting function imagesc (introduced in Chapter 16, “Convolution”)
to plot that matrix. This is less precise than plotting each spike time as a line as before, but
it serves for most purposes. Try the code below:

raster5 zeros(47,401); %Initialize raster matrix
edges5 [-1:.005:1]; %Define bin edges
for jj5 1:47 %Loop over all trials

%Count # of spikes in each bin

raster(jj,:)5histc(spike(jj).times,edges);
end
figure %Create figure for plotting
imagesc(Braster) %'B' inverts 0s and 1s
colormap('gray') %Zero plotted as black, one as white

17.3.2 Peri-Event Time Histogram

The raster shows us the trial to trial variability, but it would also be nice to see what
the response of an “average trial” looks like. This average neural response is captured by
the peri-event time histogram, which is abbreviated PETH. Peri-event means that all the trials
are centered relative to some relevant event—in this case, the start of movement. If our
data were from a sensory array, the relevant event would be whatever stimulus we pre-
sented. This is why a PETH is sometimes also referred to as a peri-stimulus time histogram,
or PSTH. However, in a motor system, where neural firing precedes the event we mea-
sure, this term is a little awkward, so we will stick with the more general term — peri-
event time histogram.

−1 −0.5 0 0.5 1
0

1

2

3

4

5

Time (sec)

Tr
ia

l #

FIGURE 17.1 A raster plot of spike times
of the sample neuron for the first two trials.

28917.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

Time histogram means you divide the time period into a series of bins (0 to 100 ms, 100
to 200 ms, etc.) and count how many spikes fall in each bin for all trials. Luckily, we just
saw that MATLAB has a function that makes this easy: histc. To look at all trials, you will
initialize the PETH with zeros and then sequentially add each trial’s results. Try the
following:

edges 5 [-1:0.1:1]; %Define the edges of the histogram
peth 5 zeros(21,1); %Initialize the PETH with zeros
for jj5 1:47 %Loop over all trials

%Add current trial's spike times

peth 5 peth1histc(spike(jj).times,edges);
end
bar(edges,peth); %Plot PETH as a bar graph
xlim([-1.1 1]) %Set limits of X-axis
xlabel('Time (sec)') %Label x-axis
ylabel('# of spikes') %Label y-axis

Your results should look like those in Figure 17.2.
Now the pattern in neuronal activity is clear: the firing rate begins to increase about

half a second before movement start and returns to baseline by half a second after move-
ment start. Of course, for the y-axis to indicate firing rate in spikes per second, you would
need to divide each bin’s spike count by both the bin width and the number of trials.

17.3.3 Tuning Curves

Many neurons respond preferentially to particular values of a stimulus. Typically, this
activity gradually falls off from a maximum (corresponding to the preferred stimulus)
along some stimulus dimension (e.g., orientation, direction). By plotting the stimulus

−1 −0.5 0 0.5 1
0

50

100

150

200

250

Time (sec)

of

 s
pi

ke
s

FIGURE 17.2 A peri-event time histogram
centered on the start of movement.

290 17. NEURAL DATA ANALYSIS I: ENCODING

III. DATA ANALYSIS WITH MATLAB

dimension on the x-axis and the neural activity (typically a firing rate) on the y-axis, you
can determine the preferred stimulus of a neuron. Figure 17.3 shows a tuning curve of a
neuron from area MT, which is a part of the visual cortex that aids in the perception of
motion. As you can tell, the neuron prefers upward motion (motion toward 90�).

17.3.4 Curve Fitting

Typically, tuning curves like this are fit to a function such as a Gaussian curve or a
cosine function. Because all measurements made in the real world come with errors, it is
usually impossible to describe empirical data with a perfect functional relationship.
Instead, you fit data with a curve that represents a model of the proposed relationship. If
this curve fits the data well, then you conclude that your model is a good one.

The simplest relationship you will typically look for is a linear one. Many neurons are
thought to encode stimuli linearly. For example, ganglion cells in the limulus (horseshoe
crab) increase their firing rate linearly with luminance of a visual stimulus (Hartline,
1940). You can simulate this relationship as follows:

x 5 1:20; %Create a vector with 20 elements
y 5 x; %Make y the same as x
z 5 randn(1,20); %Create a vector of random numbers
y 5 y1 z ; %Add z to y, introducing random variation
plot(x,y, '.') %Plot the data as a scatter plot
xlabel('Luminance')
ylabel('Firing rate')

MATLAB contains prepackaged tools for fitting linear relationships. Just click on the
figure, select Tools, and then select Basic Fitting. Check the boxes for Linear and Show

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

Direction of motion (degrees)

F
iri

ng
 r

at
e

(S
pi

ke
s/

s)

FIGURE 17.3 A tuning curve for a neuron from
area MT.

29117.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

equations, and you will see the line and equation that best fit your data. However, you
might also like to be able to do this yourself. The command in MATLAB to fit data to a
polynomial is polyfit. For example:

p5polyfit(x,y,1) %Fits data to a linear 1st degree polynomial

The first value in p is the slope and the second value is the y-intercept. If you plot this
fitted line, your result should be similar to Figure 17.4:

hold on %Allows 2 plots of the same graph
yFit 5 x*p(1)1p(2); %Calculates fitted regression line
plot(x,yFit) %Plots regression

Because MATLAB has a number of curve-fitting functions, there are a number of ways
to perform this regression. One function worth mentioning is the function regress, because
this can perform multiple linear regression, where a dependent variable is a function of a
matrix of multiple independent variables. For this example, we assume the firing rate is a
function of the luminance plus some baseline firing rate. We simply need to bundle the
luminance with a vector of ones (representing the baseline) before performing the regres-
sion. In the code below, note the use of the transpose function (using the apostrophe as a
shortcut) to convert row vectors into column vectors.

predictor5 [x' ones(20,1)]; %Bundle predictor variables together into a matrix
p5 regress(y',predictor) %Perform regression
yFit5predictor*p; %Calculate fit values

Now you will fit data to a more complicated function—a cosine. First, generate some
new simulated data:

x 5 0 : 0.1 : 30; %Create a vector from 0 to 10 in steps of 0.1
y 5 cos (x); %Take the cosine of x, put it into y
z 5 randn(1,301); %Create random numbers, put it into 301 columns
y 5 y1 z; %Add the noise in z to y
figure %Create a new figure
plot (x,y) %Plot it

0 5 10 15 20
0

5

10

15

20

Luminance

F
iri

ng
 r

at
e

Raw data
Linear fit

FIGURE 17.4 A linear fit of the relationship
between the firing rate of a simulated ganglion cell and
the luminance of the stimulus.

292 17. NEURAL DATA ANALYSIS I: ENCODING

III. DATA ANALYSIS WITH MATLAB

MATLAB does not have a built-in function for fitting this to a cosine-tuning function,
but it does have a nonlinear curve-fitting function: nlinfit. You will need to specify the
details of the fit. Here, you will use a cosine function with the y-offset, amplitude, and
phase as free parameters. You can define this function “inline,” which means it can be
used by other functions in MATLAB in the same session or M-file.

Type this command to define a generic cosine function:

mystring 5 'p(1)1 p(2) * cos (theta - p(3))'; %Cosine function in string form

Here, p(1) represents the y-offset; p(2), the amplitude; and p(3), the phase. You can
assume the frequency is 1. Now enter the following:

myfun 5 inline (mystring, 'p', 'theta'); %Converts string to a function

This function accepts angles theta and parameter vector p and transforms them using
the relationship stored in mystring.

p 5 nlinfit(x, y, myfun, [1 1 0]); %Least squares curve fit to inline function "myfun"

The first parameter of nlinfit is a vector of the x-values (the angle theta in radians). The
second parameter is the observed y-values. The third parameter is the name of the func-
tion to fit, and the last parameter is a vector with initial guesses for the three free para-
meters of the cosine function. If the function doesn’t converge, use a different initial guess.
The nlinfit function returns the optimal values of the free parameters (sorted in p) that fit
the data with the cosine function, as determined by a least squares algorithm.

Instead of defining a function inline, you can also save a function in an M-file. In that
case, you will need to include an @ (at) symbol before the function name, which will allow
MATLAB to access the function as if it were defined inline:

p 5 nlinfit(x, y, @myfun, [1 1 0]); %Least squares curve fit to function "myfun.m"

You can use the inline function to convert the optimized parameters into the fitted
curve. After plotting this, your result should look similar to Figure 17.5.

hold on %Allows 2 plots of the same graph
yFit 5 myfun(p,x); %Calculates fitted regression line
plot(x,yFit,'k') %Plots regression

We introduced the nlinfit function because it can be used to fit any arbitrary relation-
ship you are interested in, whether it is linear or not. However, there are a couple of draw-
backs to using to fitting a cosine-tuning function. The preferred direction isn’t necessarily
restricted to a reasonable range (say, from 2π to π). Worse, the value may be off by π if
the amplitude is found to be negative. A solution is possible because the cosine-tuning
function can be reformulated as linear regression of the sine and cosine of the movement
direction (review your trigonometric identities to see why). So you can again use the mul-
tiple regression function regress to find the preferred direction:

predictor5 [ones(301,1) sin(x)' cos(x)']; %Bundle predictor variables
p5 regress(y',predictor) %Linear regression
yFit5predictor*p; %Calculate fit values
theta5 atan2(p(2),p(3)); %Find preferred direction from fit weights

29317.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

17.4 PROJECT

The data that you will use for your project were recorded from the primary motor cor-
tex (abbreviated MI) of a macaque monkey (data courtesy of the Hatsopoulos laboratory).
MI is so named because movements can be elicited by stimulating this area with a small
amount of electricity. It has also been shown that MI has direct connections to the spinal
cord. MI plays an important role in the control of voluntary movement (as opposed to
reflexive movements). This doesn’t mean that MI directly controls movement, because
other areas in the basal ganglia and the brainstem are important as well. Animals with a
lesioned MI can still make voluntary movements, albeit less dexterously than before.
However, it is clear that MI contains information about voluntary movement, usually a
few hundred milliseconds before it actually happens. There is also a somatotopic map in
MI, meaning that there are separate areas corresponding to face, arm, leg, or hand move-
ments. These data are recorded from the arm area.

The behavioral data were collected using a manipulandum, which is an exoskeleton
that fits over the arm and constrains movement to a 2D plane. Think of the manipulan-
dum as a joystick controlled with the whole arm. The behavioral task was the center-out
paradigm pioneered by Georgopoulos and colleagues (1982). The animal first holds the
cursor over the center target for 500 ms. Then a peripheral target appears at one of eight
locations arranged in circle around the center target. In this task there is an instructed
delay, which means that after the peripheral target appears, the animal must wait
1000�1500 ms for a go cue. After the go cue, the animal moves to and holds on the periph-
eral target for 500 ms, and the trial is completed.

There are two interesting time windows here. Obviously, MI neurons should respond
during a time window centered around the go cue, since this is when voluntary movement
begins. However, MI neurons also respond during the instructed delay. This result is
somewhat surprising because the animal is holding still during this time. The usual inter-
pretation is that the animal is imagining or preparing for movement to the upcoming tar-
get. This means that MI is involved in planning as well as executing movement.

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

4

Raw data
Cosine fit

FIGURE 17.5 A nonlinear fit of a simulated, noisy
cosine relationship.

294 17. NEURAL DATA ANALYSIS I: ENCODING

III. DATA ANALYSIS WITH MATLAB

If you treat the direction to the peripheral target as the “stimulus,” you can arrange the
neuronal responses in a tuning curve. These can be described with the same cosine curve
used before, where the phase of the fitted cosine corresponds to the preferred direction of
the neuron.

In this dataset, the neuronal spiking is stored in a struct called unit. Information for unit
#1 is accessed with unit(1). Spike times are stored in unit(1).times. There are three more
important variables: the instruction cue times are stored in instruction, the go cue times are
stored in go, and the direction of peripheral target is stored in direction (1 corresponds to 0
degrees, 2 corresponds to 45 degrees, etc.).

In this project, you are asked to do the following:

1. Make raster plots and PETHs for all the neurons for both time periods: instruction cue
to 1 second afterward, and 500 ms before the movement onset to 500 ms afterward.
Which neurons are the most responsive? Print out a few examples. Do you think the
PETHs are a good summary of the raster plots? How does the time course of the
responses differ between the two time periods?

2. Create tuning curves and fit a cosine tuning curve to the firing rates of all neurons for
each time period. Report the parameters of the fit for each neuron and save this
information for later chapters. How good of a description do you think the cosine curve
is? Do the tuning curves differ between the two time periods? If so, why do you think
this is?

Figures 17.6 and 17.7 show examples of what your results might look like. The locations
of the smaller plots correspond to the locations of their associated peripheral targets. Here,
a timestamp of 0 corresponds to the start of movement. You can use the command subplot
to subdivide the plotting area. For example, the command subplot(3,3,i) makes the ith
square in a 33 3 grid the active plotting area.

−1 0 1
0

10

20

−1 0 1
0

20

−1 0 1
0

20

40

−1 0 1
0

20

40

−1 0 1
0

20

40

−1 0 1
0

20

40

−1 0 1
0

20

40

−1 0 1
0

10

20

Chan 117−1

FIGURE 17.6 An example of a full raster plot for
the first neuronal unit recorded from electrode #117.

29517.4 PROJECT

III. DATA ANALYSIS WITH MATLAB

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

histc
randn
bar
polyfit
regress
nlinfit
subplot

−1 0 1
0

50

−1 0 1
0

50

−1 0 1
0

50

−1 0 1
0

50

−1 0 1
0

50

−1 0 1
0

50

Chan 117−1

−1 0 1
0

50

−1 0 1
0

50

FIGURE 17.7 An example of a full peri-event time
histogram for the first neuronal unit recorded from elec-
trode #117.

296 17. NEURAL DATA ANALYSIS I: ENCODING

III. DATA ANALYSIS WITH MATLAB

C H A P T E R

18

Neural Data Analysis II:
Binned Spike Data

18.1 GOALS OF THIS CHAPTER

Previously, you used a simple linear encoding model to predict a neuron’s firing rate,
obtained by averaging over many trials for a range of stimuli. However, linear models
have limitations for modeling observed neural data. In this chapter, we will examine a
simple nonlinear encoding model which can model discrete, non-negative data obtained
by counting the number of spikes occurring in a given time bin. Luckily, the nonlinear
encoding model introduced here can be fit using a built-in function available in
MATLAB®.

18.2 BACKGROUND

In the last chapter, you saw that a cosine tuning model does a good job of describing
the firing rate (averaged across many trials) of a neuron as a function of direction. In par-
ticular, you saw that neurons have a baseline firing rate, a preferred direction where the
firing rate is at its maximum, and an anti-preferred direction where the firing is at its min-
imum. When the cosine tuning model is expressed as a sum of a sine and cosine (see the
end of Section 17.3.4), then the model can be fit using linear regression and the MATLAB
function regress. Linear regression may not always be the best choice, as it makes certain
assumptions about the raw data. For example, linear regression assumes data are continu-
ous. However, our data consists of timestamps, and our binned data are counts of the
number of spike timestamps that fall within a given bin. What does this mean? To start
with, we know that a count is always non-negative.

Load the data for this chapter. This data was also collected during the eight-target cen-
ter-out task, and the data is formatted the same as the data from Chapter 17. Start by

297MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00020-5 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00020-5

constructing the empirical tuning curve for neuron #2, as we did in Chapter 17, and fit it
to the standard cosine tuning model. If you do this, you will end up with a plot like
Figure 18.1. The interesting thing about this neuron is that it has a lower baseline firing
rate than previous neurons we have examined. The neuron does increase its firing rate for
its preferred direction (around 315 degrees), but because it cannot fire less than zero spikes
per second, it fires minimally for a wide range of directions (90, 135, 180, and 225 degrees).
When the standard cosine tuning model is fit to this data, it does not fit the peak firing
rate well, and it predicts a negative firing for the anti-preferred direction of 135 degrees.
Obviously, this is not an adequate model for this neuron.

18.2.1 Exponential Function

What we need is a function which can only predict nonnegative firing rates. One such
function is the exponential function, ex. If x is one, the value of this function is simply e, or
approximately 2.718. If x is zero, the function is 1, and as x becomes more negative, the
function will approach but never reach zero. In MATLAB, the exponential function is exp.
To deal with low-firing neurons, we simply need to apply the exponential function to the
cosine tuning model we used in the last chapter:

mystring5 'exp(p(1)1p(2)*cos(theta/180*pi-p(3)))';

The mean firing rate can be fit as before, and now the prediction is quite good (see
Figure 18.2).

However, we are doing something a little odd here by averaging the firing rates before
fitting the function. It means that we are weighting data from each direction equally, even
though the number of trials completed in each direction is not exactly equal (there are 71
trials for direction 4, but 48 for direction 5). A better approach would be to fit the raw data
from each single trial, which consists of counts of how many times the neuron spiked in
certain time windows. Thus the raw data is nonnegative and discrete. Using linear regres-
sion on discrete data is usually not appropriate, because linear regression assumes that the
data is continuous, and that the relationship is disturbed by Gaussian noise.

0 50 100 150 200 250 300 350
–1

0

1

2

3

Angle

A
vg

. F
R

 (
S

pi
ke

s/
s)

Actual

Unit 2

Cosine

FIGURE 18.1 The cosine tuning model poorly
fits data from a sparsely firing neuron.

298 18. NEURAL DATA ANALYSIS II: BINNED SPIKE DATA

III. DATA ANALYSIS WITH MATLAB®

18.2.2 Poisson Distribution

A better choice is to assume that a discrete count follows a Poisson distribution. This is
a simple but useful discrete distribution, which is good for modeling the number of events
which occur in small amount of time or space. For example, the Poisson distribution might
be used to model how many phone calls a call center might receive in an hour, or the
number of grass seeds which sprout in a small patch of earth. Here, we use it to model the
number of spikes detected in a given time bin. The use of the Poisson distribution for
modeling spike trains is discussed in more detail in Chapter 33. We will compare the dis-
tribution of spikes we actually observe to what is expected with the Poisson distribution.
We first need to collect the raw spike count in a 2-second window centered on the go cue
for each trial:

neuronNum5 2; %Select which neuron we want
numT5 length(direction); %Count number of trials
spikeCount5 zeros(numT,1); %Initialize count vector
for ii 5 1:numT

centerTime5 go(ii); %Find go cue for given trial
allTimes5unit(neuronNum).times-centerTime; %Center spike times on go
spikeCount(ii)5 sum(allTimes. -1 & allTimes, 1); %2 seconds window

end

We now have a vector of the raw spike counts for each trial. Take a look at the distribu-
tion of spike counts for direction two:

dirNum5 2; %Select the direction we want
indTemp5 find(direction55dirNum); %Find appropriate trials
spikeTemp5 spikeCount(indTemp); %Pick out counts
edges5 [0:4]; %Bin edges
b5histc(spikeTemp,edges); %Make histogram
bar(edges,b,'g') %Plot histogram

To compare this to the Poisson distribution, we can use the built-in MATLAB function
poisspdf, which gives the probability mass function for the Poisson distribution. This gives

0 50 100 150 200 250 300 350 400
–1

0

1

2

3

Angle

A
vg

. F
R

 (
S

pi
ke

s/
s)

Actual
Exponential

Unit 2 FIGURE 18.2 An exponential cosine model
provides a better fit to this neuron’s data.

29918.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB®

the probability that a Poisson random variable is equal to a given count. The Poisson only
takes the mean as a parameter, unlike the Gaussian distribution, which takes the mean and
the variance. This is because the Poisson distribution has the property that its mean is equal
to its variance. To see what the histogram should be if our neural data followed a Poisson
distribution, we evaluate poisspdf with a mean that matches our neural data, and multiply
this by the number of observations to get the expected number of counts.

y5poisspdf(edges,mean(spikeTemp)); %Match mean of Poisson dist. to data
yCount5 y*length(indTemp); %Multiply by number of trials
hold on
plot(edges,yCount,'r.-')

As shown in Figure 18.3, the Poisson distribution matches the actual data fairly well.

18.2.3 Log-Linear Models

In linear regression, the assumption is that the dependent variable μ (the firing rate) is
equal to the linear function of the predictor variables (cosine and sine of direction). In
matrix format, the firing rate is the product of the matrix of predictor variables X and a
vector of coefficients b (see equation below). We previously found this vector of coeffi-
cients using the MATLAB function regress.

μ5Xb ð18:1Þ
While Poisson-distributed data should not be fit using a linear model, they can be fit

using a generalized linear model (GLM). Luckily, the procedure for fitting a GLM is
already built into MATLAB with the function glmfit. GLM still predicts the firing rate
using a linear function of the predictor variables, but since the mean of the Poisson distri-
bution must be nonnegative, this prediction must be transformed. We have already seen
that this transformation can be accomplished with the exponential function, and in fact in
GLM the mean of Poisson-distributed data are expressed as the exponential of a predictor
matrix X times the coefficients b. Equivalently, the natural logarithm of the firing rate is
expressed as a linear function of predictor variables (see Equation 18.2). Because of this,
the model used in Poisson regression is referred to as a log-linear model. In GLM, the

0 1 2 3 4
0

10

20

30

40

50

O

bs
er

ve
d

Spike count

Actual
Poisson

Unit 2 FIGURE 18.3 The Poisson distribution models
sparse spike count data well.

300 18. NEURAL DATA ANALYSIS II: BINNED SPIKE DATA

III. DATA ANALYSIS WITH MATLAB®

natural logarithm is known as the “link function,” tying the data to the linear function of
the observed variables. If the data follows a different distribution (such as the binomial
distribution), GLM requires a different link function.

μ5 expðXbÞ logðμÞ5Xb ð18:2Þ
How do we apply this to our data? Instead of fitting the exponential cosine model to

the mean firing rates (as in Section 18.2.1), we will fit a model to the raw spike counts and
matrix of the predictor variables.

rad5 [0:pi/4:2*pi-pi/4]'; %Match direction # with radians
%Matrix of predictors variables:

predictor5 [ones(numT,1) sin(rad(direction)) cos(rad(direction))];
coeff5 glmfit(predictor(:,2:3),spikeCount,'poisson'); %Fit log-linear model
spikeFit5 exp(predictor*coeff); %Predict firing rate.

One difference from the regress function is that glmfit will automatically add a coeffi-
cient for a constant term. This means that vector of 1 does not need to be included in
glmfit (which is why the predictors are supplied as “predictor(:,2:3)”), but it does need to
be included for the prediction of the firing rate.

18.2.4 Predicting the PETH

In this case, the tuning curve obtained by fitting the exponential cosine tuning model
directly to the data is very similar to that fit to the averaged firing rates (shown in
Figure 18.2). That is because the predictor variable was identical across multiple trials,
which meant that averaging first was not a completely unreasonable step. However, if the
predictor variable is different across trials, averaging first may not be appropriate.

For example, the exact path taken by the neuron and the speed it travels will vary
slightly from trial to trial, even for reaches to the same target. Thus far, we have just tried
to predict the activity of the neuron over a large time window. However, in the last chap-
ter, we visualized the peri-event time histograms (PETHs) of different neurons, and there
was a clear temporal evolution of the neural activity not accounted for in the original
cosine tuning model described by Georgopoulos and colleagues (1982).

This cosine-tuning model was extended by Moran and Schwartz (1999), who said that
the current firing rate of the neuron is related to the sine and cosine of both the direction
and the speed at a fixed time into the future. They used a linear model, but we will use a
log-linear model and simplify their equation to state that the log of the current firing rate
D is a linear function of the X and Y velocity (VX, VY) at a fixed time τ in the future.
Moran and Schwartz also included a non-directional speed term, but that will be covered
in the exercises. Because speed profiles are bell-shaped, this function can capture the grad-
ual rise and fall in activity seen in the example PETH in Figure 17.7.

log½Dðt2 τÞ�5 b0 1 b1VXðtÞ1 b2VYðtÞ ð18:3Þ
In the dataset for this chapter, there are new variables which were not present in the

Chapter 17 dataset. First, binned contains the spike count of all 158 neurons in a sequence

30118.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB®

of 50 ms bins. The variable time contains the timestamp in seconds at the end of each bin.
Finally, kin contains a variety of kinematic variables, partitioned in the same 50 ms bins.
For example, kin.x contains the X hand position as a function of time, and kin.xvel con-
tains the X hand velocity.

To fit an encoding model, we just need to pull out a given neuron’s spike count from
the variable binned, and then pull out the kinematics we are interested in from kin. For
now, we will assume our neuron leads velocity by 100 ms, or 2 time bins, so we need to
align the data so neural firing and future velocity are matched.

lag5 2; %Assume neuron leads velocity by 2 bins
fr5binned(neuronNum,1:end-lag)'; %Pull out spike counts
numBins5 length(fr); %Number bins, accounting for lag

%Bundle future predictor variables
predictor5 [ones(numBins,1) kin.xvel(lag1 1:end) kin.yvel(lag1 1:end)];
coeff5 glmfit(predictor(:,2:end),fr,'poisson'); %Fit log-linear model
frFit5 exp(predictor*coeff); %Predict spike count

You can now pull out the predicted spike counts centered on the go time, and average
them across trials in the same direction to create a predicted PETH. We can then compare
this to the empirical PETH we constructed using the code from Chapter 17. If you do this
for neuron #2, you should come up with something like Figure 18.4.

18.3 EXERCISES

1. Implement the log-linear encoding model described in Equation 18.3, and plot the
predicted PETH as shown in Figure 18.4. The Moran and Schwartz (1999) paper also
included a non-directional speed term. You can access that in the variable kin.speed.
Add speed as an extra term to your encoding model. Can you find a neuron where the
predicted PETH is better if speed is included? Compare the correlation coefficient
between the predicted and actual spike counts across all neurons with and without the
speed term. Does adding speed seem to significantly improve the fit across neurons as
a population?

2. We assumed a constant lag between neural firing. Instead, try several different lags for
each neuron (from 1300 ms to 2100 ms, in 50 ms steps), and pick the best lag. What is
the distribution of best lags across neurons? Compare the correlation coefficient
between the predicted and actual spike counts across all neurons with a constant and a
variable time lag. Does allowing a variable lag significantly improve the fit across
neurons as a population?

18.4 PROJECT

Experiment with alternative encoding models. For example, another paper proposed
that neurons encode a movement “pathlet,” meaning that neurons encode velocity at sev-
eral different time lags with different preferred directions (Hatsopoulos et al., 2007). Is

302 18. NEURAL DATA ANALYSIS II: BINNED SPIKE DATA

III. DATA ANALYSIS WITH MATLAB®

there evidence in this dataset that neurons encode velocity at different time lags? If so,
how does the preferred direction change as a function of time?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

exp
poisspdf
glmfit

–1 0 1 2

0
2
4
6
8

–1 0 1 2

0
2
4
6
8

–1 0 1 2

0
2
4
6
8

–1 0 1 2

0
2
4
6
8

–1 0 1 2

0
2
4
6
8

–1 0 1 2

0
2
4
6
8

–1 0 1 2

0
2
4
6
8

–1 0 1 2

0
2
4
6
8

Unit 2

FIGURE 18.4 The empirical
PETH (green) for neuron #2,
along with the velocity-encoding
model’s prediction (blue).

303MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

III. DATA ANALYSIS WITH MATLAB®

C H A P T E R

19

Principal Components Analysis

19.1 GOALS OF THIS CHAPTER

Previously, we explored how MATLAB® can be used to visualize neural data. This is a
powerful tool. For example, a simple 2D tuning curve can demonstrate how a single neu-
ron encodes a stimulus parameter in terms of a firing rate. However, it is not clear how
this applies to multidimensional data. How do you represent stimulus encoding of a pop-
ulation of neurons or of a time-varying firing rate?

One solution is to try to compress data to make them easier to work with. If you can
reduce the dimensionality to two or three dimensions, you can then use your visualization
tools. In this chapter you will see how principal components analysis can be used to per-
form dimensionality reduction. You will also explore an application of this technique for
spike-sorting neuronal waveforms. This will prepare you for the next chapter, where you
will use principal components to capture the temporal aspects of a peri-event time
histogram.

19.2 BACKGROUND

Principal components analysis (PCA) performs a linear transformation on data and can be
used to reduce multidimensional data down to a few dimensions for easier analysis. The
idea is that many large datasets contain correlations between the dimensions, so that a
portion of the data is redundant. PCA will transform the data so that as much variation as
possible will be crammed into the fewest possible dimensions. This allows you to com-
press your data by ignoring other dimensions. To apply PCA, you first need to understand
how the correlations between dimensions can be described by a covariance matrix.

305MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00017-5 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00017-5

19.2.1 Covariance Matrices

You will start by analyzing some simulated 2D data. The MATLAB function normrnd
can create zero-mean, Gaussian noise (“white noise”). You will use this to create two vari-
ables containing two columns, one for each dimension. In the first variable (a), the two
dimensions will be uncorrelated, but in the second (b) there will be a significant correlation
between the two dimensions. Use the following code to generate a and b:

n5 500; %n5number of datapoints

a(:,1)5normrnd(0,1,n,1); %n random Gaussian values with mean 0, std. dev. 1

a(:,2)5normrnd(0,1,n,1); %Repeat for the 2nd dimension.

b(:,1)5normrnd(0,1,n,1); %n random Gaussian values with mean 0, std. dev. 1

%For b, the 2nd dimension is correlated with the 1st

b(:,2)5b(:,1)*0.51 0.5*normrnd(0,1,n,1);

If you plot the columns of these variables against one another (using plot((a(:,1),a(:,2),‘.’)
for a), the data should look something like Figure 19.1.

You should already be familiar with the concepts of mean, variance, and standard devia-
tion. If the sample data consist of n observations stored in a vector x, the sample mean is
defined as follows:

x5
1

n

Xn

i51

xi ð19:1Þ

The variance (σ2) of the sample is simply the expected value (mean) of the squared
deviations from the sample mean:

σ2 5
1

n

Xn

i51

ðxi2xÞ2 ð19:2Þ

The standard deviation (σ) is just the square root of the variance. Unfortunately, it turns
out that using the preceding expression as an estimate of the sample variance might be a

−4 −2 0 2 4
−4

−2

0

2

4
Uncorrelated noise

−4 −2 0 2 4
−4

−2

0

2

4
Correlated noise(B)(A)

FIGURE 19.1 Samples from a two-dimensional Gaussian distribution where the dimensions are uncorrelated
(A) and correlated (B).

306 19. PRINCIPAL COMPONENTS ANALYSIS

III. DATA ANALYSIS WITH MATLAB

bad idea because this estimate is biased: it systematically underestimates the variance.
However, it can be shown that the unbiased estimator is formed by replacing n by n2 1 in
the first term. Thus, the sample variance (s2) is usually defined as follows:

s2 5
1

n2 1

Xn

i51

ðxi2xÞ2 ð19:3Þ

This is how the function var in MATLAB is defined. You can more compactly express
the sample variance using matrix notation as follows:

s2 5
1

n2 1
ðx2xÞTðx2 xÞ ð19:4Þ

The superscript T signifies a transpose, whereby matrix columns are changed to rows
and vice versa: an m by n matrix becomes an n by m matrix. In MATLAB, a transpose is
designated with an apostrophe placed after the variable.

Let’s compare the preceding formula with the function var. In the following code, do
the two expressions give the same result?

var(a(:,1)) %Compute sample variance of 1st dim of "a"

c5 a(:,1)-mean(a(:,1)); %Subtract mean from 1st dim of "a"

c'*c/(n-1) %Compute sample variance of 1st dim of "a"

%Note the apostrophe denoting transpose(c)

The covariance is analogous to the variance, except that it is computed between two
vectors, not a vector and itself. If you have a second data vector y with n independent
values, then the sample covariance is expressed as follows:

covðx; yÞ5 1

n2 1

Xn

i51

ðxi 2 xÞðyi 2 yÞ ð19:5Þ

You can see that if x and y are the same, the sample covariance is the same as the sam-
ple variance. Also, if x and y are uncorrelated, the covariance should be zero. A positive
covariance means that when x is large, so is y; while a negative covariance means that
when x is large, y is small. The last thing you need to define is the covariance matrix. If
the data have m dimensions, then the covariance matrix is an m by m matrix where the
diagonal terms are the variances of each dimension and the off-diagonal terms are the cov-
ariances between dimensions. If the additional dimensions are stored as extra columns in
variable x (so x becomes an n by m matrix), then the sample covariance can be computed
the same way as the sample variance:

covðxÞ5 1

n2 1
ðx2xÞTðx2 xÞ ð19:6Þ

30719.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

This is computed by the function cov in MATLAB. Compare the two methods by using
the following code (the function repmat is used to create multiple copies of a vector):

cov(a) %Compute the covariance matrix for "a"

c5 a-repmat(mean(a),n,1); %Subtract the mean from "a"

c'*c/(n-1) %Compute the covariance matrix for "a"

The covariance of the correlated noise should have large off-diagonal terms. One reason
to compute the covariance is that it plays the same role in the multivariate Gaussian distri-
bution as the variance plays in the univariate Gaussian. You can use the covariance and
the function mvnrand (mvn stands for multivariate normal) in MATLAB to generate new
multivariate correlated noise (b2). Plot b2 on top of the correlated noise generated earlier
(b). Did the covariance matrix adequately capture the structure of the data?

sigma5 cov(b) %Compute the covariance matrix of b

%Generate new zero-mean noise with the same covariance matrix

b25mvnrnd([0 0],sigma,n);

19.2.2 Principal Components

Principal components analysis is essentially just a coordinate transformation. The origi-
nal data are plotted on an X-axis and a Y-axis. For two-dimensional data, PCA seeks to
rotate these two axes so that the new axis X’ lies along the direction of maximum variation
in the data. PCA requires that the axes be perpendicular, so in two dimensions the choice
of X’ will determine Y’. You obtain the transformed data by reading the x and y values off
this new set of axes, X’ and Y’. For more than two dimensions, the first axis is in the direc-
tion of most variation; the second, in direction of the next-most variation; and so on.

How do you get your new set of axes? It turns out they are related to the eigenvalues
and eigenvectors of the covariance matrix you just calculated (consult the mathematics
tutorial in Chapter 3 for a review of what eigenvalues and eigenvectors are). In PCA, each
eigenvector is a unit vector pointing in the direction of a new coordinate axis, and the axis
with the highest eigenvalue is the axis that explains the most variation.

This concept may seem confusing, so start by looking at the correlated noise data (b)
shown in Figure 19.1. You could make a decent guess at the principal components just
by looking at the data: the first principal component line should fall on the long axis of
the ellipse-shaped cluster. You can use the function eig in MATLAB to compute the
eigenvectors and eigenvalues of the covariance matrix (sigma) you computed
previously:

[V, D]5 eig(sigma) %V5 eigenvectors, D5 eigenvalues for covariance matrix sigma

This will output something like the following (because the noise was generated ran-
domly, the exact values will vary):

V 5
0.5387 2 0.8425

2 0.8425 2 0.5387

308 19. PRINCIPAL COMPONENTS ANALYSIS

III. DATA ANALYSIS WITH MATLAB

D 5
0.2048 0

0 1.3341

The eigenvalues are stored on the diagonal of D, while the corresponding eigenvectors
are the columns stored in V. Because the second eigenvalue is bigger, the second eigenvec-
tor is the first principal component. This means that a vector pointing from the origin to
(�0.8445,�0.5387) lies along the axis of maximum variation in the data. Type the following
to plot the new coordinate axes on the original data:

plot(b(:,1),b(:,2),'b.'); hold on %Plot correlated noise

plot(3*[-V(1,1) V(1,1)],3*[-V(1,2) V(1,2)],'k') %Plot axis in direction of 1st eigenvector

plot(3*[-V(2,1) V(2,1)],3*[-V(2,2) V(2,2)],'k') %Plot axis in direction of 2nd eigenvector

This will produce a graph like the one in Figure 19.2.
Now you use these new coordinate axes to reassign the (X,Y) values to all your data-

points. First, you want to reorder the eigenvectors so that the first principal component is
in the first row. Then you can simply multiply the data by this reordered matrix to obtain
the new, transformed data. For example:

V2(:,1)5V(:,2); %Place the 1st principal component in the 1st row

V2(:,2)5V(:,1); %Place the 2nd principal component in the 2nd row

newB5b*V2; %Project data on PC coordinates

If you plot these transformed data, it is clear that you just rotated the data so that most
of the variation lies along the X-axis, as shown in Figure 19.3.

If you stop here, you haven’t gained much, since the transformed data have just as many
dimensions as the original data. However, if you wanted to compress the data, you can now
just throw away the second column (the data plotted on the Y-axis in Figure 19.3). The whole

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

Principal component (PC) axes

FIGURE 19.2 The first two principal component axes plotted with the original correlated data b.

30919.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

point of PCA is that if you force as much of the variation as possible into a few dimensions,
you can throw away the rest without losing much information.

How much variation can you capture by doing this? It turns out that the fraction of var-
iation captured by each principal component is the ratio of its eigenvalue to the sum of all
the eigenvalues. For the example, the first principal component has an eigenvalue of
around 1.33, and the second principal component has an eigenvalue of around 0.20. That
means if you keep just the first column of the transformed data, you still keep 87% of the
variation in the data (0.875 1.33/[1.331 0.20]). That is, you can compress the size of the
data by 50% but lose only 13% of the variation.

Conveniently, MATLAB already has a function that performs all these calculations in
one fell swoop: princomp. Type the following to compute principal components for the
correlated data:

[coeff,score,latent]5princomp(b); %Compute principal components of data in b

The eigenvectors are stored in the variable coeff, the eigenvalues are stored in latent,
and the transformed data (the old data projected onto the new PC axes) are stored in score.
MATLAB even orders the eigenvectors so that the one with highest eigenvalue is first.

19.2.3 Spike Sorting

One common application of PCA is the spike sorting of neural data. Typically, a data
acquisition system monitors a raw voltage trace. Every time the voltage crosses some
threshold, the raw voltage is sampled during a time window surrounding this crossing to
produce the recorded spike waveform. For example, in one commercially available data
acquisition system (Cerebus system, Cyberkinetics Neurotechnology Systems, Inc.), each
spike waveform consists of a 1600 µs section of the voltage trace sampled 30 times per
millisecond for a total of 48 data points.

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

Data projected on PC axes

FIGURE 19.3 The correlated data b projected on the first two principal components.

310 19. PRINCIPAL COMPONENTS ANALYSIS

III. DATA ANALYSIS WITH MATLAB

Because any experimental system contains noise, the threshold crossing is often trig-
gered by a chance deviation from the mean and not an action potential. Thus, after these
recordings are made, the noise must be differentiated from the real spikes. You must
also determine if the real spikes came from one or many neurons and then sort them
accordingly. How do you compare waveforms? You can start by plotting them all on the
same graph.

If you load the dataset for this chapter, you can use the code below to plot the first 200
waveforms from one electrode, as shown in Figure 19.4:

wf=session(2).chan48; %Load waveforms

plot(wf(:,1:200)); %Plot 200 waveforms.

Since this is an extracellular recording, the sign of the voltage trace of the action poten-
tial is reversed, and the amplitude is much smaller than for intracellular recordings
(microvolts instead of millivolts). You can immediately see that there is a large amplitude
unit on the electrode. There may also be a smaller amplitude unit with a larger trough-
peak spike width. There is also some noise. It is not immediately clear how to separate
these categories, and you are looking at only 200 spikes. How do you deal with all 80,000
spikes that were recorded during an hour-long session? You could represent each wave-
form as a single point, but then each point would be in a 48-dimensional space. How do
you make this analysis easier?

The solution (as you may have guessed) is to compress the data using principal compo-
nents. Then you can plot the first versus the second principal component and see whether
the data fall into clusters. When you use the code below to display all the spikes in a
graph like the one in Figure 19.5, it becomes clear that there are two major clusters.

%Princomp doesn't work on integers, so convert to double

[coeff,score,latent]=princomp(double(wf'));

plot(score(:,1),score(:,2),'.','MarkerSize',1)

0 0.5 1 1.5
−150

−100

−50

0

50

100

150

Time (ms)

M
ic

ro
vo

lts

FIGURE 19.4 A plot of 200 extracellular action potential waveforms recorded from one electrode of a micro-
electrode array implanted in the primary motor cortex of a macaque monkey.

31119.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

Unfortunately, with so many spikes, it’s not clear how densely packed the clusters are.
You can create a 3D histogram using the function hist3 and then visualize the histogram
using the function surface. Use the following code to reproduce Figure 19.6:

edges{1}5 [-300:25:300]; %Bins for the X-axis

edges{2}5 [-250:25:250]; %Bins for the Y-axis

h5hist3(score(:,1:2),edges); %Compute a 2-D histogram

s5 surface(h'); %Visualize the histogram

set(s,'XData',edges{1}) %Label the X-axis

set(s,'YData',edges{2}) %Label the Y-axis

−200

0

200
−300

−200
−100

0
100

200
300

0

1000

2000

3000

PC2 PC1

C
ou

nt

FIGURE 19.6 A three-dimensional histogram showing the frequency of motor cortical spike waveforms pro-
jected on the first (PC1) and second (PC2) principal components.

−300 −200 −100 0 100 200 300
−250

−200

−150

−100

−50

0

50

100

150

200

250

PC1

P
C

2

FIGURE 19.5 A scatterplot of the motor cortical spike waveforms projected on the first and second principal
components.

312 19. PRINCIPAL COMPONENTS ANALYSIS

III. DATA ANALYSIS WITH MATLAB

The default view is looking straight down on the surface. To make the figure prettier,
click the Rotate 3D button (its icon is a counterclockwise arrow encircling a cube). Then
click and drag on the figure to rotate it. Play with the function colormap to change
the color scheme and type help graph3D for the list of color maps. For example,
colormap(white) produces a black and white mesh grid.

Unfortunately, it is difficult to quickly spike sort these waveforms without a good
graphical user interface. For example, you would like to be able to select a point in PC
space and see what the corresponding waveform looks like. You want to be able to circle a
group of points and then see both the average waveform and the interspike-interval histo-
gram. This is the sort of functionality provided by commercial spike sorting packages,
such as Offline Sorter by Plexon, Inc. You can implement something similar in MATLAB,
but doing so is beyond our scope here.

In the project you will perform in this chapter, instead of using a graphical selection
tool, you will select waveforms by looking at distances in PC space. Pick a point in PC1
versus PC2 space that you think is at the center of a cluster. Then calculate the Euclidean
distance of every other point from this template point and pick all those that fall below a
certain threshold. This is equivalent to drawing a circle on the PC graph and picking all
the points that fall within the circle. Now you can calculate any statistic you want of the
sorted waveforms, such as the average waveform or the interspike interval histogram. The
function find may be useful. For example, if you store your Euclidean distances in dist
and your distance threshold in threshold, you can find the indices of all the waveforms
meeting this threshold with ind5 find(dist, threshold);.

You can use this average waveform as the basis of a template sort, a common strategy
in spike sorting. The average waveform is a template to which you compare all other
waveforms. Calculate the mean-squared error for each waveform from this template wave-
form. Then keep all waveforms whose mean squared error falls below a certain threshold.

While this procedure would be easier with a commercial spike sorter, sometimes cus-
tom procedures in MATLAB can be useful. In the project for this chapter, you will also
consider the problem of comparing waveforms from one day to the next. Because the prin-
cipal components change depending on the data, instead of calculating the PCs of the sec-
ond day, you will project the second day’s data onto the first day’s PCs. This isn’t
something that is usually possible with spike sorting software, so understanding how to
implement this in MATLAB expands your analytical possibilities.

19.3 EXERCISES

EXERCISE 19.1

When you computed the covariance

matrix of the uncorrelated data a, why are

the off-diagonal terms nonzero? Generate

several new examples of uncorrelated noise.

What do you think the average covariance

matrix should be?

31319.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

EXERCISE 19.2

Use princomp to compute the principal

components of the correlated noise you

generated in b. Are they different from

what you computed using the covariance

matrix method? If they are, how would this

affect the transformed data?

EXERCISE 19.3

Use princomp to compute the principal

components of uncorrelated noise. What are

the PCs? What would you expect them

to be?

19.4 PROJECT

In this project, you will build your own primitive spike sorter using principal compo-
nents analysis to analyze extracellular data from recordings in the primary motor cortex of
a nonhuman primate (data courtesy of the Hatsopoulos laboratory). The spike waveform
and spike times data for this project are stored in a struct called session. You can access the
data using the following code:

wf15 session(1).wf; %Waveforms from the 1st day

wf25 session(2).wf; %Waveforms from the 2nd day

stamps15 session(1).stamps; %Time stamps from the 1st day

stamps25 session(2).stamps; %Time stamps from the 2nd day

Specifically, you are asked to do the following:

1. Apply PCA to the first day’s waveforms. What percent of variation is captured by the
first two dimensions?

2. Spike sort the first day’s waveforms using a template sort. First, select a region of interest in
2D PC space (a circle at the heart of a cluster) by finding all points in
PC space within a certain Euclidean distance from a given point. Calculate the
average waveform of the waveforms in this region. Use this average waveform as the
template in a template sort. Plot the template and all the sorted waveforms for each neuron
you think is present. Also plot the interspike interval histograms, which are just histograms
of the times between sorted spikes. The function diffmay be useful for this task.

314 19. PRINCIPAL COMPONENTS ANALYSIS

III. DATA ANALYSIS WITH MATLAB

3. Project the second day’s data onto the first day’s principal component’s axes. How is
this different from the second day’s data projected on its own principal components?
Repeat the sort you used for the first day’s data. How do the neurons compare? Do you
think they are the same neurons?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

cov
eig
hist3
mvnrand
normrnd
princomp
surface
transpose
repmat
find
diff

315MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

III. DATA ANALYSIS WITH MATLAB

C H A P T E R

20

Information Theory

20.1 GOALS OF THIS CHAPTER

Thus far, we have assumed that a neuron encodes any relevant stimulus parameters by
modifying its firing rate. We used this assumption to construct tuning curves describing
this stimulus encoding. But a neuron could also encode a stimulus by changing the rela-
tive timing of its spikes. In this chapter we will introduce the methodology used in a series
of papers by Richmond and Optican exploring temporal encoding in a primate visual
area. They used principal components analysis and information theory to argue that a
temporal code provided more information about the stimulus than a rate code did. You
will apply similar methodology to data recorded from the primate motor cortex. Note that
this chapter assumes familiarity with principal components analysis introduced in
Chapter 19.

20.2 BACKGROUND

Richmond and Optican studied pattern discrimination in a primate visual area, the infe-
rior temporal (IT) cortex. They addressed the question of temporal coding in IT in a well-
known series of papers in the Journal of Neurophysiology (Optican and Richmond, 1987;
Richmond and Optican, 1987; Richmond et al., 1987). They found that the firing rate of IT
neurons modulated in response to the presentation of one of 64 two-dimensional visual
stimuli. They also saw evidence of temporal modulation that was not captured by the fir-
ing rate.

To quantify the relevance of this temporal modulation, Richmond and Optican con-
verted the raster plot for each trial into a spike density function (defined later in Section
20.2.2). They then computed principal components (PCs) of these functions. They com-
puted the mutual information between the stimulus and either the firing rates (rate code)

317MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00018-7 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00018-7

or the first three PCs (temporal code). Their results indicated that the temporal code car-
ried on average twice the information as the rate code.

20.2.1 Motor Cortical Data

In this chapter you will use a similar approach to examine encoding of movement direc-
tion in the primate motor cortex. You have already seen that motor neurons modulate
their firing rate systematically depending on the direction of motion during a center-out
task and that this modulation can be fit to a cosine-tuning curve. However, this analysis
computed the firing rate over a coarse time bin (1 second). A tuning curve might predict a
firing rate of 30 spikes per second for a preferred stimulus, but there are a lot of ways to
arrange 30 spikes (each lasting 1�2 ms) over a 1-second time period.

When you use a rate code, you are implicitly assuming that there is no additional informa-
tion contained in the relative timing of the spikes. This does not mean you assume there is no
temporal variation. Instead, a rate code assumes this temporal variation is uninformative
about the stimulus. For example, when you calculated a peri-stimulus time histogram (PSTH)
centered on movement time in the preceding chapter, you saw the firing rate ramp up slowly
500 ms before movement initiation and ramp back down to baseline by 500 ms later. If each
direction elicits this same temporal response scaled up or down, then the coarse rate code is
appropriate. However, if the temporal response varies systematically across movement direc-
tions, then the rate code will ignore potentially useful information.

Figure 20.1 contains the raster plots (left) and PETHs (right) for unit #16 in the center-out
dataset from Chapter 17 (available on the companion web site) recorded on electrode #19.
The spike times are relative to the beginning of the instructed delay, where the peripheral

135
50

0
–1 0 1

90
50

0
–1 0 1

45
40

20

0
–1 0 1

225
50

0
–1 0 1

270
50

0
–1 0 1

315
40

20

0
–1 0 1

180
50

0
–1 0

Chan 19-1
instruction

1

0
40

20

0
–1 0 1

135
50

0
–1 0 1

90
50

0
–1 0 1

45
40

20

0
–1 0 1

225
50

0
–1 0 1

270
50

0
–1 0 1

315
40

20

0
–1 0 1

180
50

0
–1 0

Chan 19-1
instruction

1

0
40

20

0
–1 0 1

FIGURE 20.1 Left: A raster plot of the sample neuron. The x-axis is time in seconds, the y-axis is the trial
number, and the title reflects the movement direction. Right: A peri-event time histogram for the same neuron.
Here, the y-axis reflects the number of spikes in a 10 ms bin across all trials.

318 20. INFORMATION THEORY

III. DATA ANALYSIS WITH MATLAB

target is visible but the animal is still holding on the center target. The responses to a
preferred stimulus (135� or 180�) are similar; both show an increase in the firing rate about
500 ms after the target appears. However, the responses to an antipreferred stimulus (0� or
315�) are different; both show a transient increase in the firing rate in the first 100 ms fol-
lowed by a marked depression for the following 900 ms. A rate code is unlikely to capture
all the information in these responses.

How do you quantify such temporal information? Principal components analysis might
work. However, you first need to think about how to format the spike times. Binning the
data seems natural, but choosing the proper bin size can be tricky. If the bin is too small
(1 ms), then you may make your potential response space huge (21000 possible responses)
compared to the number of trials. If the bin is too large (1 second), then you lose poten-
tially useful temporal variations within the time bin. The best bin size is close to the order
of the temporal dynamics you are interested in. If you observed consistent variations on a
50�100 ms time scale, a 50�100 ms time bin would probably work.

20.2.2 Spike Density Functions

Another problem with binning spike times is that binning can introduce artifacts into
the data. Suppose a response to a stimulus always consists of a single spike around time t,
and the variability from trial to trial follows a Gaussian distribution around t. If t sits right
on an edge between two bins, then sometimes it will be counted in the first bin, and other
times it will be counted in the second bin. This produces the illusion of a bimodal
response when, in fact, there is only a single response.

An elegant solution to this problem is to convert each raster plot into a continuous spike
density function. You first bin the spike times at a fine time resolution (1 ms) so that each
bin has a 0 or 1. You then convolve this data with another function, called the kernel. The
kernel captures how precise you think the spike times are: a wide kernel implies high vari-
ability, whereas a narrow kernel implies high precision.

You explored 2D convolution in Chapter 16; the 1D convolution function in the
MATLAB® software is conv. Pay attention to the length of the resulting vector because
conv(a,b) results in a function whose length is length(a)1 length(b)-1. Suppose the kernel
is a Gaussian function with a standard deviation of 15 ms. This is equivalent to putting a
confidence interval on the spike times. This kernel means you believe that a neuron that
wants to fire at 0 ms will actually fire at between 230 and 30 ms 95% of the time. To use
this kernel in MATLAB, you need to evaluate the Gaussian over a range of time values
(every 1 ms from 245 ms to 45 ms). If you convolve this function with 1 second of spike
data (binned every 1 ms), the resulting vector will contain 1090 values. The corresponding
time axis is 244 ms to 1045 ms. If you don’t want values outside the 1-second time period
of interest, you just select the middle section. Load the dataset for this chapter, which con-
tains data from the sample neuron in the variable trial. In the following code, binned spike
data from the first trial are stored in binned and the spike density function is stored in s:

trialNum=1; %Bin data from the first trial.

binned=hist(trial(trialNum).spikeTimes,[0:.001:1]);

sigma 5 .015; %Standard deviation of the kernel 5 15 ms

31920.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

edges5 [-3*sigma:.001:3*sigma]; %Time ranges form -3*st. dev. to 3*st. dev.

kernel 5 normpdf(edges,0,sigma); %Evaluate the Gaussian kernel

kernel 5 kernel*.001; %Multiply by bin width

s5 conv(binned,kernel); %Convolve spike data with the kernel

center 5 ceil(length(edges)/2); %Find the index of the kernel center

s5 s(center:10001 center-1); %Trim out middle portion

An example of a spike density function is shown in Figure 20.2, along with the original
raster plot.

Once you compute spike density functions for each neuron, you can compute the prin-
cipal components of the spike density functions. However, to avoid computing a
10003 1000 dimensional covariance matrix, you should first sample the spike density
functions every 10 or 20 ms and then apply principal components analysis.

20.2.3 Joint, Marginal, and Conditional Distributions

The goal here is to compute the amount of information contained in a firing rate code com-
pared to a temporal code (as captured by principal components). However, before defining
“information” precisely, we need to review the concept of joint, marginal, and conditional prob-
ability distributions. For a discrete variable (which is all we will consider here), a probability dis-
tribution is simply a function that assigns a probability between 0 and 1 to all possible outcomes
such that all the probabilities sum to 1. A joint probability distribution is the same, except it
involves more than one variable and thus assigns probabilities to combinations of variables.

In this example, you have a stimulus S, which can take on one of eight discrete values.
Suppose you divide the firing rates R of the same sample neuron from earlier into three

0.08

0.06

0.04

0.02

0

–0.02

0 0.2 0.4 0.6

Spike density function for trial #1

Time (s)
0.8 1

FIGURE 20.2 Top: An example of a
spike density function using a Gaussian
kernel with a standard deviation of 15 ms.
Bottom: the original raster plot.

320 20. INFORMATION THEORY

III. DATA ANALYSIS WITH MATLAB

bins (low, medium, and high firing rate). If you use the code below to count how many
times each of 24 possible combinations shows up in the data, you end up with something
like Table 20.1.

for ii=1:8 %Loop over all directions.
ind=find(direction==ii); %Find trials in same direction
%Bin firing rate R into low, medium, high
table(:,ii)=histc(R(ind),[0 19.5 30 100]);

end

From Table 20.1, it is clear that there is a relationship between the firing rate and
stimulus direction. A high firing rate corresponds to a stimulus of 3, 4, or 5, while a low
firing rate corresponds to a stimulus of 7, 8, 1, or 2. Remember that S5 1 corresponds to a
movement direction of 0�, S5 2 to 45�, and so on. You can determine the observed joint
probability distribution P(S,R) simply by dividing each count by the total number of
counts (here, this is 315). In addition, you can compute the marginal probability distribu-
tions, which are the probability distributions of one variable computed by summing the
joint probability distribution over the other variable:

PðSÞ5
X
R

Pðs; rÞ and PðRÞ5
X
S

Pðs; rÞ ð20:1Þ

Note that in these equations, S and R refer to all possible stimuli or responses, respec-
tively, and that s and r refer to a particular stimulus or response.

Table 20.2 shows the values of P(S,R). The marginal distributions are listed in the last
row and far right column because they are the sum taken across rows and across columns
of the joint distribution.

TABLE 20.1 Observed Counts of Stimulus-Response Pairs for the Sample Neuron

S5 1 S5 2 S5 3 S5 4 S5 5 S5 6 S5 7 S5 8

R,20 21 28 2 1 1 8 33 17

20#R,30 7 5 23 20 17 29 9 6

R$ 30 1 0 21 26 27 7 1 5

TABLE 20.2 The Joint Probability Distribution P(S,R) and the Marginal Distributions P(R) and P(S) for the
Sample Neuron

P(S,R) S5 1 S5 2 S5 3 S5 4 S5 5 S5 6 S5 7 S5 8 P(R)

R,20 0.067 0.089 0.006 0.003 0.003 0.025 0.105 0.054 0.352

20#R,30 0.022 0.016 0.073 0.063 0.054 0.092 0.029 0.019 0.368

R$ 30 0.003 0.000 0.067 0.083 0.086 0.022 0.003 0.016 0.279

P(S) 0.092 0.105 0.146 0.149 0.143 0.140 0.137 0.089

32120.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

The last concept we need to address is the conditional distribution. The distribution of the
response R given knowledge of the stimulus S is written P(RjS) and is defined as P(RjS)5
P(S,R)/P(S). Likewise, the conditional distribution of S given R is P(SjR)5P(S,R)/P(R). As
an example, what is the probability distribution of firing rates given a movement direction
of 0� (S5 1)? To find the answer, simply take the first column of values in Table 20.2, P
(S5 1, R), and divide by P(S5 1) to get P(RjS5 1). Hence, the probably of a low firing rate
given S5 1 is 0.067/0.0925 0.73 and so on.

20.2.4 Information Theory

The foundation of information theory was laid in a 1948 paper by Shannon titled, “A
Mathematical Theory of Communication.” Shannon was interested in how much informa-
tion a given communication channel could transmit. In neuroscience, you are interested in
how much information the neuron’s response can communicate about the experimental
stimulus.

Information theory is based on a measure of uncertainty known as entropy (designated
“H”). For example, the entropy of the stimulus S is written H(S) and is defined as follows:

HðSÞ52
X
S

PðsÞlog2 PðsÞ ð20:2Þ

The subscript S underneath the summation simply means to sum over all possible sti-
muli S5 [1, 2 . . . 8]. This expression is called “entropy” because it is similar to the defini-
tion of entropy in thermodynamics. Thus, the preceding expression is sometimes
referred to as “Shannon entropy.” The entropy of the stimulus can be intuitively under-
stood as “how long of a message (in bits) do I need to convey the value of the stimulus?”
For example, suppose the center-out task had only two peripheral targets (“left” and
“right”), which appeared with an equal probability. It would take only one bit (a 0 or
a 1) to convey which target appeared; hence, you would expect the entropy of this stimu-
lus to be 1 bit. That is what the preceding expression gives you, as P(S)5 0.5 and
log2(0.5)521. The center-out stimulus in the dataset can take on eight possible values
with equal probability, so you expect its entropy to be 3 bits. However, the entropy of
the observed stimuli will actually be slightly less than 3 bits because the observed proba-
bilities are not exactly uniform.

Next, you want to measure the entropy of the stimulus given the response, H(SjR). For
one particular stimulus, the entropy is defined similarly to the previous equation:

HðSjrÞ52
X
S

PðsjrÞlog2 PðsjrÞ ð20:3Þ

To get the entropy H(SjR), you just average over all possible responses:

HðSjRÞ52
X
R

X
S

PðrÞPðsjrÞlog2 PðsjrÞ ð20:4Þ

322 20. INFORMATION THEORY

III. DATA ANALYSIS WITH MATLAB

Now you can define the information that the response contains about the stimulus. This
is known as mutual information (designated I), and it is the difference between the two
entropy values just defined:

IðR; SÞ5HðSÞ2HðSjRÞ5
X
R

X
S

PðrÞPðsjrÞlog2
PðsjrÞ
PðsÞ

� �
ð20:5Þ

Why does this make sense? Imagine you divide the response into eight bins and that
each stimulus is perfectly paired with one response. In this case, the entropy H(SjR) would
be 0 bits, because given the response, there is no uncertainty about what the stimulus was.
You already decided the H(S) was theoretically 3 bits, so the mutual information I(R;S)
would be 3 bits � 0 bits5 3 bits. This confirms that the response has perfect information
about the stimulus.

Suppose instead that you divide the response into two bins, and that one bin corre-
sponds to stimuli 1�4 and the other bin corresponds to stimuli 5�8. Each bin has four
equally likely choices, so the entropy H(RjS) will be 2 bits. Now the mutual information is
I(R;S)5 3 bits � 2 bits5 1 bit. This means that response allows you to reduce the uncer-
tainty about the stimulus by a factor of 2. This makes sense because the response divides
the stimuli into two equally likely groups. This also emphasizes that the choice of bins
affects the value of the mutual information.

Note that you can use the definition of conditional probability to rearrange the expression
for mutual information. The following version is easier to use with the table of joint and
marginal probabilities computed earlier. Mutual information can also be defined as follows:

IðR; SÞ5
X
R

X
S

Pðs; rÞlog2
Pðs; rÞ
PðsÞPðrÞ

� �
ð20:6Þ

Applying this equation to the joint distribution of the sample neuron gives a mutual
information of 0.50 bits for a rate code.

20.2.5 Understanding Bias

Now we will try estimating the mutual information of an uninformative neuron.
“Uninformative” means that the firing rate probabilities are independent of the stimulus
probabilities. By the definition of independence, the joint probability distribution of two
independent variables is the product of their marginal distributions P(R,S)5P(S)P(R). If
you substitute this into the previous expression for mutual information, you will see the
quantity inside the logarithm is always 1. Since log2(1)5 0, this means the mutual informa-
tion of two independent variables is also 0.

To make things easy, assume that each of the three responses is equally likely and that
each of the eight stimuli is equally likely. Thus, P(R)5 1/3 and P(S)5 1/8, and each value
of the joint probability distribution is the same: P(S,R)5 1/24. The mutual information of
this distribution is still 0 bits.

32320.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

However, even if this is the true probability distribution, the observed probabilities
would likely be different. You can simulate the values of observed probabilities with the
following code. Here, you will simulate 24 random trials, so the expected count for each
cell is 1:

edges5 [0:24]/24; %Bin edges for each table entry

data5 rand(24,1); %Generate 24 random values between 0 and 1

count 5 histc(data,edges); %Count how many fall in the bin edges

count5 count(1:24); %Ignore the last value (counts values equal to 1).

count5 reshape(count,3,8); %Reformat the table.

This might lead to the counts shown in Table 20.3.
If you calculate the mutual information of the associated joint distribution (divide each

count by 24 for the joint distribution), you get 0.50 bits, which is much higher than the
0.00 bits you expect. In fact, this is the same information as the sample neuron found pre-
viously. How can you now trust this earlier calculation?

Calculating mutual information directly from the observed probability distribution (as
done here) leads to a biased estimate. A biased estimate is one that will not equal the true
value, even if the estimate is averaged over many repetitions. The estimate of mutual
information becomes unbiased only when you have infinite data. Such datasets are hard
to come by.

However, all hope is not lost, because you can reduce the size of this bias. To start with,
note that the number of trials is the same as the number of bins in the joint distribution. The
sample data had 315 trials, which should reduce the chance of spurious counts. Repeating
the previous exercise with 315 random trials might give the counts shown in Table 20.4.

TABLE 20.3 The Observed Counts of the Stimulus-Response Pairs for 24 Random Trials of an
Uninformative Neuron

S5 1 S5 2 S5 3 S5 4 S5 5 S5 6 S5 7 S5 8

R,20 0 2 1 1 1 2 1 0

20#R,30 1 0 1 0 0 1 0 2

R$ 30 1 2 1 2 0 2 3 0

TABLE 20.4 The Observed Counts of the Stimulus-Response Pairs for 315 Random Trials of an
Uninformative Neuron

S5 1 S5 2 S5 3 S5 4 S5 5 S5 6 S5 7 S5 8

R,20 14 25 11 16 15 21 15 14

20#R,30 12 11 11 16 12 14 9 12

R$ 30 11 11 16 6 8 14 7 14

324 20. INFORMATION THEORY

III. DATA ANALYSIS WITH MATLAB

The mutual information calculating from this table’s joint distribution is now just 0.03
bits, which is much closer to the expectation (0 bits). This gives you more confidence in
the 0.50 bits you estimated for the sample neuron. However, these numbers are each gen-
erated from a single random experiment. In the exercises you will see that repeated experi-
ments confirm this trend: increasing the number of trials does decrease the bias of the
estimate of mutual information.

Note that the relevant parameter is actually the number of trials per bin. This means
that if you have 315 trials but you also have 315 bins, you will still have a significant bias.
Therefore, you must choose the number of bins carefully. It seems that large bins throw
away information (shouldn’t a spike count of 4 be treated differently than 16?), but smaller
bins introduce a larger bias.

20.2.6 Shuffle Correction

These simulations are similar to a simple method (called shuffle correction) that corrects
for the bias in the mutual information estimate. Suppose you store the stimulus values in
a vector direction. You are interested in determining what the estimated mutual informa-
tion would be if the firing rates were independent of the stimulus values. To do this, you
randomly rearrange (or “shuffle”) the stimulus vector and then compute a new joint distri-
bution and estimate mutual information from that. If you repeat this operation many
times, you can derive a “null distribution” of mutual information estimates of a firing rate
which carries no information. Thus, you can conclude that any neuron whose mutual
information value that is significantly different from this null distribution is informative.
You can also calculate a “shuffle corrected” mutual information estimate by subtracting
the mean of this null distribution. The following code shows how you can shuffle the stim-
ulus values in MATLAB:

x5 rand(315,1); %Vector of 315 random numbers between 0 and 1

[temp ind]5 sort(x); %Sort random numbers and keep the indices in vector "ind"

dirSh5direction(ind); %Use "ind" to randomly shuffle the vector of stimuli

Now you can compute a table counting combinations of the original firing rate and the
shuffled stimulus. One example might be the one shown in Table 20.5.

The mutual information of the associated joint distribution is 0.03 bits. Repeating the
shuffling 30 times gives a mean information of 0.03 bits and a standard deviation of 0.01

TABLE 20.5 The Observed Counts of the Stimulus-Response Pairs for the “Shuffled” Version of the
Sample Neuron

S5 1 S5 2 S5 3 S5 4 S5 5 S5 6 S5 7 S5 8

R,20 8 10 12 20 18 16 16 11

20#R,30 13 12 22 14 17 15 11 12

R$ 30 8 11 12 13 10 13 16 5

32520.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

bits for the null distribution. Hence, the “shuffle corrected” mutual information of the
original neuron is 0.50 bits � 0.03 bits5 0.47 bits. Thus, you can be confident that a rate
code contains significant information about the stimulus direction.

Bias correction is particularly important when you are comparing mutual informa-
tion of joint distributions that have different numbers of bins. In the project for this
chapter, you will compare a rate code to a temporal code. Comparing a rate code to
the first principal component is straightforward because you could use the same num-
ber of bins for each variable. However, if you use the n bins to look at the first princi-
pal components, you would have to use n2 bins to look at the first two principal
components together using the same bin widths. As you know, increasing the number
of bins increases the bias. If you compared uncorrected estimates, it would by easy to
assume the second principal component provides additional information when it actu-
ally doesn’t.

It should also be noted that accurate estimation of information measures is an active
research field and that shuffle correction is perhaps the simplest of available techniques.
Refer to Panzeri et al. (2007) for a more recent review of bias correction techniques and to
Hatsopoulos et al. (1998) for another example of the use of shuffle correction.

20.3 EXERCISES

EXERCISE 20.1

Compute the entropy of the observed values of the stimulus.

EXERCISE 20.2

Run 30 simulations each of the observed

joint distribution of the uninformative neu-

ron (8 stimuli, 3 responses) with n trials,

where n5 25, 50, 100, 200, 400, 800. Plot the

mean and standard deviation of the bias as

a function of the number of trials.

EXERCISE 20.3

Repeat Exercise 20.2, but with 6 and 12

response bins. Plot the mean and standard

deviation of the bias as a function of the

number of trials.

326 20. INFORMATION THEORY

III. DATA ANALYSIS WITH MATLAB

EXERCISE 20.4

Combine data from Exercises 20.2 and 20.3, and plot the mean bias as a function of the

number of trials per bin.

20.4 PROJECT

Choose at least five active neurons from the dataset from Chapter 17, “Neural Data
Analysis I: Encoding” (the sample neuron here is unit #16) available at the companion
web site to analyze. Convert each raster plot into a spike density function. Report the
details of the kernel you used. Calculate principal components (PCs) of the spike density
functions. Calculate the shuffle-correction mutual information between the stimuli and, in
turn, the firing rate, first PC score, and first and second PC score considered together.

In addition, answer the following questions:

1. Is there evidence for a temporal code?
2. How similar are the first few PCs (not the scores) calculated for the different neurons?

What do you think they represent?
3. How does a temporal code that depends only on the first PC differ from one which

depends on two or more PCs?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

conv
reshape

327MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

III. DATA ANALYSIS WITH MATLAB

C H A P T E R

21

Neural Decoding I: Discrete Variables

21.1 GOALS OF THIS CHAPTER

In the previous chapters, we saw how neural firing can be expressed as a function of
some behavioral variable. But what about the inverse of that problem? This chapter will
introduce an open-ended approach toward solving the problem of neural decoding,
whereby an estimate of behavior is generated from observed neural activity. Specifically,
this chapter will address how to predict the upcoming direction of movement from a pop-
ulation of neuronal signals recorded from motor areas of a macaque monkey. Note that
this chapter assumes completion of Chapter 17, “Neural Data Analysis I: Encoding,” as it
makes use of the preferred directions calculated in the exercises.

21.2 BACKGROUND

What is neural decoding? Simply put, it is a mathematical mapping from the brain activ-
ity to the outside world. In the sensory domain, the outside world consists of the received
visual, auditory, or other sensory information. In the motor domain, the outside world
consists of the state of the skeletomuscular system. This is the inverse of neural encoding,
which maps the outside world to brain activity. For example, in Chapter 17, you looked at
how a cosine tuning curve specifies how a neuron modulates its firing rate depending on
the upcoming direction of movement. In contrast, estimating this movement direction
from one (or many) observed firing rate(s) is an example of neural decoding. Because sig-
nals about motor intention precede movement, decoding can be thought of as “mind read-
ing.” Neuroscientists seek to predict an action as soon as it is intended, before it ever takes
place.

Neural decoding can also be thought of as pattern recognition. A set of neuronal spike
times represents a pattern, and the goal of the decoder is to figure out which stimuli or
movements are associated with which patterns. This is a common problem in science.

329MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00021-7 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00021-7

Doctors perform pattern recognition when they produce a diagnosis from a collection of
physical and physiological findings. For example, an electrocardiogram (EKG) trace con-
tains a repeated, stereotypical pattern that corresponds to a single heart beat. Each part of
the trace corresponds to de- and repolarization of a different part of the heart. Therefore,
doctors can use deviations from the normal EKG as clues about underlying abnormalities.
An elevation in one part of the trace (ST elevation) is used to help diagnose heart attacks.
This is pattern recognition.

Interpreting a raster plot is not quite that straightforward (neither is interpreting EKGs,
but that’s another matter). Figure 21.1 shows 10 raster plots and a peri-event time histo-
gram for a motor neuron. Each neuron’s spike times is centered on the start time of
repeated movements in the same direction. There is a clear pattern. On every trial, there is
a transient increase in the neuron firing rate starting a few hundred milliseconds before
the movement starts. However, this is only an approximate relationship. If you look at
each raster individually, it is not clear exactly when the movement begins. In addition,
each raster plot is different. This means you can’t simply perform pattern recognition by
using a “look-up table” because it is unlikely that a neuron’s response will ever exactly
repeat itself.

In this chapter we will implement different strategies for predicting the direction of an
upcoming movement based on the firing rates of a population of neurons. This is relevant
to two distinct goals of neuroscience. First, neuroscientists would like to understand the
brain on a functional level. Neuroscientists ask, “What is the brain doing and how is it
doing that?” Second, neuroscientists are interested in using neuronal signals to do some-
thing useful. Neural prosthetics seek to do this. For example, cochlear implants convert
sound into digital signals used to stimulate the auditory nerve, thus restoring speech per-
ception in the deaf (Papsin and Gordon, 2007). A decoding strategy introduced in the next

−1 −0.5 0 0.5 1
0

2

4

6

8

10

Time (sec)

T
ria

l #

−1 −0.5 0 0.5 1
−20

0

20

40

Time (sec)

S
pi

ke
s/

se
c

(d
ev

. f
ro

m
 m

ea
n)

FIGURE 21.1 Top: A raster plot
of 10 trials of a center-out task.
Bottom: A peri-event time histogram
of the same data. The start of move-
ment occurs at time5 0 seconds. The
firing rate is expressed as the devia-
tion from the mean firing rate.

330 21. NEURAL DECODING I: DISCRETE VARIABLES

III. DATA ANALYSIS WITH MATLAB®

chapter (the linear filter) was used in a neuroprosthetic that allowed a human with tetra-
plegia to control a computer cursor and other devices (Hochberg et al., 2006).

It is important to note, however, that decoding to understand how the brain works is
different from decoding for control. You have seen that neuronal activity in the motor cor-
tex is directionally tuned, but that is not the same as saying these neurons encode direc-
tion. Properly interpreting what is being encoded requires more experiments than what
we have described thus far. In the canonical center-out experiment, the posture is the
same for all eight directions. Thus, instead of encoding direction, the neuron might be
encoding the specific sequence of muscle activations, the desired end posture, or the spa-
tial location of the target (see Kakei et al., 1999, 2001, for experiments which varied fore-
arm posture during a center-out task). The adage “correlation does not imply causation”
applies here.

One area of debate in neuroscience is, “At what time scale should we look for informa-
tion?” Rate encoding holds that the firing rate calculated over some broad time span (usu-
ally hundreds of milliseconds) contains all the necessary information. Temporal coding
holds that additional information is available at smaller time scales. At the extreme, you
could use a 1 ms time bin where each bin either has a 0 (no spike) or a 1 (spike). This
approach likely contains more information about the stimulus than a coarse firing rate.
However, it also greatly increases the dimensionality of the potential responses. Instead of
one discrete variable (the firing rate over 1 second), which might reasonably take a few
dozen values, a 1 ms time bin gives a 10003 1 vector of binary variables with as many as
21000 possible values, which is a number larger than the estimated number of atoms in the
universe. Thus, for computational simplicity, you can start by assuming a coarse rate code.
The idea of temporal encoding is explored in more detail in Chapter 20.

21.2.1 Population Vector

In Chapter 17, we introduced the concept of directional tuning of motor cortical neu-
rons. This is an encoding model that translates an upcoming direction of movement into a
neuronal firing rate. If you now want to decode direction from a firing rate, you are faced
with two problems. First, since a cosine-tuning curve is symmetric, most firing rates are
ambiguous because they could be associated with two movement directions. Second, the
firing rate signal is very noisy. This is due to both intrinsic neuronal noise as well as mea-
surement noise introduced by the equipment. How, then, can you decode movement
direction?

The solution is averaging over a population of neurons, which decreases the effects of
noise and allows disambiguation of the movement direction. The “population vector”
algorithm introduced by Georgopoulos and colleagues is an intuitive way to use cosine-
tuning information from a population of neurons to decode movement direction (1986). In
Chapter 17, you determined the preferred direction of each neuron using information
from all trials.

33121.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB®

Having done this, proceed as follows:

1. Assume that each neuron “votes” for its preferred movement direction. Specifically,
each neuron is going to contribute a “response vector” that is aligned with its preferred
direction.

2. The magnitude (or length) of each neuron’s response vector is determined by the neural
activity of the neuron during each trial. This is the weight given to each neuron’s vote.
For now, assume the weight is simply the firing rate during the hold period.

3. Sum all the response vectors from all neurons to arrive at the population vector for this
trial. The direction of this population vector corresponds to the predicted direction.

This can be expressed as a formula,

P
-

5
Xn

i51

wi
~Ci ð21:1Þ

where for n neurons, P is the population vector, wi is the weight given to each vote, and Ci

is a unit vector pointing in the ith neuron’s preferred direction. The arrows above P and Ci

indicate that these quantities are vectors. Recall that if you represent vectors with
Cartesian coordinates, you can sum the X and Y components separately. Thus, if θi is the
ith neuron’s preferred direction in radians, then the population vector can be broken
down into its X and Y components:

PX 5
Xn

i51

wi cosðθiÞ PY 5
Xn

i51

wi sinðθiÞ ð21:2Þ

Our perspective has changed. Previously, you considered all trials to determine the pre-
ferred direction of a given neuron. Now, you consider the neural activity of all cells in a
given trial to determine the combined response of the population of neurons: the popula-
tion vector. The population vector points toward the upcoming movement direction.

The population vector is useful because it is easy to implement and intuitive to under-
stand. It is based on the theory that motor cortex neurons fire to produce muscle forces,
which, given a certain posture, act in the neuron’s preferred direction. However, the popu-
lation vector is limited because a number of conditions must be met for the method to per-
form well (Georgopoulos, 1986). For example, the neuron’s tuning curves must actually
follow a cosine or at least be radially symmetric around the preferred direction. Also, the
preferred directions must be uniformly distributed.

21.2.2 Maximum Likelihood

You can develop a more general decoding algorithm by relaxing some of the assump-
tions made by the population vector. One way to do this is to use statistical methods. You
assume that a neuron modulates its firing rate in response to the upcoming movement
direction. However, you do not assume exactly how (which a cosine tuning curve does).
You assume that the neuron’s target firing rate will be corrupted by noise, so that for a
given direction you will observe a distribution of firing rates rather than a single firing

332 21. NEURAL DECODING I: DISCRETE VARIABLES

III. DATA ANALYSIS WITH MATLAB®

rate. If you assume the form of this distribution, you can use standard statistical methods
to estimate its parameters. For example, if you thought the distribution of firing rates was
Gaussian, you could characterize it fully by computing the mean and standard deviation
of all the firing rates for trials moving in one direction.

Once you have estimated the parameters, you can calculate the probability of any firing
rate giving a certain direction. This is a conditional probability. We reviewed this in
Chapter 20, “Information Theory.” Briefly, the conditional probability of event A given
event B is denoted as P(AjB). It is defined as the joint probability A and B divided by the
probability of B:

PðAjBÞ5 PðA;BÞ
PðBÞ ð21:3Þ

Intuitively, this can be thought of as the probability of A taking into account some piece
of information (that B has happened). Here, you are interested in the conditional probabil-
ity of a firing rate R given the direction d: P(Rjd). For one neuron, the maximum likelihood
approach is to look at the firing rate and select the direction for which this firing rate is
most likely. As an example, consider a simplified center-out experiment in which targets
are presented at equal probabilities to the left or right, and you are recording from a neu-
ron that prefers movement to the right. Say this neuron fires 25 spikes/s with a standard
deviation of 5 spikes/s before right targets and fires 10 spikes/s with a standard deviation
of 3 spikes/s before left targets. If you assume these firing rates follow Gaussian distribu-
tions, then the maximum likelihood algorithm would predict a right target for a firing
rate $ 17 spike/s and a left target for firing rates # 16 spike/s (see Figure 21.2).

If there is more than one neuron, the situation is more complicated. You make the sim-
plifying assumption that the neuron’s firing rates are independent. At first, this seems at
odds with our understanding of the brain: aren’t connections between neurons the whole
point? However, most neurons in the sample are separated by large distances (relative to
the size of the neurons), and you may attempt to relax this assumption in the exercises.
Independence means you can express the probability of a set of firing rates as the product
of the probabilities for each individual firing rate. This calculation is performed when you

0 10 20 30 40
0

2

4

6

8

10

12

14

Firing rate (ips)

P
ro

ba
bi

lit
y

(%
)

Right
Left

FIGURE 21.2 Firing rate distributions of a hypo-
thetical, rightward-preferring neuron.

33321.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB®

say the chance of flipping four heads in a row is 1/165 (1/2)4. The probability of a set of
firing rates R5 [r1, r2,. . .,rn] for a given direction d can be expressed as follows:

PðRjdÞ5 L
n

i51

PðrijdÞ ð21:4Þ

The maximum likelihood approach predicts the direction associated with the highest
likelihood P(Rjd). However, when you’re implementing this in MATLAB, it is more conve-
nient to pick the direction that maximizes the log-likelihood: log[P(Rjd)]. Because the natu-
ral logarithm is a monotonically increasing function, the choice of direction that
maximizes the log-likelihood will also maximize the likelihood. This approach avoids cal-
culating the product of very small numbers in MATLAB, which, due to numerical preci-
sion constraints, quickly becomes inaccurate. Instead, you sum negative numbers (since
the probabilities are less than 1). The log-likelihood can be expressed as follows:

log½PðRjdÞ�5
Xn

i51

log½PðRijdÞ� ð21:5Þ

The algorithm we have described here is more accurately called the “maximum a pos-
teriori” estimation, which will be discussed in more detail in Chapter 22. In this formula-
tion, we are relying on an experimental trick: the prior probability of each direction is
equal. This is important, because if you are decoding direction, you want to maximize the
conditional probability of the direction given the firing rates, P(djr). This algorithm is max-
imizing the reverse: the conditional probability of the firing rates given the direction,
P(rjd). This simplification is valid only if all directions are equally probable. If they are
not, you will need to calculate P(djr) using Bayes’ rule, which will be discussed in
Chapter 22.

21.2.3 Data

Here, you will use the dataset from Chapter 17, “Neural Data Analysis I: Encoding.”
However, there is a second dataset for this chapter, available on the companion web site.
The first dataset will be used to train the decoding algorithms, meaning these data are
used to estimate the parameters of the model (such as preferred direction). The second
dataset will be used to test the algorithm built using the first dataset. It is important not to
test a prediction algorithm using the same data you trained with. Otherwise, the optimal
prediction would be “the exact same thing is going to happen.” Testing on novel data
helps ensure that the model does not overfit the data.

To compare the population vector method to the maximum likelihood method, you will
need to bin the population vector to force it to assume one of the eight discrete directions.
You can use the function histc in MATLAB to do this, though you should remember that
the 0-degree direction will correspond to two bins: 0 to 22.5 degrees and 337.5 to 360
degrees.

You also need to define an accuracy metric for the predictions made. The percentage
correct is the easiest to compute. However, the mean squared error may be more appropri-
ate, as it penalizes large errors more than small errors.

334 21. NEURAL DECODING I: DISCRETE VARIABLES

III. DATA ANALYSIS WITH MATLAB®

21.3 EXERCISES

EXERCISE 21.1

IMPLEMENTAT ION

1. Implement a population vector decoder.

Use the preferred directions determined

for the training dataset. Predict the

movement direction of the test dataset

by using the firing rates during the hold

period as weights. The hold period start

times are stored in the variable

instruction. The hold period ends 1

second after the start time. Bin the

predicted direction to convert it to one of

the eight discrete movement directions.

2. Implement a maximum likelihood

decoder. Assume a Poisson firing rate

model and independent firing rates.

Determine the mean firing rate for each

neuron and each direction for the

training dataset. Use the function

poisspdf to determine the likelihood of

each direction. You might want to

threshold the observed mean firing rates

if they are below 1 spike/s or so to avoid

unrealistically small probabilities. Pick

the direction that maximizes the log-

likelihood of all firing rates for a given

trial.

3. Compare the accuracy of these two

decoding methods, using a percent

accuracy or mean squared error.

EXERCISE 21.2

VAR IAT IONS

1. The population vector methods make

assumptions about the data: that

neurons were cosine tuned and that

preferred directions are uniformly

distributed. Are these assumptions

valid? Provide evidence for your answer.

2. Instead of weighting the response

vectors using the firing rate, weight

using the change in firing rate from

baseline. Use the mean firing rate across

all directions to determine the baseline

firing rate. Does this affect the decoding

accuracy? Why might this be?

3. Use a Gaussian firing rate model for the

maximum likelihood decoder. The

likelihood can be determined with the

function normpdf and the mean and

standard deviation for each neuron and

each direction. Does this affect the

decoding accuracy? Why might this be?

33521.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB®

21.4 PROJECT

Create a new decoder by either modifying the algorithms introduced here or by devel-
oping your own ideas. Report the accuracy of the new decoder as compared to population
vector or maximum likelihood methods. Here are some suggested approaches:

Easy: Change the specific implementation of one of the decoders. For the population
vector, create a new function to determine the weights from the firing rates. For
maximum likelihood, use a different probability distribution as a firing rate model.
Alternatively, try to include temporal coding by using principal components analysis or
using smaller time bins.
Medium: Transform the data to make it conform to the assumptions made by decoders.
For the population vector, change the weighting scheme of the population vector
algorithm to compensate for a nonuniform distribution of preferred directions. For
maximum likelihood, try to compensate for correlations between neurons, or between a
neuron’s current firing rate and its past firing rates.
Hard: Create a new decoding technique. For example, the algorithms introduced treat
firing rates as independent. More information might be available if firing rates are
treated has a single vector. You could then use a distance metric to classify a novel
vector of firing rates that falls into one of eight clusters (for each direction of
movement). Using dimensionality reduction techniques (such as principal components
analysis, covered in Chapter 19) might allow you plot the clusters in a low dimensional
space.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

poisspdf
normpdf

336 21. NEURAL DECODING I: DISCRETE VARIABLES

III. DATA ANALYSIS WITH MATLAB®

C H A P T E R

22

Neural Decoding II:
Continuous Variables

22.1 GOALS OF THIS CHAPTER

The preceding chapter explored methods of decoding movement direction from neuro-
nal signals. The movement direction was a discrete stimulus, taking on one of eight possi-
ble values. In this chapter, you will look at how to decode a continuous, time-varying
stimulus from neuronal signals. Specifically, this chapter will address how to decode the
instantaneous hand position from a population of motor cortical neurons recorded from a
macaque monkey. You will also see how information about how the hand position
changes over time can be used to improve your decoding.

Note that this chapter assumes completion of Chapter 17, “Neural Data Analysis I:
Encoding,” Chapter 18, “Neural Data Analysis II: Binned Spike Data,” and Chapter 21,
“Neural Decoding I: Discrete Variables.”

22.2 BACKGROUND

We previously discussed how neurons in the motor cortex carry information about
upcoming movements. In the last chapter, you were able to use this information to decode
the direction of a movement made to one of eight targets. But what do you do if move-
ment isn’t so constrained as it is in the center-out task? Another common experimental
paradigm in motor control literature can be described as the “pinball” task: a target
appears somewhere in a 2D playing field, and as soon as the participant moves the cursor
within this target, a new target appears at a different, randomly selected position. There
are no hold times in this task, unlike the center-out task, so the hand is constantly moving.

337MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00022-9 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00022-9

You are interested in decoding the trajectory of the hand, meaning you want to know
X- and Y-positions of the hand at each time point. X- and Y-positions are examples of
kinematic variables, meaning they describe the motion of the object (the hand), but not
the forces that generated the motion. Considering just the limb kinematics is easier than
considering the full limb dynamics, which requires a model of how muscle forces and the
physical properties of the limb interact to produce motion.

What method can you use to decode these kinematic variables? You could just modify
the algorithms you have already seen. Recall that the population vector has a magnitude
as well as direction. If you assume this magnitude is proportional to the instantaneous
speed, you could simply compute a population vector for each time bin and then add
them tail to tip to create an estimate of the trajectory. This was, in fact, an early approach
to the problem (Georgopoulos, 1988).

In this chapter we will take a couple of different approaches. We mentioned previously
that a simple neuronal encoding model assumes the firing rate varies linearly with stimu-
lus intensity. You can apply this to motor cortical neurons and assume they fire linearly
with the instantaneous hand position. For decoding, you simply invert this equation and
derive an estimate of hand position using a linear function of firing rates. Another
approach is to divide the X- and Y-axes into a grid and then use the same maximum likeli-
hood method we used for center-out data to determine which grid square the hand is
located in. As you will see, the fact that the hand position varies smoothly as a function of
time introduces some new wrinkles.

Load the dataset for this chapter, available on the companion web site (data courtesy of
the Hatsopoulos laboratory). There are two main variables: kin stores the X- and Y-
positions (sampled every 70 ms), and rate stores the number of spikes in each 70 ms bin.
Now look at the relationship between just one kinematic variable (Y-position) and one
neuron’s spike count. Notice how the indices are offset to create a vector of spike counts
that lead the kinematics by two time bins (or 140 ms):

lag5 2; %Lag between neural firing and hand position
y5kin(lag1 1:end,2); %Y-position of the hand
s5 rate(1:end-lag,36); %Corresponding spike count of one neuron

We are interested in how the spike count varies as a function of hand position (for
simplicity, right now we only focus on position in the Y-direction). However, if you
were to plot the position versus the raw spike count as a scatter plot, the result would
be confusing, because the spike counts are highly variable. It is better to look at how
the mean spike count varies as a function of position. To do this, we will divide the
position variable into 15 1-cm wide bins, and average the corresponding spike counts.
We will also keep track of the standard deviation, so we can compute a standard error:
this is equal to the standard deviation divided by the square root of the number of data
points. We can then plot a confidence interval for the empirical mean, as the “true”
mean should fall within two standard errors of empirical mean 95% of the time. The
error bars corresponding to a confidence interval can be plotted using the MATLAB®

function errorbar.

338 22. NEURAL DECODING II: CONTINUOUS VARIABLES

III. DATA ANALYSIS WITH MATLAB

The following code uses that function to plot the mean spike count as a function of the
position of the hand:

yEdge5 [0:15]; %Bin edges
for ii5 1:length(yEdge)-1

ind5 find(y. yEdge(ii) & y, 5 yEdge(ii1 1)); %Find positions within bin
meanS(ii)5mean(s(ind)); %Mean of spike counts for this bin
stdS(ii)5 std(s(ind)); %Standard deviation
errS(ii)5 stdS(ii)/sqrt(length(ind)); %Standard error

end
yCenter5 yEdge(1:end-1)1 .5; %Center of each bin
errorbar(yCenter,meanS,2*errS,'.') %Plot mean with error bars

In this case, the mean spike count seems to vary roughly linearly with the position. If
you fit the spike counts as a linear function of position using polyfit (see Chapter 17) and
plot the fit, you will end with something like Figure 22.1.

22.2.1 Linear Filter

You now have a decoder relating one neuron’s spike counts S to the instantaneous
y-position Y, which takes the familiar linear form, Y5mS1 b, where m and b are the coef-
ficients returned by polyfit. But what exactly is the MATLAB software doing when you
run polyfit? It is determining the optimal linear regression that minimizes the squared
residuals (which are the differences between the fitted data and the actual data). The opti-
mal linear regression can be expressed analytically. If you express the linear relationship
in matrix form as Y5 Sf, where Y is the kinematics, S is the spike counts, and f is the
decoding filter (the y-intercept b has disappeared, but you will add a column of 1s to S to
account for this), then minimizing the squared residuals is the same as solving the follow-
ing equation:

0 5 10 15
0

0.5

1

1.5

2

2.5

Y Position (cm)

S
pi

ke
 c

ou
nt

Actual
Linear fit

FIGURE 22.1 A linear
fit of the relationship
between Y-position and the
spike count.

33922.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

ðSTSÞf 5 STY ð22:1Þ

You can use this to solve for the desired decoder:

f 5 ðSTSÞ21STY ð22:2Þ
A matrix inverse can be computed in MATLAB with the function inv, and a transpose

is denoted with an apostrophe. Compare this solution to the values you derived with
polyfit:

p5polyfit(s,y,1) %Linear regression
s5 [s ones(length(s),1)]; %Add a row of 1’s to allow y-intercept
f5 inv(s'*s)*s'*y %Analytical linear regression

The advantage of this approach is that you can easily add more neurons or more kine-
matics to the model: you just add more columns to S and Y. The following code shows
how to fit a linear filter to the training data for this dataset, using all of the kinematics and
all the neuronal firing rates lagged two time bins (140 ms):

numBin5 length(kin); %Number of datapoints
yTrain5kin(lag1 1:numBin,:); %Kinematic training data
sTrain5 rate(1:numBin-lag,:); %Neural training data
sTrain5 [sTrain ones(numBin-lag,1)]; %Add vector of ones for baseline
f5 inv(sTrain'*sTrain)*sTrain'*yTrain; %Create linear filter

Once you fit the linear filter to the training data, load the test data and use the follow-
ing code to see how well the decoder performs (remember, you always want to test on dif-
ferent data than you trained with to prevent over-fitting):

numBin5 length(kin);
sTest5 [rate(1:numBin-lag,:) ones(numBin-lag,1)]; %Test neural data
yActual5kin(lag1 1:numBin,:); %Actual test kinematics
yFit5 sTest*f; %Predicted test kinematics

0 1 2 3 4 5 6 7
0

5

10

15

20

Y
 P

os
iti

on
 (

cm
)

Time (s)

Actual
Lin. Filter

FIGURE 22.2 The actual
Y-position of the hand (blue)
compared to the reconstruc-
tion using a linear filter (red).
Only the first 100 datapoints
are shown here.

340 22. NEURAL DECODING II: CONTINUOUS VARIABLES

III. DATA ANALYSIS WITH MATLAB

If you plot the actual Y-position versus the estimated position, the linear filter seems to
be doing a pretty good job (Figure 22.2). This approach of using a linear filter as a decoder
was used in 2002 to show that a macaque monkey could successfully control a computer
cursor with neuronal signals (Serruya et al., 2002) and again in 2006 to show that a human
with tetraplegia could control a variety of neural prosthetics with neuronal signals
(Hochberg et al., 2006). Of course, the linear filter can be used on data recorded outside
the motor cortex. For example, it has been used to decode visual information from retinal
ganglion cells (Warland et al., 1997).

22.2.2 Maximum a Posteriori (MAP) Estimation

We just saw that a linear filter can be used to generate a continuous estimate of the posi-
tion of the hand from neural data. This is different, though, than what we did in Chapter 21,
where we computed the probability of the neural data given each movement direction and
picked the direction which corresponded to the most likely data. Can we use that approach
here? Yes; however we will simplify the problem by approximating the continuous estimate
with a discrete one, by binning the hand position. Since the targets were 1 cm square, we can
try to decode the position at a 1 cm resolution. How do we do that?

First, we need a prediction of the neural firing rate. In Chapter 18, we introduced log-
linear models, which can be fit with generalized linear model techniques using the function
glmfit. This has the advantage of always predicting a non-negative firing rate. We will use
that here to fit an encoding model relating the Y-position to neural firing (recall that we
assumed fixed lag of 2 time bins, or 140 ms). We can then use this model to predict the firing
rate of each neuron at one of 15 evenly spaced Y-positions which cover the playing field.

yCenter5 [0.5:1:14.5]; %Discrete set of positions
numNeuron5 size(rate,2); %Number of neurons
for n5 1:numNeuron %Loop over all neurons

coeff(n,:)5 glmfit(yTrain(:,2),sTrain(:,n),'poisson'); %Fit the encoding model
sFit(n,:)5 exp(coeff(n,1)1 coeff(n,2)*yCenter); %Predict firing rate

end

We already assumed that the neuronal firing rates are Poisson distributed for the
encoding model. If we assume all neurons are conditionally independent, then the proba-
bility of a vector of spike counts is just the product of the probabilities of each spike count
given our prediction (see Equation 21.4). We mentioned in Chapter 21 that it is sometimes
advantageous to work with the sum of the logs of probabilities instead of the product of
the probabilities, but it doesn’t turn out to be an issue with this data. What this gives us is
the conditional probability (discussed in Chapter 20) of observing a vector of spike counts
S given we are at position Y: P(SjY).

for t5 1:length(sTest) %Loop over all trials
frTemp5 sTest(t,1:numNeuron); %Select spike counts for one time bin
prob5poisspdf(repmat(frTemp',1,15),sFit); %Prob. of each count given position
probSgivenY(t,:)5prod(prob); %Prob. of all counts given position

end

34122.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

We aren’t done yet, though, because this isn’t actually the probability we are interested
in. Rather, we want the conditional probability of the position Y given the observed spike
counts S: P(YjS). This is more useful, because to decode position, we just select the posi-
tion Y with the highest probability. But how do we convert from one to the other? Recall
from Chapter 20 that conditional distributions can be written in terms of a joint distribu-
tion: P(SjY)5P(S,Y)/P(Y) and P(YjS)5P(S,Y)/P(S). We can make a simple substitution to
come up with an expression known as Bayes’ rule:

PðYjSÞ5 PðSjYÞPðYÞ
PðSÞ ð22:3Þ

When people talk about Bayes’ rule or Bayesian statistics, they often talk about prior
and posterior distributions. In the context of this decoding problem, the prior distribution
is P(Y). That is, the prior represents whatever prior knowledge we have about the position
of the hand, before we see the neural spike counts. We then use Bayes’ rule to incorporate
this prior with the information we get from neural data. The result of this combination is
P(YjS), called the posterior distribution. This represents all of our knowledge of the posi-
tion of the hand after we get to see the neural firing rates.

What prior information do we have? To start with, we can just look at how long the cur-
sor dwells near one of the 15 discrete positions, and compute a histogram. If we then nor-
malize the histogram to sum to 1, that gives us P(Y). Now, the expression above also
contains P(S), but it turns out we don’t actually have to calculate this, because we don’t
care about what the probability of a given position actually is, we just want to know which
position is most probable. This strategy is known as maximum a posteriori (MAP) estimation.
“A posteriori” is just the Latin name for knowledge possessed after making an observation
(in this case, of neural spike counts), whereas “a priori” refers to knowledge possessed
before making an observation. The MAP estimate of the position is shown below (the hat
over the Y indicates it is an estimate of position and not the actual value Y):

ŶMAP 5 max
Y

PðSjYÞPðYÞ ð22:4Þ

The code below determines the prior distribution P(Y) and the MAP estimate of the
position:

probY5histc(yTrain(:,2),[0:15]); %Histrogram of position values
probY5probY(1:15)/sum(probY(1:15)); %Convert to a probability
for t5 1:length(sTest)

probYgivenS(t,:)5probSgivenY(t,:).*probY’; %P(YjS) is proportional to P(SjY)P(Y)
[temp maxInd]5max(probYgivenS(t,:)); %Find index of maximum
mapS(t)5 yCenter(maxInd); %Find position with highest P(SjY)

end

The results of the MAP decoding are shown in Figure 22.3 for the first few seconds.
While the MAP estimate does okay, it is a little disappointing that it appears to do

worse than a linear filter, but takes more effort to compute. How can we improve on this
algorithm?

342 22. NEURAL DECODING II: CONTINUOUS VARIABLES

III. DATA ANALYSIS WITH MATLAB

22.2.3 Recursive Bayesian Estimation

Our MAP estimate contained two components: P(SjY) and P(Y). The first expression,
P(SjY), is called the observation equation, because it details the probability of observing a
given set of spike counts S given the position at Y. This is the same as the encoding mod-
els we developed in Chapter 18. But what about the prior distribution, P(Y)? If you actu-
ally look at values for the variable “probY,” computed above, you’ll see that all it says is
that the hand is more likely to be in the middle of the playing field than at an edge. That’s
not a lot in terms of prior information. An alternative way to determine the prior distribu-
tion for Bayes’ rule is to use a state equation, which describes how the position of the hand
evolves as a function of time. The hand can only move so much during a 70 time bin, so
we will make the assumption that the position of the hand in the next time bin yt11 is a
function of the hand in the current time bin Yt, plus some error term et11 (which in this
case is the hand’s velocity).

Yt11 5Yt 1Et11 ð22:5Þ

So what kind of distribution can we define for this error term? We can look at this by
simply differentiating the position for our training data, and looking at what kind of
values we see. Since the Y-position is more or less between 0 and 15 cm, the error term
should be between 215 and 115 cm/bin. So we will compute a histogram of the observed
errors between the position terms for each time bin.

yDiff5diff(yTrain(:,2)); %Compute error term
yDiffEdge5 [-15.5:15.5]; %Define edges
yHist5histc(yDiff,yDiffEdge); %Compute histogram
probDiffY5 yHist(1:31)/sum(yHist); %Convert to probability
bar([-15:15],probDiffY); %Plot probability

Your output should look like Figure 22.4.
What is interesting about this figure is how tightly clustered it is around zero. In fact,

over 97% of the bins have an absolute change in position of less than 2.5 cm. So the posi-
tion doesn’t change that quickly as a function of time. This means that if we have a good

0 1 2 3 4 5 6 7
0

5

10

15

20
Y

 P
os

iti
on

 (
cm

)

Time (s)

Actual

MAP

FIGURE 22.3 The actual
Y-position of the hand
(blue) compared to the
reconstruction using maxi-
mum a posteriori (MAP)
estimation (red).

34322.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

estimate of where the position is in the current time bin, we also have a pretty good esti-
mate of where it will be in the next time bin. How do we actually calculate the probability
of cursor position of the next time bin if we know the probability of the current time bin?
We just have to add up all the different combinations which could lead to a given position.
For example, if I know the probability of being at each position now, what is the probabil-
ity of being at 5 cm one time step from now? We just need to sum the probabilities of all
combinations which add up to 5: start at 5 and stay there, start at 6 and move down one,
start at 4 and move up one, etc. This kind of procedure is known as convolution, which we
touched on in Chapters 16 and 20. Basically, we just need to take the probability distribution
of the position at the last time point, and “blur” it by how much we think the position can
shift in one time step. The probability of the current position at location j can be written:

PðYt 5 jÞ5
X15

k51

PðEt 5 j2 kÞPðYt21 5 kÞ ð22:6Þ

In MATLAB, we could use a loop to evaluate this expression, but it is faster to use the
built-in function conv. We can use this probability distribution as an alternative form of
the prior information about position at the current time point t: P(Yt). We generate this
prior information from our previous best estimate of the position at the last time point
t2 1: P(Yt21). This is what is meant by recursive Bayesian estimation; the estimate of the
current time point is based on an estimate of the last time point to create prior informa-
tion, which is incorporated with neural data using Bayes’ rule. Given Bayes’ rule, we can
describe the probability of the current position Yt given all the neural observations up to
the current time point S1:t as the following:

PðYtjS1:tÞ5
PðS1:tjYtÞPðYtÞ

PðS1:tÞ
ð22:7Þ

We’re going to make a few assumptions to simplify things. First, we assume that the
current position only affects the current neural observation (or rather, the neural observa-
tion at a specific lag), which means we can replace PðS1:tjYtÞ with PðStjYtÞ. Second, for the
expression PðYtÞ we will make use of the state equation, which assumes that the position

–15 –10 –5 0 5 10 15
0

0.2

0.4

0.6

0.8

Change in Y

#

FIGURE 22.4 A histo-
gram of the changes in
Y-position, in units of cm
per time bin.

344 22. NEURAL DECODING II: CONTINUOUS VARIABLES

III. DATA ANALYSIS WITH MATLAB

at the current time is a function of the position of the last time point. However, we don’t
know the exact position at the last time point, but we will assume that we have probability
distribution of the position given past neural observations: PðYt21jS1:t21Þ. We can convolve
this expression with the velocity term in our state equation, PðEtÞ, to come up with a prior
distribution of position for the current time point: PðYtjS1:t21Þ. Finally, we will ignore the
normalizing factor PðS1:tÞ, and look at a proportionality (designated with an “~ ”) instead
of an equality. Because we are dealing with a discrete set of positions, we can normalize
by forcing the probabilities to sum to 1. Thus, we can combine these assumptions to come
up with the following expression for our a posteriori (after we see the neural observations)
estimate of position:

PðYtjS1:tÞ~PðStjYtÞPðYtjS1:t21Þ ð22:8Þ

The expression for our a priori (before we see neural data) knowledge, PðYtjS1:t21Þ, is
found by convolving the last estimate, PðYt21jS1:t21Þ, with the error term (Et) in our state
equation, as we did earlier:

PðYt 5 jjS1:t21Þ5
X15

k51

PðEt 5 j2 kÞPðYt21 5 jjS1:t21Þ ð22:9Þ

There is one curious thing about this expression—we always reference the last estimate
PðYt21jS1:t21Þ. But what do we do on the first time step? Well, it turns out we just need to
make a guess, and the estimate will converge to a better estimate over a few time steps.
For simplicity, we can assume a uniform distribution over our 15 possible positions for the
first time step: PðY0Þ5 1=15. We then convolve this with the error distribution we deter-
mined earlier. In MATLAB, we can do this with the following code:

probTemp5 conv(probDiffY,ones(1,15)/15); %Convolve last estimate with error term
%Trim out the middle
probPriorY(1,:)5probTemp(16:30)/sum(probTemp(16:30));

However, when we convolve, this actual gives use a distribution of positions from
214 cm to 30 cm. We are assuming the position can only be between 0.5 and 14.5 cm, so
we trim out the middle portion of the distribution, and re-normalize so the probabilities
sum to one.

This gives us the prior estimate of position. To get the posterior estimate, we just need
to multiply (element by element) this prior distribution with the probability of the neural
data S given the position Y, which we already computed for the MAP decoder. Again, we
will normalize to make the probabilities sum to 1. Finally, instead of picking the most
likely position, our estimate will be a probability-weighted sum of the possible positions.

probPostY(1,:)5probPriorY(1,:).*probYgivenS(1,:); %Combine prior with neural data
probPostY(1,:)5probPostY(1,:)/sum(probPostY(1,:)); %Normalize probabilities
bayesY(1)5 sum(probPostY(1,:).*yCenter); %Bayesian estimate of position

34522.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB

That’s just the first time point, though. For the rest of the time points, we do the exact
same thing, but we proceed recursively, always building off of our previous estimate.

%Recursive Bayesian decoder
for t5 2:length(sTest);

%Convolve last estimate with error term for prior
probTemp5 conv(probPostY(t-1,:),probDiffY);
probPriorY(t,:)5probTemp(16:30)/sum(probTemp(16:30));

%Combine prior with neural data for the posterior
probPostY(t,:)5probPriorY(t,:).*probYgivenS(t,:);
probPostY(t,:)5probPostY(t,:)/sum(probPostY(t,:));

%Convert distribution to a single estimate of position
bayesY(t)5 sum(probPostY(t,:).*yCenter);

end

If you compare the recursive Bayesian estimate to the actual position, your results
should look similar to those shown in Figure 22.5. Notice how the estimate is much less
jerky than the MAP estimate or the linear filter, because we enforce continuity of the posi-
tion trace with our state equation.

There are some caveats to this comparison. First, the linear filter doesn’t traditionally
make use of just one time bin’s worth of data. Instead, the linear filter can make use of all
neural data going back as much as a second. This averages out some of the noise inherent
in measuring spike counts, so the position estimate becomes much smoother. You will
look at the effect of adding more neural data to the linear filter in the exercises. Second,
our recursive Bayesian decoder only looked at position tuning in the neural data, even
though we know that neurons also encode velocity. You will also add velocity to the
Bayesian decoder in the exercises.

One drawback of the discrete Bayesian decoder we present here is that the computa-
tional requirements increase quickly as you add more degrees of freedom. Here, we have
15 possible states for the Y-position. If we wanted to track X and Y concurrently, we

0 1 2 3 4 5 6 7
0

5

10

15

20

Y
 P

os
iti

on
 (

cm
)

Time (s)

Actual

Bayesian

FIGURE 22.5 The actual
Y-position of the hand
(blue) compared to the
reconstruction using recur-
sive Bayesian estimation
(red).

346 22. NEURAL DECODING II: CONTINUOUS VARIABLES

III. DATA ANALYSIS WITH MATLAB

would have 15^25 225 possible states, and tracking X and Y velocity would increase the
state space even further. For this reason, real-time Bayesian decoding for brain machine
interfaces often makes use of a Kalman filter (Wu et al., 2004), which provides a computa-
tionally efficient, closed-form solution to the decoding problem, if certain assumptions are
made (linear observation and state equation; Gaussian noise). The advantage of discrete
Bayesian decoding is that the observation and state equation can be changed to anything
you want, so they can handle nonlinearities. You can explore that in the project for this
chapter, where you will design and implement your own decoder.

22.3 EXERCISES

EXERCISE 22.1

Linear Filter

1. Train a linear filter on the first dataset

for this chapter using a two-time-bin

(140 ms) lag, and test it on the second

dataset. Report both the mean-squared

error (MSE) and the correlation

coefficient between the actual Y-position

and the decoded output.

2. Test lags from 1 to 10 time bins, and see

how this affects the MSE and the

correlation coefficient. Is two time bins

the optimal lag?

3. You can use more than one lag by

appending the lagged rates as extra

columns of X. For example, if you used

lags of 1 and 2 time bins, you would

have 84 columns instead of 42 (not

including the column of 1s). This

corresponds to a filter length (which is

the total number of lags) of 2. Test a

variety of filter lengths. What do you

think the best filter length is?

EXERCISE 22.2

Recursive Bayesian Decoder

Try adding a Y-velocity component to

the state and observation equation. This

means tracking both the position and the

velocity as a function of time, and making

the position at the current time a function

of previous estimates of position Y and

velocity V, while the velocity would be a

function of its previous estimate. You will

also need an encoding model (or observa-

tion equation) that is a function of position

and velocity. How does adding velocity

affect performance?

Yt11 5Yt 1Vt 1EY

Vt11 5Vt 1EV

ð22:10Þ

34722.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB

22.4 PROJECT

Create your own decoding algorithm. The simplest scenario would involve modifying
the state or observation equations for the recursive Bayesian decoder. For example, per-
haps neural firing is actually a non-linear function of the hand position or velocity (the
function nlinfit might be useful). Or perhaps the current position is a function of more
than just the previous position. You could also try your own techniques, as long as they
are optimized solely from the training data. Comment on the assumptions that you are
changing, and why you think this is an improvement. Report both the mean-squared error
and the correlation coefficient of your fit for Y-position of the test data.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

diff
inv
nlinfit
polyfit

348 22. NEURAL DECODING II: CONTINUOUS VARIABLES

III. DATA ANALYSIS WITH MATLAB

C H A P T E R

23

Local Field Potentials

23.1 GOALS OF THIS CHAPTER

Thus far, we have analyzed data in the form of neural spike times, in the context of
how neurons encode the state of the outside world, and in the context of how the state of
the world can be decoded from neuronal spiking. Here, we will examine a different neuro-
nal signal, the local field potential. We will look at encoding and decoding by making use
of frequency analysis (covered in Chapters 11 and 12). Finally, we will introduce Chronux,
an open-source software package written in MATLAB®, which can be used to analyze neu-
ral data.

23.2 BACKGROUND

An extra-cellular electrode placed in the brain registers the activity of nearby neurons
as a change in the voltage across the electrode. Action potentials are very fast, and so they
cause very quick changes to the voltage trace. In an attempt to isolate the activity of just
one neuron (or perhaps a few neurons), the voltage trace is high-pass filtered (for frequen-
cies above 250 Hz) before spikes are detected by threshold crossings. However, the lower
frequencies have information about neurons as well. When the voltage trace is low-pass
filtered (for frequencies below 250 Hz), the result is known as the local field potential, or
LFP. LFPs reflect the summed activity of thousands of neurons near the electrode. “Near”
is an imprecise term, but one paper looking an orientation tuning in visual cortex con-
cluded that LFPs reflected the activity of neurons within 250 microns of the electrode tip
(Katzner et al., 2009). Because unsynchronized neural activity should cancel out, LFPs are
thought to reflect synchronous or oscillatory firing of the neuronal population.

What does the LFP look like? In the dataset for this chapter, the variable lfp contains
the raw LFP recorded from the dorsal premotor cortex, sampled at 1 kHz and in units

349MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00023-0 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00023-0

of microvolts (µV). However, instead of looking at the raw data, neuroscientists usually
subdivide the LFP by band-pass filtering it. We will follow the methodology of a paper
by O’Leary and Hatsopoulos (2006), which examined directional tuning in LFPs
recorded in motor cortex. This paper divided the LFP into high (25�45 Hz), medium
(10�25 Hz), and low (,10 Hz) frequency bands. The high and medium bands are some-
times referred to as gamma and beta oscillations, respectively, though the usage varies
among authors.

Filtering is basically a way to smooth data by computing a weighted, moving average.
For example, in Chapter 20 we smoothed binary spike data with a Gaussian kernel to
produce a spike density function. MATLAB has several built-in functions to help with
filtering, including filter and filtfilt. If we have a vector x and want to create a filtered
vector y, we can do this by calling y5 filter(B,A,x). Here, the vector B specifies the coef-
ficients that are applied to raw signal x. The vector A specifies coefficients applied to the
filtered signal, but we will ignore that for now, and set A equal to 1. Let’s take an exam-
ple where the raw signal x is a ramp from 1 to 10 over 10 seconds, plus some amount of
corruption from noise. We can create a filtered signal by taking a three-point moving
average. We do this with filter by setting the vector of coefficients B to be [1/3 1/3 1/3].
The function filter only uses current and past data, so this means the third element of y
is the average of the first three elements of x. The function will ignore the missing paste
values in the beginning, so here the first element of y will just be one-third the first ele-
ment of x.

x5 [1:10]1 rand(1,10)*2; %Raw signal X, plus some noise
y5 filter([1/3 1/3 1/3],1,x); %Filter x with a three point moving average

However, there is one issue with the function filter. If we ignore the noise, the third ele-
ment of y will be the mean of the vector [1 2 3], or 2. But the original value (before the
noise) was 3, so our filtered value is one off. To put it another way, the filtered signal lags
the raw signal by 1 second because it won’t reach the value of 3 until 4 seconds in, not at
3 seconds. Thus filtering in this manner introduces a time-delay. One way to fix this is to
filter the data again, but to do the process in reverse order so that the two time-delays can-
cel. That is what the function filtfilt does (see code below). If you plot the raw signal x
and the two filtered versions y and z from the two different functions, you will end up
with something like Figure 23.1. This figure makes it clear that while the output of filter
lags the raw data, the output of filtfilt does not.

z5 filtfilt([1/3 1/3 1/3],1,x); %Filter x forwards and backwards, to avoid a time lag.

To filter our LFP signal, we will use a more complicated filter called the Butterworth fil-
ter. The mathematics of filter design is beyond our scope here, but a relevant discussion
can be found in the book Signal Processing for Neuroscientists by Wim van Drongelen. In
short, we can specify the frequency range we want to focus on, and then use the MATLAB
command butter to create the appropriate coefficients of a Butterworth filter that we
can then apply to our data using filtfilt. There are many other choices for a band-pass
filter, such as the Elliptic filter (MATLAB command ellip) or the Chebyshev filter

350 23. LOCAL FIELD POTENTIALS

III. DATA ANALYSIS WITH MATLAB®

(cheby1), but the Butterworth filter is commonly used and will serve our purposes here.
The Butterworth is an auto-regressive filter, meaning it acts on past filtered values as well,
so the coefficient A won’t be 1 like in the previous example. For function butter, you need
to specify the order, which is how many past samples the filter will look at. For example,
the earlier three-point moving average is order two, because it looked at the current and
two past values of the raw signal. You can use the code ahead to filter the raw LFP into
the three frequency bands we want:

Fs5 1000; %Sampling frequency
n5 4; %Controls the order of the filter
fpass5 [0 10; 10 25; 25 45]; %Frequency bands
[b,a]5butter(n,2*fpass(1,2)*2/Fs,'low'); %Low-pass filter
lfp(:,2)5 filtfilt(b,a,lfp(:,1));
for ii5 2:3

[b,a]5butter(n,fpass(ii,:)*2/Fs); %Band-pass filter
lfp(:,ii1 1)5 filtfilt(b,a,lfp(:,1)); %Run forwards and backwards

end

In this code, we also specified the sampling rate Fs, which is 1000 times per second for
these data. Also, the frequency range is given as a number between 0 and 1, where 1 is the
Nyquist limit (Fs/2). Recall that the Nyquist limit (see Chapter 11) specifies that we cannot
faithfully capture a frequency greater than the sampling rate divided by 2. Thus it doesn’t
make sense to target a frequency above the Nyquist limit.

The previous code filters the LFP recorded over the entire experiment. However, we will
want to examine the LFP when something behaviorally interesting is going on. These data
were collected during a center-out reaching task with an instructed delay, just like the neu-
ral spiking data from Chapter 17. The dataset contains the time (in seconds) that the target
first appeared (instruction), the time the go cue was triggered (go), and the time the research
participant actually left the center target (startMove). To convert the time of a cue to the indi-
ces of the LFP, just multiply it by the sampling rate, and round off. The code ahead plots

1 2 3 4 5 6 7 8 9 10
0

5

10

15

Time

V
al

ue

Raw

Filter

Filtfilt

FIGURE 23.1 A com-
parison of a raw signal and
the filtered version using
the filter and filtfilt
commands.

35123.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB®

the raw LFP in a window centered on the first instruction cue. If you plot the filtered LFPs
as well, you will get something like Figure 23.2.

cueInd5 round(instruction(1)*Fs); %First instruction cue
indTrial5 cueInd-Fs/2:cueInd1 Fs; %-500 ms to 11000 ms around cue
time5 [-500:1000]/Fs;
plot(time,lfp(indTrial, 1));

23.2.1 Evoked Potentials

While it is clear from Figure 23.2 that the amplitude of the signals are changing as a
function of time, it is not clear how much of that change is related to the onset of the
instruction cue. This is because, like any physiological signal, the LFP is partially cor-
rupted by noise. We can help eliminate the noise by averaging across trials to create an
evoked potential. The code ahead will average the LFPs across trials in a window cen-
tered on the instruction time. If you plot these averaged evoked potentials, you will get
something like Figure 23.3.

–0.5 0 0.5 1
–200

–100

0

100

200
Raw

V
ol

ta
ge

 (
µV

)

Single-trial LFP

–0.5 0 0.5 1
–200

–100

0

100

200
0–10 Hz

Time from cue (s)

V
ol

ta
ge

 (
µV

)

–0.5 0 0.5 1
–50

0

50
10–25 Hz

–0.5 0 0.5 1
–50

0

50
25–45 Hz

Time from cue (s)

FIGURE 23.2 A comparison of the single-trial raw and filtered LFP signals.

352 23. LOCAL FIELD POTENTIALS

III. DATA ANALYSIS WITH MATLAB®

lfpEvoked5 zeros(1501,4); %Initialize evoked lFP
for ii5 1:length(instruction); %Loop over trials

cueInd5 round(instruction(ii)*Fs); %Find cue for this trial
for jj5 1:4

%Sum LFPs across trials
lfpEvoked(:,jj)5 lfpEvoked(:,jj)1 lfp(cueInd-Fs/2:cueInd1 Fs,jj);

end
end

Now it is clear that something is happening around the instruction cue. First, both the raw
and the low-pass filtered LFP show a sharp downward deflection after the instruction appears,
before returning to baseline. Second, both the high and medium frequency bands show an
increase in the amplitude (peak-trough distance of the oscillations), which starts at the instruc-
tion cue and lasts for around 200 ms.

23.2.2 Directional tuning

This LFP was recorded from motor cortex during a center-out task, and we saw in
Chapter 17 that single units in motor cortex encode the direction of the upcoming reach.
What about LFPs? The simplest way to examine directional tuning is to look at evoked

–0.5 0 0.5 1
–50

0

50
Raw

V
ol

ta
ge

 (
µV

)

Trial-Averaged LFP

–0.5 0 0.5 1
–50

0

50
0–10 Hz

Time from cue (s)

V
ol

ta
ge

 (
µV

)

–0.5 0 0.5 1
–20

–10

0

10

20
10–25 Hz

–0.5 0 0.5 1
–20

–10

0

10

20
25–45 Hz

Time from cue (s)

FIGURE 23.3 A comparison of the trial-averaged, or evoked, LFP signals.

35323.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB®

potentials averaged across trials in the same direction. The direction of each trial is stored
in the variable direction, where 1 is 0 degrees (movement to the right), 2 is 45 degrees, and
so on up to 8, which is 315 degrees. If you average the LFPs on the instruction cue for the
10�25 Hz frequency band (using the find command to isolate trials in a given direction),
and plot the evoked LFPs in subplots corresponding to the direction of movement, you
will get Figure 23.4.

The evoked LFP for each direction looks like a scaled version of the evoked LFP across
all trials. However, the LFP response is strongest for movement down and to the right.
How do we quantify this response? Our signal here consists of oscillations, thus both the
positive and negative deviations indicate a response. The simplest thing to do is to square
the measured voltage, and then average it over a time window of interest, similar to
O’Leary and Hatsopoulos (2006). Taking the square root of this number is helpful, as it
yields a measure in the original units (µV). The following code will compute the LFP
response in a 200 ms window following the instruction cue:

for ii5 1:length(instruction)
cueInd5 round(instruction(ii)*Fs); %Find index of instruction cue
temp5 lfp(cueInd:cueInd1 199,3); %Take 200 ms window after cue
lfpResponse(ii)5 sqrt(mean(temp.^2)); %Root-mean square of voltage

end

–0.5 0 0.5 1

–20

0

20

–0.5 0 0.5 1

–20

0

20

–0.5 0 0.5 1

–20

0

20

–0.5 0 0.5 1

–20

0

20

–0.5 0 0.5 1

–20

0

20

V
ol

ta
ge

 (
µV

)

–0.5 0 0.5 1

–20

0

20

–0.5 0 0.5 1

–20

0

20

Time (s)

–0.5 0 0.5 1

–20

0

20

10–25 Hz

FIGURE 23.4 The evoked LFP (10�25 Hz) arranged by direction of movement.

354 23. LOCAL FIELD POTENTIALS

III. DATA ANALYSIS WITH MATLAB®

Now we want to look at how this LFP response varies as a function of direction. We
can take the mean of the response for trials of each direction, but we want to have a sense
of the variability of the data as well, so we will also compute the standard deviation of the
data. However, directional tuning implies that the mean of the response will vary as a
function of the direction of movement. We therefore want to know how good our estimate
of the mean is. This is captured by the standard error of the mean, which is the standard
deviation of the expected values of our sample mean. The standard error can be estimated
by dividing the sample standard deviation by the square root of the number of samples.
The following MATLAB code computes the mean, standard deviation, and standard error
of the LFP response we just computed.

for jj5 1:8
ind5 find(direction55 jj); %Find trials in given direction
lfpMean(jj)5mean(lfpResponse(ind)); %Mean
lfpStd(jj)5 std(lfpResponse(ind)); %Standard deviation
lfpErr(jj)5 lfpStd(jj)/sqrt(length(ind)); %Standard error

end

If the data are assumed to follow a normal distribution, then the sample mean should
follow a normal distribution with the standard error as its standard deviation. Thus we
can use the standard error to calculate a confidence interval. A random variable drawn from
a normal distribution has a 95% chance of being within 1.96 standard deviations of the
mean (you might verify that with a simulation using the function randn). A 95% confi-
dence interval computed on our data implies that if we were to repeat our experiment 100
times, in 95 of them the true mean would fall within the confidence interval we compute.
It is not quite correct to say that there is a 95% chance that the confidence interval contains
the true mean, but the precise meaning of a confidence interval is tricky. For our purposes,
it is sufficient to know that it is a measure that indicates the reliability of an estimate (in
this case, the mean).

For practical purposes, confidence intervals are used to visually display how much vari-
ability there is in the data, and to give an approximation as to whether two variables are
significantly different (their confidence intervals should not overlap). In MATLAB, we can
plot data with error bars corresponding to plus or minus one standard error using the
function errorbar. Plotting our data this way confirms our suspicion that the data vary by
direction (Figure 23.5).

deg5 [0:45:315]; %Direction of movement in degrees
errorbar(deg,lfpMean,lfpErr,lfpErr,'o')

It does not appear that the data are cosine tuned, as there are two local maxima in the
figure, and a sharp drop-off from the maximal value. However, we can perform a test of
whether the means are significantly different by performing a one-way analysis of vari-
ance, as covered in Chapter 7, by using the following code:

anova1(lfpResponse,direction) %Are means significant different?

Another way to explore whether the LFP responses really are related to direction is to
compare the response vector to a randomized vector of directions, instead of the actual

35523.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB®

directions. In a sense, this is a negative control; if you repeat the analysis and it still shows
the relationship with the random data, there is likely a mistake somewhere. The code
below stores the random vector in the variable “dirRand.” You can then go back to the
last for-loop, and replace the variable “direction” with variable “dirRand.” When you plot
the response as a function of direction, the responses should be flat, and the analysis of
variance should show that they are not significantly different.

dirRand5 ceil(rand(length(go),1)*8); %A random vector of 8 directions

23.2.3 Spectrograms

We introduced the concept of a spectrogram in Chapter 12, which shows the power of a
time-varying signal at different frequencies. Looking at a spectrogram is useful here,
because it might allow us to make a better choice of frequency bands and time windows
used to examine directional tuning. We will analyze the data in a similar manner as the
evoked potential, by computing a spectrogram on the single trials and then averaging all
trials in a given direction.

We will start as we did in Chapter 12, using the built-in function spectrogram. We will
compute the spectrogram of the first trial that we plotted in Figure 23.2. We also need to
decide on how many data points to use in our window to compute the spectrum (we will use
128, or 0.128 seconds of data) and what frequencies we are interested in (we will look between
6 Hz and 60 Hz). Then you can run the code ahead to plot the spectrogram (shown in the left-
hand panel of Figure 23.6).

n5 128; %Number of points in moving window
freq5 [6:3:60]; %Frequencies we are interested in
[S,F,T,P]5 spectrogram(lfp(indTrial, 1),n,[],freq,Fs,'yaxis');
maxDb5 15; %Maximum on scale for decibels.
imagesc(T-.5,F,10*log10(P),[0 maxDb]) %Plot spectrogrm
axis xy; xlabel('Time(s)'); ylabel('Freq (Hz)')

–50 0 50 100 150 200 250 300 350
16

18

20

22

24

Direction (deg)

R
es

po
ns

e
(µ

V
)

FIGURE 23.5 The mean
LFP response (in the
10�25 Hz band) versus the
direction of movement.

356 23. LOCAL FIELD POTENTIALS

III. DATA ANALYSIS WITH MATLAB®

Note that what we are actually plotting is the power of the spectrogram (stored in “P”),
and that we are plotting power in units of decibels (dB). We converted to dB by taking the
base-10 logarithm and multiplying it by 10. This means that something valued at 10 dB is
10 times greater than a reference value at 0 dB, while 20 dB is 100 times greater than the
reference value at 0 dB. Such a logarithmic scale is useful for things that vary widely in
scale (such as sound, where decibels are most often used). We also adjusted the time axis
(“T-.5”) to reflect that fact that time starts 0.5 s before the cue.

To compute an average spectrogram, we could repeat this code for all trials, store the
power spectrogram, and average them all before plotting them. That is the procedure we
used before for evoked potentials. However, this is a bit cumbersome here, and it turns
out we can compute spectrograms faster and more accurately by using an open-source
software package for neural data analysis known as Chronux, developed for MATLAB
by the laboratory of Partha Mitra at Cold Spring Harbor. It can be downloaded for free
from the web site http://chronux.org/. This software package can be used for a variety
of purposes, such as generating raster plots and peri-event time histograms as covered in
Chapter 17, but we will focus here on the frequency analysis code. After downloading
the package you will need to add two sub-directories to your current path (under File
then Set Path): “chronux\spectral_analysis\continuous” and “chronux\spectral_analysis\
helper.”

This software package makes use of a mathematical technique for computing the power
spectrum known as multitaper spectral analysis. Discussion of multitaper analysis can be
found in the book Observed Brain Dynamics, and an example of its application to LFP data
can be found in Pesaran et al. (2002). In short, the “multi” in multitaper refers to the fact
that it is possible to get several different, statistically independent estimates of the spec-
trum of a signal. These can then be averaged together, which gives a more precise estimate
(and error bars, if desired) of the spectrum than is possible using the function spectro-
gram. Using the frequency analysis code in Chronux involves setting a number of para-
meters, including the number and resolution of the tapers. However, for now you can just
use the parameters ahead, which work well for these data, and plot the spectrogram for a

Spectrogram

Time(s)

Fr
eq

 (H
z)

–0.4 –0.2 0 0.2 0.4 0.6 0.8

10

20

30

40

50

Mtspecgramc

Time(s)

Fr
eq

 (H
z)

–0.2 0 0.2 0.4 0.6 0.8

10

20

30

40

50

FIGURE 23.6 A comparison of a single-trial spectrogram using the built-in function spectrogram and the
Chronux function mtspecgramc.

35723.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB®

http://chronux.org/

single trial using the Chronux function mtspecgramc. The output of the two functions
(spectrogram and mtspecgramc) are compared in Figure 23.6.

params.Fs5 1000; %Sampling rate
params.tapers5 [2 3]; %Taper parameters
params.fpass5 [5 60]; %Look at 5-60 Hz band
movingwin5 [0.3 0.03]; %Window to compute spectrum
maxDb5 15; %Limit power range to 15 Db
[P2,T2,F2]5mtspecgramc(lfp(indTrial, 1),movingwin,params);
imagesc(T2-.5,F2,10*log10(P2'),[0 maxDb]) %Plot power in dB
axis xy; xlabel('Time(s)'); ylabel('Freq (Hz)')

There are a few parameters here you can play with. The first element of the moving
window (0.3) specifies how much data (in seconds) you use to compute the spectrum,
analogous to the number of data points used earlier. The first element of “params.tapers”
specifies the time-bandwidth product TW. This is a constant, so if you shrink the moving
window, you will increase the corresponding frequency window. The second element
of “params.tapers” specifies the number of tapers, which must be less than or equal to
2TW-1. See Observed Brain Dynamics for further discussion of the interpretation of these
parameters.

You can see in Figure 23.6 that the output of the built-in function is noisier than that
of the Chronux function, though they do show the same overall pattern. However,
what we want to compute is an average spectrum over many trials, not just one. We
can do this using the Chronux function mtspecgramtrigc, as demonstrated in the code
ahead. This code will compute the average spectrum for just one direction, but the
average spectrograms for each of the eight directions of movement are shown in
Figure 23.7.

ind5 find(direction55 1); %Find trials in given dir.
cueTime5 instruction(ind); %Find instruction times
params.trialave5 1; %Average across trials
win5 [1 1]; %1 sec before to 1 sec after cue
[S,t,f]5mtspecgramtrigc(lfp(:,1),cueTime,win,movingwin,params);
figure
imagesc(t-win(1),f,10*log10(S'),[0 maxDb]) %Plot power in dB
axis xy %Flip Y-axis

In Figure 23.7, high power is indicated by the color red, and low power is indicated by
the color blue, with yellow in between (use the function colorbar for details on the scale).
You can see that there is an increase in power between 5 and 30 Hz from the instruction
cue to 200 ms afterwards. This increase is directionally tuned, and it is maximal for move-
ment to the right and down. This is consistent with what we saw in the evoked LFP in the
10�25 Hz range (Figure 23.4).

Unlike the evoked potential, there is a second increase in power from 500 ms to 700 ms
after the instruction cue. This increase is also directionally tuned, but now it is maximal for
movement to the left. This did not show up in the evoked potential of the same data previ-
ously shown. This is because the evoked potential will only pick up an increase in

358 23. LOCAL FIELD POTENTIALS

III. DATA ANALYSIS WITH MATLAB®

amplitude where the responses across trials have a similar phase, which they do immedi-
ately after the instruction cue (see O’Leary and Hatsopoulos, 2006). If the responses are not
phase-locked, they will cancel out even if the amplitude is increased if one averages across
trials. Thus, for these data, the spectrogram has more information than the evoked potential.

23.3 EXERCISES

1. Compute evoked potentials for each direction in both the 10�25 Hz and 25�45 Hz
bands for all three behavioral cues: the instruction cue, the go cue, and the start of
movement. Compute an LFP response for the window from 0 to 200 ms after each
event. Does the LFP response show directional tuning in all conditions? If so, what are
the preferred directions for each condition? Do any conditions show cosine tuning (see
Chapter 17)?

2. Compute an LFP response in the time window from 500 ms to 700 ms for the 10�25 Hz
and 25�45 Hz bands. Is the direction tuning different from the time window from 0 to
200 ms? If so, what are the preferred directions for each band?

3. Compute evoked potentials for the,10 Hz band. We saw that this band shows a
downward deflection after the instruction cue (Figure 23.2). Compute a baseline for
each single trial by averaging the voltage for the 500 ms period preceding the
instruction cue. Then integrate the filtered LFP from 0 to 200 ms after each behavioral
cue. Does the low-pass filtered LFP show directional tuning for each condition? If so,
what are the preferred directions?

-0.5 0 0.5

10
20
30
40
50

-0.5 0 0.5

10
20
30
40
50

-0.5 0 0.5

10
20
30
40
50

-0.5 0 0.5

10
20
30
40
50

Fr
eq

. (
H

z)

-0.5 0 0.5

10
20
30
40
50

-0.5 0 0.5

10
20
30
40
50

Time (s)
-0.5 0 0.5

10
20
30
40
50

-0.5 0 0.5

10
20
30
40
50

FIGURE 23.7 The spec-
trograms of the LFP aver-
aged across all trials in a
given direction.

35923.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB®

23.4 PROJECT

Devise a decoder to map the single-trial LFP data to an estimate of the direction of
movement for that trial. Train the decoder on the first 300 trials of data, and when you are
done tweaking your decoder, apply it to the remaining 163 trials. Try not to test multiple
decoders on the last 163 trials, as that will lead to over-fitting. Report the accuracy (per-
centage of trials correctly identified) of your decoder separately for the 300 training trials
and 163 test trials. Since there are eight discrete movement directions, the baseline percent-
age correct should be 12.5%. You should be able to build a decoder which gets around
30% of test trials correct.

One approach is to record the mean and standard deviation of the LFP response for a
handful of frequency bands and time windows. Then, assuming the responses are inde-
pendent and normally distributed, you can compute the likelihood of data given each
movement direction, and then pick the direction corresponding to the highest likelihood
(see Chapter 21 for more on this approach). However, you may try a different decoder if
you wish.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

filter
filtfilt
butter
mtspecgramc (requires Chronux)
mtspecgramtrigc (requires Chronux)

360 23. LOCAL FIELD POTENTIALS

III. DATA ANALYSIS WITH MATLAB®

C H A P T E R

24

Functional Magnetic
Resonance Imaging

24.1 GOALS OF THIS CHAPTER

This chapter will introduce you to functional magnetic resonance imaging (fMRI) as a
fundamental noninvasive tool in understanding brain functioning in human and non-
human primates. We will describe the basic physics behind both structural and functional
magnetic resonance imaging. We will then describe the major experimental paradigms
used in fMRI research and the kinds of data that are collected in an fMRI experiment.
Finally, using existing fMRI data from a visual attention experiment and face recognition
study, we will show you how to analyze and visualize the data to come up with a statisti-
cal parametric map of activation in the brain. After completing this project, you should
expect to understand how researchers take fMRI data to infer activation associated with a
behavioral task in different parts of the brain.

24.2 BACKGROUND

Functional magnetic resonance imaging has emerged as the dominant form of noninva-
sive functional imaging in humans. Although it is a relatively young technology that
began in the early 1990s, it now plays a major role in many subfields of psychology, cogni-
tive science, and neuroscience. It is even creeping up in other disciplines such as sociology
and economics. As of the middle of 2013, a PubMed search revealed over 338,055 papers
that reference the use of fMRI.

The development of fMRI began more than 70 years ago when Linus Pauling discovered
that oxyhemoglobin and deoxyhemoglobin have different magnetic properties (Pauling and
Coryell, 1936). He noted that deoxyhemoglobin was paramagnetic. However, it wasn’t until
the 1990s that researchers used these properties of hemoglobin to measure what would be

361MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00024-2 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00024-2

later termed the blood oxygen level-dependent (BOLD) signal (Bandettini et al., 1992; Kwong
et al., 1992; Ogawa et al., 1992). Since that time, thousands of studies have been completed
that have dramatically increased our understanding of the human brain. In 2001, Logothetis
and colleagues demonstrated that the BOLD response correlates with local field potentials in
monkeys viewing a flickering checkerboard, leading to the conclusion that the BOLD
response is a post-synaptic phenomenon (Logothetis et al., 2001). Thus, the BOLD response is
a reflection of the post-synaptic response to the local neural activity.

Functional magnetic resonance imaging using BOLD imaging provides a rapid in vivo
glance into human brain function. These experiments are fundamentally based on the princi-
ple that the brain oversupplies blood and oxygen to regions that increase their activity relative
to the state before a stimulus is presented; yet this indirect measurement must be interpreted
cautiously and has led to some criticism of the field. Specifically, the term “BOLD response” is
not interchangeable with “neural activity.” While the BOLD response is a reflection of the neu-
ral activity, it is also dependent on neurovascular coupling including the calcium dynamics in
astrocytes and the vasodilation of arterioles. Thus, group differences indicate physiological
differences, but they do not necessarily indicate differences in neural activity. Additionally,
negative results cannot be interpreted as not having a physiological difference. Finally, BOLD
is based on the relative signal between two conditions, usually an experimental state and fixa-
tion or two experimental conditions. Since BOLD is relative and indirect, Logothetis and col-
leagues concluded that fMRI is limited to “conditionally confirm” prior knowledge from
other studies (Logothetis et al., 2001). Therefore, inferences of brain function derived from
fMRI should draw upon other psychophysical and physiological measurements.

24.2.1 Basic Physics of the MRI Signal

We will describe the basic physical principles that create the MRI signal. Although the
physics behind MRI is inherently quantum mechanical, most of the ideas can be expressed
in classical terms that you would learn in a high school physics course. There are two phe-
nomena that must be understood: precession and relaxation. Atoms with an odd number
of protons (or neutrons) in their nucleus such as hydrogen act like tiny magnetic dipoles
because they possess a quantum mechanical spin. As you may remember from your high
school physics, an electrical charge that is rotating will generate a magnetic field perpen-
dicular to its rotational plane according to the right-hand rule. In the presence of an exter-
nal magnetic field, Bo, these proton magnetic dipoles will tend to align with it by
precessing around the Bo axis like a top precesses about the gravitational field. The preces-
sion frequency, Fo, of the protons in the nucleus is proportional to the strength of Bo with
a proportionality constant that depends on the type of atomic nucleus:

Fo 5 γBo ð24:1Þ
This is called the Lamour frequency, and it characterizes the resonant frequency of the

atomic material that is being imaged. In the presence of the static magnetic field, Bo, the
spinning protons will eventually settle and align their spins with the external magnetic
field and by doing so will create their own internal magnetization, Mo. The time constant
that characterizes this settling or relaxation time is called the T1 time.

362 24. FUNCTIONAL MAGNETIC RESONANCE IMAGING

III. DATA ANALYSIS WITH MATLAB®

To create an MRI signal, an external oscillating magnetic pulse, B1, is applied in the
transverse direction perpendicular to Bo. This pulse is called an RF pulse because the mag-
netic field frequency is in the radio frequency range (i.e., megahertz range) and typically
lasts for a millisecond or so. This pulse is generated by a wire coil that lies in a plane par-
allel to Bo. If the oscillating frequency of B1 is close to the resonant frequency (i.e., the pre-
cession frequency of the protons), the internal magnetization will be perturbed and shift
its orientation toward the transverse direction. This is very much like a forced harmonic
oscillator that will begin to oscillate with a very large amplitude if a forcing frequency
matches the resonant frequency. The shifted internal magnetization of the protons will
precess at its resonant frequency, and will inductively generate an electrical signal in the
same coil that generated the RF pulse. Again from high school physics, you know that a
changing magnetic field generates an electrical field, and will create an electric current if a
wire is nearby. This inductive current will decay in time with a relaxation time constant T2

after the RF pulse is turned off because the precessing protons that initially were in phase
with each other will no longer be phase locked with each other. The time between pulses
is referred to as the repetition time, TR.

To create an image from the MRI signal, additional gradient coils create a gradient in
the static magnetic field, Bo, such that the strength of the static field varies linearly along
different spatial axes. According to the Lamour frequency equation, the resonant fre-
quency is proportional to the magnitude of the static field. In one dimension, a gradient
will shift the resonant frequency of the atomic material. If an RF pulse is applied at a par-
ticular frequency, this will predominantly excite only one point along the spatial dimen-
sion. Imagine a set of harmonic oscillators with linearly varying resonant frequencies
placed along one axis. A forcing oscillation at a particular frequency (the RF pulse in MRI)
will excite those harmonic oscillators whose resonant frequencies are close to the forcing
frequency. More importantly, the relative phase between the oscillator and the forcing
oscillation will vary linearly along the axis. This is the essence of MRI imaging.

24.2.2 BOLD Signal (fMRI)

We will now describe the basic principles of the blood oxygen level-dependent (BOLD)
signal. The oxygenation concentration of blood was discovered to alter the MRI signal
(Ogawa et al., 1992). In particular, as the ratio of oxygenated to deoxygenated hemoglobin
increased, the MRI signal increased. It was soon found that brain activation in the human
also affected the MRI signal, presumably due to changes in blood oxygenation levels sur-
rounding the brain tissue (Kwong et al., 1992). The time course of the BOLD signal initially
shows a weak decrease, due to a relative increase in deoxyhemoglobin concentration asso-
ciated with increased oxygen utilization, followed by a much stronger increase, due to rel-
ative decrease in deoxyhemoglobin concentration associated with the oversupply
of oxygenated blood without a change in oxygen utilization, that peaks several seconds
(B5 seconds) after a stimulus is presented to the subject. The mismatch between supply
and utilization is critical to the BOLD phenomenon (Raichle and Mintun, 2006). Vascular
physiology suggests that the source of this BOLD signal is primarily the venous and capil-
lary blood as opposed to arterial blood and more specifically the dynamic relationship

36324.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB®

between cerebral blood flow, cerebral blood volume, and the cerebral metabolic rate of
oxygen or oxygen utilization. Most studies have focused on the later, robust increase in
the MRI signal. You should keep the relatively slow dynamics of the signal in mind when
interpreting fMRI data because this places a limit to the temporal resolution of tracking
neural activity and the ability to separate neural events close in time.

Functional magnetic resonance imaging initially began by simply subtracting the mean
value of two states akin to computing the correlation between a simple box car function
and the data; however, more recent studies use more complex modeling methods by incor-
porating knowledge of the hemodynamic response to identify active regions (Friston et al.,
1995; Worsley and Friston, 1995). The hemodynamic response is the shape and amplitude
of the BOLD signal in response to a stimulus. As the stimulus approaches an instanta-
neous impulse, the response becomes the hemodynamic response function (HRF). This is
used in the convolution with the stimulus to create knowledge of the predicted BOLD
response, which is then used to identify regions that are active. Initial studies of the HRF
were completed in visual cortex in the mid-1990s (Boynton et al., 1996). More recently, the
hemodynamic response has been shown to be variable across participants, regions, and
trials due to the timing of neural activity and differences in neurovascular coupling
(Aguirre et al., 1998; Handwerker et al., 2004; Steffener et al., 2010). To account for more of
the variability, researchers have begun using the temporal and dispersion derivatives of
the HRF (Calhoun et al., 2004; Steffener et al., 2010). In 2001, Henson and colleagues statis-
tically demonstrated that the inclusion of these terms accounted for most of the variance
in the hemodynamic response (Henson et al., 2001).

24.2.3 Preprocessing of the BOLD Signal

We will describe the data structure and the basic preprocessing steps for functional
magnetic resonance data. The data that are acquired in a functional magnetic resonance
imaging (fMRI) experiment require a number of preprocessing steps before formal statisti-
cal data analyses can be performed. The data we will give you, available on the compan-
ion web site (courtesy of Christian Buechel, Karl Friston, and Rik Henson), have already
been preprocessed. However, it is helpful to understand what has been done to the data
before you work with it (Smith, 2003a, b).

Functional magnetic resonance imaging consists of a series of whole brain images that
are usually collected at uniform intervals typically between 1�5 seconds. Each whole brain
volume is made up of a series of 2D brain slices, although newer structural imaging is col-
lected in 3D rather than as a series of 2D slices. The signal is initially represented in the
Fourier domain as a set of complex numbers at different frequencies and phases (k-space
representation). This needs to be transformed into a set of real numbers in the time
domain using a 2D Fourier transformation for each slice and each time point. The output
of the Fourier transformation is an image for each slice in a proprietary format of the com-
pany that produced the scanner. The Fourier transforms allow the data to be viewed as
shown in Figure 24.1. For illustrative purposes, a T1-weighted slice is shown in
Figure 24.1 (top left). Each 2D slice is made up of many subunits known as voxels, or dis-
crete volume elements (Figure 24.1, top right). The middle image in Figure 24.1 shows a

364 24. FUNCTIONAL MAGNETIC RESONANCE IMAGING

III. DATA ANALYSIS WITH MATLAB®

zoomed view of the voxels. Each of these voxels is actually a numeric value that can be
viewed in color or grayscale as shown in Figure 24.1 (bottom). These images are then col-
lated into whole brain images as either an ANALYZE format file (.img/.hdr pair) or a
NIFTI-1 format file (.img/.hdr pair or .nii). The latter is more common with newer soft-
ware packages. The difference between the image formats is the information stored in the
header of the files. One key difference is that NIFTI-1 files now store the origin and rota-
tion of the image, which allows linear transformations to be stored in the image headers.

Once you have collated the data into whole brain images, preprocessing can begin. In
fMRI, we are generally analyzing each voxel individually. Each voxel has a 3D location
associated with it and is measured across time to produce a time series that can be repre-
sented as a 4D matrix. Because each brain volume image is acquired as a series of two-
dimensional slices, each slice is acquired at a slightly different time. Therefore, slice-timing
correction is performed, although this is less important in block designs. Following slice-
time correction, motion correction is then performed such that each whole brain volume
is spatially aligned. Because motion and slice acquisition time are interdependent and
processes for simultaneously correcting for both do not exist, some have argued that slice-
time correction should be applied after motion correction. Importantly, if slice-time

FIGURE 24.1 An illustrative example of voxels using a
T1-weighted image. Top left: the view of the entire slice. Top
right: the view of all subunits known as voxels, or discrete vol-
ume elements, within a single slice. Middle: a magnified view
of a subset of voxels. Bottom: the numeric value of each voxel.

36524.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB®

correction is performed first, then the motion correction will not require reslicing of the
data. Next, data are spatially normalized to an atlas space, typically MNI space for fMRI
(Evans et al., 1993), using both affine and non-linear transformations. Following this trans-
formation, the data are resampled to a common grid to produce isotropic voxels that are
generally 2 or 3 cubic millimeters in size. Using 2 cubic millimeter voxels will require
about 4 times as much disk space as using 3 cubic millimeters. After the data have been
resampled, it is spatially smoothed using a Gaussian kernel with a full-width half maxi-
mum of 1�2 times the voxel size, typically 8 mm. With the exception of resting state data,
temporal filtering is usually included as part of the statistical analysis.

24.2.4 Experimental Designs

We will describe the four major types of experimental design used in fMRI: (1) the block
design, (2) the event-related design, (3) the mixed block event-related design, and (4) the
resting state design (Donaldson and Buckner, 2003). The block design was the first approach
used in early fMRI experiments and is quite easy to implement. Blocks of time (typically
tens of seconds long) are defined in which subjects are either presented with multiple stimu-
li or perform a task repeatedly (experimental block), or are presented with nothing or asked
to rest (control block). These blocks are typically presented in an alternating fashion. The
BOLD signal is then compared between the experimental and control blocks. Block designs
are useful in clinical studies where the main question is where and to what extent a region
is activated. In contrast, the event-related design uses a series of short, 0�10 second, rapidly
presented stimuli. The event-related design is used when you want to examine the relation-
ship between a behavioral event and the dynamics of the BOLD signal. Additionally, several
different stimuli can be used and presented in a pseudo randomized fashion expanding the
number of comparisons that can be made from a single study. However, each stimulus con-
dition or experimental manipulation should have at least 30 events (Huettel and McCarthy,
2001). The mixed block event-related design is simply a combination of the block design
and event-related designs. Short stimuli are grouped into separate blocks with the idea that
the design will elucidate the brain state of the task as well as the responses to individual
trials. This is the least commonly utilized design. Finally, the resting state design is the easi-
est design to implement. Researchers using a resting state design instruct the participant to
lie still and either: (1) keep their eyes open; (2) keep their eyes closed; or (3) fixate on a cross-
hair in the middle of a screen (Biswal et al., 1995; Fox et al., 2005). This type of design is
advantageous in clinical studies where patients might not be able to perform behavioral
tasks or provide a response to the researcher.

24.2.5 Analysis Methods

We will briefly describe several analysis techniques that are used in fMRI analyses as
well as different software packages. In this chapter, we will focus on the general linear
model and apply it to each voxel in a mass univariate approach (Friston et al., 1995). The
mass univariate approach utilizes the general linear model because of the ease of finding
the solution using matrix inversion:

Y5Xβ1 ε ð24:2Þ

366 24. FUNCTIONAL MAGNETIC RESONANCE IMAGING

III. DATA ANALYSIS WITH MATLAB®

Y is a column vector and represents the fMRI time series data from a single voxel with
N data points. X is an N3M matrix representing the predicted brain responses to the
experimental stimulus and is formed by convolving each condition in the experimental
design with the hemodynamic response function. M is the number of experimental condi-
tions. β is a column vector of the unknown amplitudes of the BOLD response for each con-
dition that is being estimated by the model and ε is normally distributed noise. The
solution to the general linear model is:

β5 ðX0XÞ21X0Y ð24:3Þ
where X’ is the transpose of X. Inferences are then based on whether β is significantly
greater than or less than 0 or different between two conditions.

While the examples in this chapter use the mass univariate approach, it is useful to
know about other approaches. One commonly utilized approach is independent compo-
nent analysis (ICA; Calhoun et al., 2001). Two advantages of ICA are that it: (1) does not
require an a priori model of the expected BOLD response; and (2) does not suffer from the
multiple-comparisons problem of mass univariate analyses. Another approach is partial
least squares (PLS; McIntosh et al., 1996). The advantage of PLS is that it is a multivariate
technique that can separate the effects of different conditions. Additionally, it also does
not suffer from the multiple-comparisons problem.

An alternative to investigating evoked brain activity is to investigate brain connectivity
during different tasks. Two main methods have been developed and used for this purpose.
The first is psychophysiological interactions (PPI), which investigate whether the connectivity
between two brain regions is modulated by the experimental condition (Friston et al., 1997;
Gitelman et al., 2003; McLaren et al., 2012). PPI analyses are implemented using the general
linear model with additional predictors that are added to X. Another approach that has been
developed is called dynamic causal models (DCM), which investigates how connectivity
between brain regions is modulated by experimental contexts using generative models that
better capture the dynamic and nonlinear nature of the signal (Friston et al., 2003).

Finally, it is useful to know that there are several free programs, in addition to MATLAB
for neuroimaging, that include: (1) Statistical Parametric Mapping 8 (SPM8; Wellcome
Department of Imaging Neuroscience, University College London, UK; http://www.fil.ion.
ucl.ac.uk/spm/) is written for MATLAB; (2) FMRIB Software Library (FSL; Functional
MRI of the Brain Centre, University of Oxford, UK; http://www.fmrib.ox.ac.uk/fsl/);
(3) Analysis for Functional NeuroImages (AFNI; Medical College of Wisconsin, USA; http://
afni.nimh.nih.gov/afni/); (4) CARET (Washington University School of Medicine, USA;
http://brainvis.wustl.edu/wiki/index.php/Caret:About); and (5) Freesurfer (Athinoula A.
Martinos Center for Biomedical Imaging, Massachusetts General Hospital, USA; http://
surfer.nmr.mgh.harvard.edu/). Often times, studies involving more advanced methodology
will utilize components from each of these programs. Additionally, each of these programs
provides an email list for imaging questions and technical support.

24.2.6 Multiple Comparisons

We will briefly describe several ways to correct for the problem of multiple compari-
sons. As mentioned previously, this chapter focuses on the mass univariate analysis of

36724.2 BACKGROUND

III. DATA ANALYSIS WITH MATLAB®

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fmrib.ox.ac.uk/fsl/
http://afni.nimh.nih.gov/afni/
http://afni.nimh.nih.gov/afni/
http://brainvis.wustl.edu/wiki/index.php/Caret:About
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/

neuroimaging data, which can involve over 100,000 statistical tests. Applying a Bonferroni
correction to the data is too conservative to find significant effects. Thus, several other
methods have been developed and/or applied to neuroimaging data.

The first method is called the family-wise error (FWE) correction. Instead of correcting
for the number of voxels, the FWE correction is a correction for the number of indepen-
dent tests, or resels (resolution elements). The number of resels in an image is a function of
the number of voxels and the spatial correlation as measured in full-width at half-
maximum (FWHM). From the number of resels, one can compute the statistic required
to achieve an expected Euler characteristic of 0 or 1. This will be the height threshold to
determine if a voxel is significant or not.

The second method is called the false discovery rate (FDR) correction. The FDR correc-
tion leads to the inference that less than q of the significant voxels are false positives.
Briefly, after sorting the p-values (P) from smallest to largest, find the largest k that satis-
fies the following equation:

PðkÞ #
k

m�CðmÞ q ð24:4Þ

where m is the number of voxels and C(m) is a constant describing the relationship between
voxels. If the voxels are independent or positively correlated, then C(m)5 1; otherwise:

CðmÞ5
Xm

i21
1=i5 lnðmÞ1 :5772 ð24:5Þ

All voxels with a p-value less than P(k) are significant at an FDR of less than q
(Genovese et al., 2002). As with FWE, this is a voxel-wise correction. Recent work has
implemented FDR at the cluster level (Chumbley and Friston, 2009).

The third method uses both a voxel-wise threshold and an extent threshold. This correc-
tion leads to the inference that a cluster is significant, which is fundamentally different
from the first two methods that usually correct the data at the voxel level. To find the
extent of a cluster, a Monte Carlo simulation needs to be performed (Forman et al., 1995).
One program that will perform the simulation is 3dClustSim (AFNI; Cox, 1996). The clus-
ter extent is based on the voxel threshold, the smoothness of the image, and the spatial
distribution of voxels being investigated. One caveat of using this method is that one
should be cognizant of using a higher voxel threshold in a smaller cluster compared to
using a lower voxel threshold in a larger cluster.

Multiple-comparison correction procedures that correct inferences at the voxel level
penalize studies that have higher number of voxels. As the number of voxels increases,
the number of individuals in the study needs to increase to detect the same area. While
there are several possible solutions, all of them have their drawbacks. Decreasing the reso-
lution of the image will result in fewer voxels and, assuming the statistics are the same,
potentially reveal more regions that are truly significant. As the voxel size increases, the
ability to detect an effect will be decreased. Given that functional changes are likely to
occur in only parts of any anatomical region, the cluster size must be significantly smaller
than the region. Thus, as imaging improves more robust results will be needed to reduce
the cluster extent threshold. An alternative to voxel-wise procedures is multivariate
approaches (e.g., ICA and PLS).

368 24. FUNCTIONAL MAGNETIC RESONANCE IMAGING

III. DATA ANALYSIS WITH MATLAB®

24.2.7 Caveats and Limitations

We will briefly describe several of the caveats and limitations of imaging. First, the
small sample sizes and low trial numbers used in fMRI studies typically result in lower
power. Thus, negative results cannot be interpreted as the absence of the effect of interest.
Rather, interpretation should be focused on the positive findings. Furthermore, group
comparisons rely on the assumption that neurovascular coupling is the same across all
participants and groups. If the neurovascular coupling changes, then the hemodynamic
response function used in the analysis will not be correct. However, the goal of most stud-
ies is to show differences in the neural correlates, which encompass neurovascular coup-
ling differences. Second, the interpretation of the data is only as good as the cognitive
construct or theory that is being tested. If the manipulation does not test the theory or test
it properly, then the interpretation will also be invalid. Thus, researchers should make
sure the cognitive construct is valid and that the experiment is manipulating the cognitive
theory of interest, before conducting the imaging portion of the study. Finally, in terms of
the analysis, the most critical thing is the proper model. Functional MRI suffers from its
own hemodynamic inverse problem. Specifically, neural activity is linearly related to the
hemodynamic response, but we use the hemodynamic response to infer neural activity by
specifying the onset and duration of the expected neural activity (Buckner, 2003).
However, neither of these parameters are known and must be estimated from the task
design. For example, in a visual search task, the stimulus may be present for 5 seconds,
but the individual finds the target after 2 seconds. The neural activity in some regions
may have only lasted 2 seconds and this timing needs to be taken into account in the
model (Shulman et al., 2003). Thus, it is critical to know when the neurons increase and
decrease firing during your task and not simply when the stimulus comes on and goes off.
Despite the caveats and limitations, fMRI is a very powerful non-invasive tool for under-
standing brain function.

24.3 EXERCISES

These exercises are presented to introduce some of the techniques used to analyze fMRI
data. Before you begin, you will need to download SPM8 (http://www.fil.ion.ucl.ac.uk/
spm/software/) and the scripts available on the companion site (M-files directory) and
then add them to your matlab path using addpath and genpath:

.. addpath(genpath('. . .\spm8'))

The example data are from two studies: (1) an experiment involving visual motion from
one human subject (data courtesy of Karl Friston and Christian Buchel at the Functional
Imaging Laboratory at University College London; Buchel and Friston, 1997); and (2) an
experiment involving the repeated presentations of famous and non-famous faces from
one human subject (data courtesy of Rik Henson at the Wellcome Department of
Cognitive Neurology, University College London; Henson et al., 2002) and are available
on the companion web site.

The first example dataset uses a block design (attention folder) with four conditions:
viewing of stationary dots, attending to moving dots, viewing moving dots with no

36924.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB®

http://www.fil.ion.ucl.ac.uk/spm/software/
http://www.fil.ion.ucl.ac.uk/spm/software/

attention, and viewing a fixation crosshair. A complete image of the brain was acquired
every 3.22 s (i.e., TR5 3.22 seconds) and there are 360 time samples for the whole experi-
ment. The data are stored in image files (*.img) and a timing file (multi_condition.mat).
Often times imaging data are stored in a series of 3D images that are hard to manipulate
in MATLAB, so conversion to a 4D file is helpful. To concatenate the 3D images in the
example data set, type concatimages('fMRIdata.nii', 'snff*img'). To load the images, type
img5 openIMG('fMRIdata.nii'). The variable img is a four-dimensional matrix corre-
sponding to the x (medial-lateral; sagittal plane), y (anterior-posterior; coronal plane), z
(inferior-superior; axial plane) spatial dimensions and time. Each element of the variable
img represents the BOLD signal from one voxel or volume element from the brain at one
time point. One way researchers examine activation at a particular voxel is to cross-
correlate the signal with the expected hemodynamic response. Begin with a simple boxcar
hemodynamic response that is on (i.e., 1) during the active blocks (stationary dots, moving
dots without attention, and attending to moving dots) and off (i.e., 0) during the control
blocks (e.g., when the subject is viewing a fixation crosshair). The experiment begins with
a rest (control) block of 10 TRs:

hemo5[repmat([repmat(0,10,1);repmat(1,10,1);repmat(0,10,1);repmat(1,10,1);repmat
(0,10,1);repmat(1,10,1);repmat(0,10,1);repmat(1,10,1);repmat(1,10,1)],4,1)];

700

680

660

640

620

600

E
xp

ec
te

d
re

sp
on

se
B

ol
d

si
gn

al
 (

a.
u.

)

1

0.8

0.6

0.4

0.2

0

–0.2
0 50 100 150 200

Time (TR)
250 300 350 400

0 50 100 150 200
Time (TR)

250 300 350 400

FIGURE 24.2 The
BOLD signal from one
sample voxel (top) along
with the expected
hemodynamic response
(bottom).

370 24. FUNCTIONAL MAGNETIC RESONANCE IMAGING

III. DATA ANALYSIS WITH MATLAB®

Begin by looking at one voxel. Plot img(31,6,25,:) along with the expected hemodynamic
response in two subplots of the same figure using the subplot function. You will first
need to use the reshape function to convert img(31,6,25,:) into a column vector using vox-
el5 reshape(img(31,6,25,:), 360, 1). Adjust the y-axis of the hemodynamic plot to range
from 20.2 to 1.2 using the axis function. The result should look like Figure 24.2.

Notice how the BOLD signal oscillates at the same frequency as the expected hemody-
namic response.

EXERCISE 24.1

Compute a power spectrum of that voxel using pwelch.

EXERCISE 24.2

Compute the cross-covariance between

the voxel activation and the expected hemo-

dynamic response using xcov:

.. [b a]5 xcov(voxel,hemo,'coeff');

The result is shown in Figure 24.3

(top panel).

The xcov function generates the cross-

covariance instead of the cross-correlation

because you want to examine how the two

signals covary with respect to their respec-

tive means. The function xcorr would con-

sider their covariation ignoring their mean

values despite the fact the two signals have

completely different units and magnitudes.

The 'coeff' flag makes sure that the output

represents the normalized correlation coeffi-

cient ranging from 21 to 1. If you zoom in

the figure (Figure 24.3, bottom panel), you

will notice that the peak in the cross-

covariance occurs at a lag time of 2. This is

the biophysical delay between the

performance-based neural activation and

the hemodynamic response.

To quantitatively determine which vox-

els are significantly activated, you will

apply a regression model or general linear

model (GLM) to find a linear relationship

between the expected hemodynamic

response and the actual BOLD signals.

Specifically, you will find the optimal (in

the least-squares sense) offset and gain

parameters that relate the expected hemo-

dynamic response and the voxel’s BOLD

signal such that

voxel5 offset1 gain3 hemo1 ε ð24:6Þ

where ε is normally distributed noise.

However, before computing the parameters,

you need to introduce the biophysical delay

into the expected hemodynamic response

using spm_hrf and conv.

..hrf5 spm_hrf(3.22);

.. canonical_ hemo5 conv(hemo,hrf);

.. canonical_hemo5 canonical_hemo

(1:360)

37124.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB®

EXERCISE 24.3

Run statistics on the sample voxel using

the canonical hemodynamic response. What

are the constant/offset and gain parameters

that are computed and their p-values?

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8
–400 –300 –200 –100 0 100 200 300 400

Lag (TR)

C
or

re
la

tio
n

co
ef

fic
ie

nt

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1 0 1 2 3 4 5 6
Lag (TR)

C
or

re
la

tio
n

co
ef

fic
ie

nt

FIGURE 24.3 The cross-covariance between the sample voxel and the expected hemodynamic
response at a broad time scale (top) and a narrow time scale (bottom).

372 24. FUNCTIONAL MAGNETIC RESONANCE IMAGING

III. DATA ANALYSIS WITH MATLAB®

..B5pinv([ones(360,1)

canonical_hemo])*voxel;

B(1) is the constant/offset and B(2) is the

gain parameter relating to the active blocks.

.. residuals5voxel-([ones(360,1)

canonical_hemo])*B;

..ResSS5 sum(residuals.^2);

T-statistics and their associated p-values

are based on contrasts. In this example, the

contrast (λ) for the offset, the first parame-

ter, is [1; 0] since we want to test if the off-

set is greater than 0 and the contrast for the

gain, the second parameter, is [0; 1] since

we want to test if the gain is greater than 0.

The equation for generating the T-statistic is:

T5
λ0β

sqrtðσ2λ0ðX0XÞ21λÞ ð24:7Þ

where λ is the contrast and X is the predic-

tors. σ2 is residual sums of squares (ResSS)

divided by the degrees of freedom in the

model.

..poffset5 2 * tcdf(-abs(B(1)/ sqrt

(ResSS/(360-2)*[1 0]*([ones(360,1)

canonical_hemo]'*[ones(360,1)

canonical_hemo])^-1*[1 0]')), 360-2);

..pgain5 2 * tcdf(-abs(B(2)/ sqrt

(ResSS/(360-2)*[0 1]*([ones(360,1)

canonical_hemo]' *[ones(360,1)

canonical_hemo])^-1*[0 1]')), 360-2);

EXERCISE 24.4

Run statistics on the sample voxel for

each condition (stationary dots, s; moving

dots with no attention, natt; attending to

moving dots, att) using the canonical hemo-

dynamic response. What is the difference in

the gain parameters for each condition and

their p-values?

.. s5 [repmat(0,80,1);repmat(1,10,1);

repmat(0,80,1);repmat(1,10,1);repmat

(0,80,1); repmat(1,10,1);repmat(0,80,1);

repmat(1,10,1)];

..natt5 [repmat(0,30,1);repmat(1,10,1);

repmat(0,30,1);repmat(1,10,1); repmat

(0,40,1);repmat(1,10,1);repmat(0,30,1);

repmat(1,10,1);repmat(0,20,1);repmat

(1,10,1);repmat(0,30,1);repmat(1,10,1);

repmat(0,40,1);repmat(1,10,1);repmat

(0,30,1);repmat(1,10,1); repmat(0,30,1)];

.. att5 [repmat(0,10,1);repmat(1,10,1);

repmat(0,30,1);repmat(1,10,1); repmat

(0,40,1);repmat(1,10,1);repmat(0,30,1);

repmat(1,10,1);repmat(0,60,1);repmat

(1,10,1);repmat(0,30,1);repmat(1,10,1);

repmat(0,40,1);repmat(1,10,1);repmat

(0,30,1);repmat(1,10,1); repmat(0,10,1)];

.. canonical_hemo_s5 conv(s,hrf);

.. canonical_hemo_s5 canonical_

hemo_s(1:1:360);

.. canonical_hemo_natt5 conv(natt,

hrf);

.. canonical_hemo_natt5 canonical_

hemo_natt(1:1:360);

.. canonical_hemo_att5 conv(att,hrf);

.. canonical_hemo_att5 canonical_

hemo_att(1:1:360);

..B5pinv([ones(360,1)

canonical_hemo_s canonical_hemo_natt

canonical_hemo_att])*voxel

.. residuals5 voxel-([ones(360,1)

canonical_hemo_s canonical_hemo_natt

canonical_hemo_att])*B;

37324.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB®

..ResSS5 sum(residuals.^2);

Examples of the p-value computations for

the constant/offset parameter and compar-

ing the gain of moving dots without atten-

tion to attending to moving dots:

..poffset5 2 * tcdf(-abs(B(1)/ sqrt

(ResSS/(360-4)*[1 0 0 0]*([ones(360,1)

canonical_hemo_s canonical_hemo_natt

canonical_hemo_att]' *[ones(360,1)

canonical_hemo_s canonical_hemo_natt

canonical_hemo_att])^-1*[1 0 0 0]')),

360-4);

..pnattgtatt5 2 * tcdf(-abs(B(3)-B(4)/

sqrt(ResSS/(360-4)*[0 0 1 -1]*([ones(360,1)

canonical_hemo_s canonical_hemo_natt

canonical_hemo_att]' *[ones(360,1)

canonical_hemo_s canonical_hemo_natt

canonical_hemo_att])^-1*[0 0 1 -1]')),

360-4);

EXERCISE 24.5

Run spm_firstlevel on the entire dataset.

The M-file spm_firstlevel does the same

computations as in the previous exercise.

The input is a structure variable or a

mat-file containing a structure variable

described below. What are the constant and

gain parameters that are computed and

their t-statistics?

..SPMin.nscan5 360;

..SPMin.TR5 3.22;

..SPMin.Units5 'scans';

..SPMin.xVi5 'AR(1)';

..SPMin.HP5 128;

..SPMin.timingfiles5

{'multi_condition.mat'};

The names of the three conditions are:

NoAtten, Attention, and Stationary. Here is

an example of the Contrasts field structure.

Make this for all 26 combinations of condi-

tions including compared against fixation

(use 'none').

..SPMin.Contrasts(1).left5

{'NoAtten'};

..SPMin.Contrasts(1).right5

{'Attention'};

..SPMin.Contrasts(1).STAT5 'T';

..SPMin.Contrasts(1).

name5 'NoAtten_minus_Attention';

..SPMin.Contrasts(1).MinEvents5 1;

In the M-files directory, the file

Allfields_firstlevel.mat has an example

structure with all fields. Additionally,

AllContrasts_firstlevel.mat has an example

structure identical to above, but with all 26

contrasts included. Definitions of each of

the fields can be found in the help for

spm_firstlevel.

.. spm_firstlevel(SPMin)

In the file selection window, change the

file filter from .* to fMRIdata.*. Then select

all entries with the filename fMRIdata.nii.

Now view the design matrix.

.. load SPM.mat; figure; imagesc

(SPM.xX.X); colormap('gray'); shg

The design matrix should look like

Figure 24.4.

The beta_*img stores the gain parameters

for each condition, and the constant/offset

parameter. There will be one image for each

column of the design matrix. The con_*img

stores the difference in or averages of the

374 24. FUNCTIONAL MAGNETIC RESONANCE IMAGING

III. DATA ANALYSIS WITH MATLAB®

gain parameters and/or averages across

runs. The spmT_*img stores the t-statistics

for each contrast. These images can be found

in the results directory (e.g., attention/

results) and opened with openIMG:

..openIMG

('spmT_NoAtten_minus_Attention.img')

EXERCISE 24.6

Use peak_nii to identify the significant

clusters and peak voxels in the comparison

of moving dots without attention to attend-

ing to moving dots. What are the regions

that show a significant difference?

..mapparameters.out5 [];

..mapparameters.sign5 'pos';

..mapparameters.type5 'T';

..mapparameters.voxlimit5 1000;

..mapparameters.separation5 8;

..mapparameters.SPM5 1;

..mapparameters.conn5 18;

..mapparameters.cluster5 10;

..mapparameters.mask5 [];

..mapparameters.df15 356;

..mapparameters.nearest5 1;

..mapparameters.label5 'aal_

MNI_V4';

..mapparameters.thresh5 .001;

.. [peaks regions]5peak_nii

('spmT_NoAtten_minus_Attention.img',

mapparameters);

For a full description of these fields, see

the help for peak_nii. The results are in

two variables: (1) peaks contains two cells,

the first lists the cluster size, the t-statistic

and x,y,z coordinates, number of peaks

averaged if finding the center of gravity,

and the cluster number containing the peak

and the second lists the region of each

peak; and (2) regions contains a list of the

regions corresponding to each peak.

50

100

150

200

250

300

350
0.5 1 1.5 2 2.5

Column number

S
ca

n
nu

m
be

r

3 3.5 4 4.5

FIGURE 24.4 The design matrix
for the general linear model. The first
three columns are the expected hemo-
dynamic responses for the three condi-
tions: stationary dots, moving dots
without attention, and attending to
moving dots. The fourth column is the
constant/offset. Each row represents
one fMRI volume.

37524.3 EXERCISES

III. DATA ANALYSIS WITH MATLAB®

Additionally, two images, which can be

used for visualizing the results, are created:

(1) *_clusters.nii stores the clusters with

each cluster labeled with a different num-

ber; and (2) (image)_peaks_date_thresh*_ex-

tent*.nii stores the thresholded data.

EXERCISE 24.7

Use slover to overlay the significant clus-

ters from the contrast of moving dots with-

out attention versus attending to moving

dots on every other axial slice.

.. slover('basic_ui')

In the image selection window, select

single_subj_T1.nii, which can be found

in the canonical folder inside the spm8

directory and then select spmT_NoAtten_

minus_Attention_peaks_,date. _thres-

h3.113_extent10.nii from the results

directory. Click Done. Next, specify the

single_subj_T1.nii as a *Structural image

and the spmT image as a Blobs. Set the

Colormap to gray. Set the range to 0.5 4.

Since the input image was thresholded at

p,0.001, the voxels being viewed will

exceed that threshold. Click Axial. Set the

slices to be 0:2:30 representing Z5 0 to

Z5 30. The resulting figure should look like

Figure 24.5.

24.4 PROJECT

This project involves analyzing the second example fMRI dataset (repetition folder)
from an experiment involving the repeated presentations of famous and non-famous faces
using the general linear model and then inspecting the results. The pre-processed images
follow the filename structure swr*img and the timings file is all-conditions.mat.
Specifically, you should do the following:

Apply the spm_firstlevel function to determine significant activation due to the task as
in Exercise 18.4.
Use a p-value of 0.001 for the threshold for activation and a cluster extent of 20 using
peak_nii as in Exercise 24.5 to determine significant areas.
Generate a grayscale plot for every other x-y slice of the brain (Z5260 to Z5 80) for
the contrast famous faces greater than non-famous faces (F11 F22N12N2) using
slover. Your result should look like Figure 24.6.

24.4.1 Methods Used to Collect fMRI Data

For the repetition fMRI dataset, the paradigm is a 23 2 factorial event-related design.
Twenty-six famous and 26 non-famous grayscale faces were each presented twice for 500 ms.
An oval checkerboard was present throughout the interstimulus interval and is the implicit

376 24. FUNCTIONAL MAGNETIC RESONANCE IMAGING

III. DATA ANALYSIS WITH MATLAB®

FIGURE 24.5 Axial slices from the contrast no attention greater than attention at p,0.001 in at least 10 con-
tiguous voxels overlaid onto a T1-weighted image from a single subject. White represents significant activation.
Numbers are the slice plane in millimeters from the origin.

37724.4 PROJECT

III. DATA ANALYSIS WITH MATLAB®

FIGURE 24.6 Axial slices from the contrast famous faces greater than non-famous faces at p,0.001 in at least 20
contiguous voxels overlaid onto a T1-weighted image from a single subject. White represents significant activation.
Numbers are the slice plane in millimeters from the origin. Negative numbers indicate the slice is inferior to the origin.

378 24. FUNCTIONAL MAGNETIC RESONANCE IMAGING

III. DATA ANALYSIS WITH MATLAB®

baseline in the analysis. Stimulus onset asynchrony (SOA) was at least 4.5 s and null events
were randomly intermixed to increase the variability in the timing of stimuli and increase sub-
ject vigilance. Subjects used buttons to indicate whether a face was famous or non-famous.

BOLD data were collected on a 2T VISION system (Siemens, Erlangen, Germany) using
a sequential transverse echo planar imaging (EPI) sequence with the following parameters:
repetition time (TR)5 2000 ms, echo time (TE)5 40 ms, matrix5 643 64, field of view
(FOV)5 1923 192 mm, flip angle was not reported, and 24 transverse 3 mm thick slices
with a 1.5 mm gap. A total of 356 volumes were collected with the first five volumes dis-
carded to allow for T1 equilibration effects.

24.4.2 Group Analysis

In an actual fMRI study, the same experimental paradigm would have been adminis-
tered to multiple individuals in one or more groups. The contrast images formed by
spm_firstlevel are used in a second general linear model to assess whether the BOLD
activity related to a particular condition or between conditions is significantly different
than 0 across subjects in a random effects analysis. If there is only one group, then X is a
column vector of 1 s and the test is synonymous with a one-sample t-test. However,
second-level analyses are complicated by between-subject designs, within-subject designs,
and mixed designs, which are outside the scope of this chapter. Thus, it is best to use
existing programs (e.g., SPM) to conduct these tests.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

concatimages
conv
imagesc
openIMG
peak_nii
pinv
pwelch
repmat
reshape
shg
slover
spm_firstlevel
spm_hrf
tcdf
xcov

379MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

III. DATA ANALYSIS WITH MATLAB®

C H A P T E R

25

Voltage-Gated Ion Channels

25.1 GOAL OF THIS CHAPTER

This chapter will explore the dynamics of ion channels using methods similar to those
introduced by Hodgkin and Huxley in 1952. You will derive ordinary differential equa-
tions that approximate real ion channel behavior and solve these equations using a numer-
ical integrator written in the MATLAB® software. Finally, you will visualize the dynamics
by predicting current responses to single channel voltage-clamp experiments.

25.2 BACKGROUND

Ion channels are a class of multimeric transmembrane proteins with a hydrophilic pore
that facilitates transport of ions across the cell membrane. The size of the ion channel pore
and the charge of amino acids near the opening of the pore help exclude entry of some
ions while promoting the entry of others. This confers upon the ion channel a selective
permeability to different ions. Several factors can induce conformational changes in the
ion channel, altering its quaternary structure and therefore its permeability. These factors
are referred to as gating variables because they function as a gate between the ion channels’
different conformational states.

Most ion channels are classified according to the nature of their gating and their selec-
tivity of ions. The largest subclasses of ion channels classified by gating are the ligand-
gated and voltage-gated ion channels. Ligand-gated ion channels change conformation when
a ligand binds to them. The most common ligand-gated ion channels found at the post-
synaptic membrane of neurons include NMDA, kainate, AMPA, and GABAA receptors.

The second class of ion channels, voltage-gated ion channels, undergo conformational
changes corresponding to alterations in membrane potential. Voltage-gated ion channels
can show selectivity for sodium, potassium, or calcium. In this chapter you will model
voltage-gated potassium channels (Kv channels) and voltage-gated sodium channels (Nav

383MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00025-4 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00025-4

channels). Kv channels generally gate between two conformations—an open conformation
permeable to potassium and a closed conformation impermeable to potassium—while Nav
channels often gate between three stable conformations—an open conformation permeable
to sodium, a closed conformation impermeable to sodium, and an inactive conformation
also impermeable to sodium. Although both the inactive and closed states of Nav channels
are impermeable to sodium, they represent different conformational states of the channel
and have different kinetics.

25.2.1 The Model

Suppose you are interested in building a model to predict the current response to a sin-
gle ion channel voltage-clamp experiment. Since ionic currents pass through the ion chan-
nel to enter the cell, you can consider the ion channel as an electrical resistor whose
resistance depends on the conformational state of the ion channel. The equation that
relates the resistance of a resistor, R, to the current it passes, I, and the voltage drop across
the resistor, V, is Ohm’s law:

V5 IR ð25:1Þ
If you divide this equation through by the resistance, then you can write this equation as

I5 gV ð25:2Þ
where g is the conductance of the resistor (note g5 1/R). Finally, if you suppose that the
conductance is directly proportional to the probability that the channel is in the open con-
formation, then Equation 25.1 becomes

I5 gmax � Po � V; ð25:3Þ
where gmax is the maximum conductance of the channel, and Po is the probability that the
channel is in the open conformation. Therefore, determining the conductance of the chan-
nel is equivalent to determining the probability that the channel is open.

25.2.2 Kv Channel

Let’s begin with the simplest case, the Kv channel. For the Kv channel, Equation 25.3
will take the form

IK 5 gK � n � V ð25:4Þ
where gK 5 36 μS=cm2 is the maximum conductance of the Kv channel, and n is the proba-
bility that the channel is in the open conformation. Next, suppose that the ion channel can
exist only in an open or closed conformation as depicted by the reversible reaction in the
equation

ðKvÞclosed 2
k1

k21
ðKvÞopen ð25:5Þ

where k1 is the rate the channel goes from closed to open, and k21 is the rate the channel
goes from open to closed. Next, assume that the change in the probability of open

384 25. VOLTAGE-GATED ION CHANNELS

IV. DATA MODELING WITH MATLAB

channels over time is equal to the probability of the channel being closed, and then going
from closed to open (at rate k1), minus the probability of its being open, and then closing
(at rate k21). This can be represented by the equation

dn

dt
5 ð12 nÞk1 2 nk21 5 k1 2 ðk1 1 k21Þn; ð25:6Þ

since all channels are either open or closed. Now further assume that at time t5 0 all the
channels are closed so that n(0)5 0. Finally, recall that for a voltage-gated ion channel the
gating between conformational states depends on the membrane potential, so the rates k1
and k21 are both functions of voltage. If you were modeling ligand-gated ion channels,
then these rates would depend on the concentration of the ligand. Hodgkin and Huxley
used voltage clamp experiments to help determine these rates. In this chapter assume the
following functional forms (see Hodgkin and Huxley, 1952) for the transition rates
between conformational states of the Kv channel:

k1 5
0:01 � ðV1 10Þ

exp
V1 10

10

0
@

1
A2 1

k21 5 0:125 � exp V

80

0
@

1
A:

ð25:7Þ

25.2.3 The Nav Channel

The Nav channel is slightly more complicated, since it has three stable confirmations
and therefore a greater number of possible transitions between conformational states. For
simplicity, we will ignore transitions between inactive and closed conformational states,
and assume that the channel is governed by the following reversible reactions that act
independently of each other:

ðNavÞclosed2
k21

k1
ðNavÞopen

ðNavÞinactive2
k1

k21

ðNavÞopen:
ð25:8Þ

If you let m represent the probability of the channel being open given that it was closed
previously, and you let h represent the probability of the channel being open given that it
was inactive previously, then Equation 25.3 takes on the form:

INa 5 gNa �m � h � V; ð25:9Þ

38525.2 BACKGROUND

IV. DATA MODELING WITH MATLAB

where gNa 5 120 μS=cm2: The previous reversible reactions lead to the following differen-
tial equations:

dm

dt
5 ð12mÞk1 2mk21 5 k1 2 ðk1 1 k21Þm

dh

dt
5 ð12 hÞk1 2 hk21 5 k1 2 ðk1 1 k21Þh:

ð25:10Þ

For the Nav open-close kinetics, assume:

k1 5
0:1 � ðV1 25Þ

exp
V1 25

10

0
@

1
A2 1

k21 5 4 � exp V

18

0
@

1
A;

ð25:11Þ

and for Nav inactivation kinetics, assume:

k1 5 0:07 � exp V

20

0
@

1
A

k21 5
1

exp
V1 30

10

0
@

1
A1 1

:
ð25:12Þ

Simple intuition has led naturally to a model that expresses the current you expect to
flow through a channel in terms of a differential equation for the probability of the chan-
nel being open.

Next, we will discuss a simple algorithm to numerically solve differential equations
such as Equation 25.6.

25.2.4 Solving Differential Equations Numerically

To understand the current-voltage properties of an ion channel, you can solve an ordi-
nary differential equation describing the probability of the channel being open given the
initial condition that Po(0)5 0. In general, solving differential equations can be very tricky
(if not impossible), but some simple techniques for approximating solutions do exist.
Perhaps the simplest method for approximating the solution to a differential equation is
Euler’s method. It is based on the definition of the derivative:

df

dx
5 limΔx-0

fðx1ΔxÞ2 fðxÞ
Δx

; ð25:13Þ

386 25. VOLTAGE-GATED ION CHANNELS

IV. DATA MODELING WITH MATLAB

which for small nonzero values of Δx implies that:

df

dx
� fðx1ΔxÞ2 fðxÞ

Δx
.fðx1ΔxÞ � fðxÞ1Δx � df

dx
: ð25:14Þ

Equation 25.14 lets you determine an approximation for the value of a function f at a
point (x1Δx) given information about the value of the function of f at x and the deriva-
tive of f. You can examine Euler’s method by choosing a differential equation whose solu-
tion is known and compare it to the approximation obtained from Equation 25.14. Now
try to apply Equation 25.14 to a simple differential equation:

df

dx
5 2x; where fð0Þ5 1: ð25:15Þ

This differential equation has the obvious solution f(x)5 x21 1, since it satisfies
Equation 25.15 with the condition that f(0)5 1. To approximate the solution to this equa-
tion using Euler’s method, you proceed by first plugging Equation 25.15 into Equation
25.14 to get:

fðx1ΔxÞ � fðxÞ1Δx � 2x: ð25:16Þ
Next, you choose Δx5 0.1 (i.e., something small, since the approximation is most valid

for small Δx) and x5 0 and plug into Equation 25.16 to obtain:

fð01 0:1Þ � fð0Þ1 0:1 � 2 � 0.fð0:1Þ � 1: ð25:17Þ
This equation can be repeated to give an estimate of f(0.2) such that:

fð0:11 0:1Þ � fð0:1Þ1 0:1 � 2 � 0:1.fð0:2Þ � 1:02; ð25:18Þ
where the previous value f(0.1) has been substituted into Equation 25.16 instead of the ini-
tial condition. Although you might be tempted to approximate f(0.2) directly from the ini-
tial condition by letting Δx5 0.2, recall that the approximation is best when Δx is as close
to 0 as possible. This procedure can be repeated to approximate f(x) over any range of x
desired. Of course, without the help of modern computers, this method would be too labo-
rious to be practical for any moderately large range of x.

Another method for numerically solving differential equations is known as the Runge-
Kutta method (RK method). We shall derive the second-order RK method for the general
differential equation:

dy

dx
5 fðx; yÞ; ð25:19Þ

with the initial condition y(xo)5 yo. Note that the ion-channel gating Equations 25.6 and
25.10 are of this general form. Our first step in deriving the formulae for the RK method is
to assume that the numerical solution y(x) that we are looking for has a Taylor series
expansion that converges on the interval I for which we want to find the numerical solu-
tion. If it does, then:

yðxÞ5 yðxoÞ1
y0ðxoÞ
1!

� ðx2 xoÞ1
yvðxoÞ
2!

� ðx2xoÞ2 1?1
yðnÞðxoÞ

n!
ðx2xoÞn ð25:20Þ

38725.2 BACKGROUND

IV. DATA MODELING WITH MATLAB

is the Taylor series expansion. Let us define Δx5 (x2 xo), and substitute this into
Equation 25.20, which gives:

yðxo 1ΔxÞ5 yðxoÞ1
y0ðxoÞ
1!

� ðΔxÞ1 yvðxoÞ
2!

� ðΔxÞ2 1?1
yðnÞðxoÞ

n!
ðΔxÞn: ð25:21Þ

We can make a polynomial approximation to the series in Equation 25.21. If we make a
second-order approximation, then:

yðxo 1ΔxÞ � yðxoÞ1
y0ðxoÞ
1!

� ðΔxÞ1 yvðxoÞ
2!

� ðΔxÞ2: ð25:22Þ

Notice that the first-order approximation reduces to the key equation in iterating
Euler’s method (see Equation 25.14). Next, we realize that Equation 25.19 gives us a substi-
tution for y’(xo)5 f(xo, yo). We can take the derivative of Equation 25.19 to obtain a substi-
tution for y’’(xo) as follows:

yvðxoÞ5
@fðxo; yoÞ

@x
1

@fðxo; yoÞ
@y

y0ðxoÞ5
@fðxo; yoÞ

@x
1

@fðxo; yoÞ
@y

fðxo; yoÞ: ð25:23Þ

Making these two substitutions into Equation 25.22 gives:

yðxo 1ΔxÞ � yðxoÞ1 fðxo; yoÞ � ðΔxÞ1 @fðxo; yoÞ
@x

1
@fðxo; yoÞ

@y
� fðxo; yoÞ

� �
� ðΔxÞ2

2
: ð25:24Þ

If f were a function whose derivatives could easily be calculated, then we could simply
end here, and use Equation 25.24 in much the same way as we used Equation 25.14 to iter-
ate Euler’s method. This does not happen often, however, so we will try to find a simplifi-
cation for Equation 25.24 that does not involve partial derivatives of f. Since y was
assumed to have a Taylor series expansion, then its derivative does too, so by Equation
25.19 f must also have a Taylor series expansion. The Taylor series expansion of f is
slightly complicated, however, since f is a multivariable function. The Taylor expansion is
as follows:

fðxo 1 a; yo 1 bÞ5 fðxo; yoÞ1
@fðxo; yoÞ

@x
� a1 @fðxo; yoÞ

@y
� b1? ð25:25Þ

The terms shown in Equation 25.25 are through first order. If we let a5Δx and b5Δx*f
(xo,yo), and we substitute these into Equation 25.25, keeping only up to the first-order
terms of the series, then we get:

f xo 1Δx; yo 1Δx � fðxo; yoÞ
� �

5 fðxo; yoÞ1 @fðxo; yoÞ
@x

1
@fðxo; yoÞ

@y
� fðxo; yoÞ

� �
�Δx: ð25:26Þ

388 25. VOLTAGE-GATED ION CHANNELS

IV. DATA MODELING WITH MATLAB

If we subtract f(xo,yo) from the right-hand side of Equation 25.26 and multiply through
by Δx/2, we obtain:

Δx

2

�
f ½xo 1Δx; yo 1Δx � fðxo; yoÞ�2 fðxo; yoÞg5

@fðxo; yoÞ
@x

1
@fðxo; yoÞ

@y
� fðxo; yoÞ

� �
� ðΔxÞ2

2
:

ð25:27Þ
The right-hand side of Equation 25.27 is the last term of Equation 25.24. If we now sub-

stitute Equation 25.27 into Equation 25.24, then we will have removed the partial deriva-
tives of f. After slight simplification we achieve:

yðxo 1ΔxÞ � yðxoÞ1
�
fðxo; yoÞ1 f ½xo 1Δx; yo 1Δx � fðxo; yoÞ�

� � ðΔxÞ
2

: ð25:28Þ

We now have an equation to give us the next y value given the previous value that
requires only the initial condition y(xo)5 yo, the step size Δx, and the differential equation,
which gives us f. Since Equation 25.28 is quite cumbersome looking, it is often presented
as a set of equations in the following way:

yðxo 1ΔxÞ5 yðxoÞ1
1

2
ðu1 1 u2Þ

where
u1 5Δx � fðxo; yoÞ

and
u2 5Δx � fðxo 1Δx; yo 1 u1Þ

ð25:29Þ

Make the substitutions and convince yourself that this system is equivalent to Equation
25.28. In Equation 25.22 above we truncated the Taylor expansion of y to the second order.
For that reason, the set of equations shown above are called the second-order RK equa-
tions. We can build higher-order RK equations by keeping higherorders of the series
expansion of y and using higher-order expansions of the function f to remove partial deri-
vatives. The following set of equations is the result of truncating y to the fourth order.

yðxo 1ΔxÞ5 yðxoÞ1
1

6
ðv1 1 2v2 1 2v3 1 v4Þ

where

v1 5Δx � fðxo; yoÞ

v2 5Δx � f xo 1
Δx

2
; yo 1

v1
2

0
@

1
A

v3 5Δx � f xo 1
Δx

2
; yo 1

v2
2

0
@

1
A

v4 5Δx � fðxo 1Δx; yo 1 v3Þ

ð25:30Þ

38925.2 BACKGROUND

IV. DATA MODELING WITH MATLAB

The fourth-order RK equations are the most popular numerical method for solving dif-
ferential equations used today. Although a higher-order expansion in y would give a more
accurate solution, the increased processing time required by a computer to achieve the
solution is often not worth the minor improvement.

25.3 EXERCISES

For these exercises, begin by writing a function called ode_euler, which will implement
Euler’s method to solve the sample differential equation of Equation 25.14 for x5 0:0.1:10:

function f 5 ode_euler(x, f_o)
%This function takes two arguments, x and f_o.
%x is a vector that specifies the time points that the function f should be
%approximated for.
%f_o is the initial condition.
%The function returns a vector, f, representing the approximate solution to the
%differential equation, df/dx5 2x with f(0)5 f_o.
%Set delta_x as the difference between successive x values.
delta_x5 x(2)-x(1);
%Determine how many points we need to approximate by finding the length of
%vector x.
l_x5 length(x);
%Initialize f by creating a vector of the right length. We will reset the elements to
%the correct values in the for loop below.
f5 zeros(1, l_x);
%Set the initial value of f to f_o.
f(1)5 f_o;
%Use a for-loop to implementEq. 25.14
for ii5 1:(l_x-1)
f(ii1 1)5 f(ii)1 delta_x*2*x(ii); % line 24
end;

Now visualize the solution by plotting this approximation for f alongside the exact solu-
tion, f(x)5 x21 1. See whether your solution looks like the one shown in Figure 25.1.
Before proceeding, you should explore the relationship between the value of Δx and the
validity of the approximation of Euler’s method. For example, if you plot the exact solu-
tion alongside several approximations, each with a different Δx, how quickly does the
approximation cease to be reasonable? Similarly, at what point does decreasing Δx fail to
provide significant improvement in the approximation despite increased run time? Basic
questions such as these are important to consider whenever a numerical method is
employed to approximate the solution to a differential equation.

The function ode_euler can solve only the sample differential equation of Equation
25.14 because the derivative was plugged into Euler’s method explicitly in line 24. You
can generalize this function to solve any differential equation by introducing the feval()
function. The feval() function evaluates functions by taking a functional handle that

390 25. VOLTAGE-GATED ION CHANNELS

IV. DATA MODELING WITH MATLAB

references the function to be evaluated and a variable number of arguments depending on
the number of input arguments required by the function referenced by the function han-
dle. As an example, consider the following command:

.. f5 feval(@ode_euler, 0:0.1:10, 1);

This line is equivalent to typing

.. f5 ode_euler(0:0.1:10, 1);

except with the feval() function the name of the function is a variable argument, so it can
be changed. To see how this can be applied to generalize the code for Euler’s method, first
create another function called f_prime():

function df 5 f_prime(x)
%This function takes a point x and calculates the derivative of f at the point x.
df5 2*x;

Now modify the first line of ode_euler so that it takes an additional argument, a func-
tion handle to a differential equation, and modify line 24 to use feval() to determine the
value of the derivative according to the function referred to by the function handle. If
everything is done correctly, then the command

.. f5 ode_euler(@f_prime, 0:0.1:10, 1);

should produce the same results as before feval() was introduced into the code, but now
ode_euler makes no explicit reference to any particular differential equation.

0 2 4 6 8 10
0

20

40

60

80

100

120

x

f(
x)

Solution to differential equation df/dx = 2x with f(0) = 1

Exact solution
Approximation

FIGURE 25.1 Exact and approximate solution to differential equation.

39125.3 EXERCISES

IV. DATA MODELING WITH MATLAB

EXERCISE 25.1

Write a function n_prime(t,V) that calcu-

lates the derivative of n at the point t given

that the membrane potential is V. Hint: You

will need to use Equations 25.6 and 25.7.

EXERCISE 25.2

Modify the first line of ode_euler() so

that it takes an additional input argument,

V, and line 24, so that feval() takes three

arguments, a function handle such as

@n_prime and two additional input argu-

ments, t and V, to the function referred to

by the function handle.

EXERCISE 25.3

Write a function RK4(fhandle, x, f_o)

that uses the fourth-order Runge-Kutta

method to numerically solve the differential

equation referenced by the function handle

fhandle. Use RK4 to solve the differential

equation 25.14 for Δx5 0.1. Compare this to

the exact solution and the solution using

Euler’s method (see Figure 25.1).

25.4 PROJECT

In this project, you will use the Euler method to derive the current kinetics for the
voltage-gated potassium and sodium channels:

1. Write a function called K_v(t,V) that takes a time interval t and a holding potential V
and returns the current response of a Kv channel over the time range specified by t.
Hint: K_v should call ode_euler or RK4 with the inputs @n_prime, t, n_o, and V, and
use the result along with Equation 25.4 to determine IK.

2. Use K_v to plot the current response of a Kv channel when the membrane potential is
clamped to 230 mV. Repeat this for holding potentials from 230 mV to 50 mV in
10 mV increments, and plot the solutions on the same graph. Hint: See hold on
command.

3. Write functions m_prime(t,V) and h_prime(t,V) that calculate the derivative of m and h
at the point t given that the membrane potential is V. This will be completely analogous
to the code for n_prime.

392 25. VOLTAGE-GATED ION CHANNELS

IV. DATA MODELING WITH MATLAB

4. Write a function called Na_v(t,V) that takes a time interval t and a holding potential V,
and returns the current response of an Nav channel over the time range specified by t.
Hint: Na_v should call ode_euler or RK4 twice, once with the inputs @m_prime, t, m_o,
and V and another with the inputs @h_prime, t, h_o, and V; use these results along
with Equation 25.9 to determine INa.

5. Use Na_v to plot the current response of an Nav channel when the membrane potential
is clamped to 230 mV. Repeat this for holding potentials from 230 mV to 50 mV in
10 mV increments, and plot the solutions on the same graph.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

feval
hold on

393MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

IV. DATA MODELING WITH MATLAB

C H A P T E R

26

Synaptic Transmission

26.1 GOALS OF THIS CHAPTER

This chapter will use a number of methods to characterize the processes surrounding
synaptic transmission, in particular the release and diffusion of neurotransmitters. This
chapter will also introduce handles for graphic objects to update images dynamically. By
the end of this chapter, you should have an understanding of different random variables,
discrete distributions, finite difference approximations to partial differential equations,
and the use of graphic handles for rudimentary animation.

26.2 BACKGROUND

Chemical synapses use the release of chemical neurotransmitters to propagate signals from
one neuron (presynaptic) to another (postsynaptic). The two cells are separated by the synaptic
cleft, a gap of approximately 40 nm between the presynaptic and postsynaptic membranes.

On the presynaptic side of the cleft, depolarization from the arrival of the action poten-
tial triggers the opening of voltage-sensitive Ca12 channels. The subsequent influx of cal-
cium ions causes the fusion of neurotransmitter-containing vesicles with the presynaptic
cell membrane, releasing neurotransmitters into the synaptic cleft.

On the postsynaptic side, neurotransmitters diffuse across the cleft and bind to
neurotransmitter-specific sites on channels on the postsynaptic terminal. These receptors
selectively allow ions to enter the postsynaptic terminal. The influx of positive or negative
charge changes the voltage across the postsynaptic membrane, creating a small hyperpo-
larization or depolarization. Over time, the concentration of the neurotransmitters
decreases to a level insufficient to activate the postsynaptic receptors.

Specifically, in this chapter we will focus on the neuromuscular junction, the site of
innervation of skeletal muscle. We will also focus on the steps of neurotransmitter release
and neurotransmitter diffusion.

395MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00026-6 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00026-6

26.3 EXERCISES

26.3.1 Modeling Neurotransmitter Release

In a classic experiment, Fatt and Katz demonstrated at the neuromuscular junction that
spontaneous postsynaptic potentials occurred at voltages of 0.5 mV in the absence of pre-
synaptic stimulation. Later work (del Castillo and Katz, 1954) further demonstrated that
single acetylcholine channels produced much smaller responses than the 0.5 mV measured
by Fatt and Katz. This result implied that the spontaneous results observed by Fatt and
Katz not only recruited multiple acetylcholine channels, but also recruited roughly the
same number of channels during each spontaneous postsynaptic potential del Castillo and
Katz posited that synaptic transmission occurred in discrete units, termed quanta.
Additional work (del Castillo and Katz) established that increasing Ca12 at the postsynap-
tic terminal produced postsynaptic responses in increments of the original spontaneous
postsynaptic responses. The step-like response implicated neurotransmitter release as a
quantized process. In other words, neurotransmitter release occurs in discrete steps rather
than a continuous concentration in response to increasing calcium concentration. Synaptic
vesicles contain a relatively constant number of neurotransmitter molecules. This fixed
number of molecules per vesicle provides for the observed quantization of postsynaptic
responses. At the neuromuscular junction, each vesicle contains approximately 5000 acetyl-
choline (ACh) molecules.

For purposes of this chapter, assume that the release of individual vesicles occurs inde-
pendently with some probability p. In the presence of low calcium concentration, p is low.
After an action potential and subsequent calcium influx, p increases. You can model the
release of a single vesicle as a Bernoulli random variable.

26.3.2 Modeling Random Variables

A Bernoulli random variable X takes on a value of 1 with probability p or a value of 0
with probability 1 � p. A coin toss is an excellent example of a Bernoulli process. Take a
coin that lands on heads with probability 1/2. A Bernoulli random variable models a sin-
gle coin flip, or a single trial.

Thus, in the case of the release of a single vesicle, the vesicle is released with probability
p or not with probability 1 � p.

EXERCISE 26.1

Using the rand function in the

MATLAB® software, write a function titled

my_bernoulli_rnd() to return the result of a

Bernoulli trial, given p. You should be able

to invoke the function like this:

.. p 5 0.5;

.. my_bernoulli_rnd(p)

ans 5

1

396 26. SYNAPTIC TRANSMISSION

IV. DATA MODELING WITH MATLAB

You can model the process of multiple vesicles as the sum of multiple Bernoulli vari-
ables with probability p. The sum of n Bernoulli trials with probability p of success is
termed a binomial random variable with parameters n and p. Such a variable is called bino-
mial because the probability of a certain number of successes in a trial can be calculated
with the binomial coefficient:

fðk; n; pÞ5Cðn; kÞpkð12pÞk ð26:1Þ
where

Cðn; kÞ5 n
k

� �
5

n!

k!ðn2 kÞ! ð26:2Þ

The function f(), called a probability mass function, yields the probability of a certain
number of successes, k, in a single binomial trial with parameters n and p. A single bino-
mial trial with parameters n and p would model the number of successes for an experi-
ment in which each trial has n coin tosses with probability p of success.

EXERCISE 26.2

Generate a graph of the probability

mass function for a binomial random

variable with parameters n5 10 and

p5 0.5.

Under conditions of calcium influx, approximately 150 quanta can be released at the
neuromuscular junction in 1�2 milliseconds. In the absence of action potentials, only 1
quantum per second is released by the presynaptic terminal. For this chapter, model the
release of multiple vesicles as a binomial random variable in which p is either 0.001 or 150,
depending on the state of calcium concentration. Then, the number of successes will be
the number of vesicles released into the synaptic cleft.

The following code calculates p for 1 second of time, choosing 10 random 1 ms intervals
during which p is high, representing the calcium influx following an action potential:

.. t5 0:999;

.. t_slices5 length(t);

.. p5 ones(t_slices,1)*0.001;

.. x5 rand(10,1)*t_slices;

.. p(floor(x)1 1)5 150;

Note that x holds the set of random intervals. When you evaluate p(floor(x)1 1) 5 150,
each element of x corresponding to one of the random intervals is set to 150. The use of
floor() forces the values of x to integer values, the proper type for indices. (The floor()
function truncates the decimal portion of a value.) You can see which indices contain large
p values with the following command:

.. find(p. 1)

39726.3 EXERCISES

IV. DATA MODELING WITH MATLAB

EXERCISE 26.3

Evaluate the preceding code and graph

p(t) against time. Write code to generate a

binomial random variable at each time slice

(use binornd). Graph the number of suc-

cesses, or released vesicles, as a function of

time.

26.3.3 Modeling the Motion of a Single Molecule

Upon release, the neurotransmitter molecules enter the synaptic cleft and diffuse across
fairly quickly. On a microscopic level, diffusion is the aggregate effect of many particles
moving randomly. As a first step, examine the motion of a single molecule:

xbounds 5 [0 10];
ybounds 5 [0 4];
xdata 5 [mean(xbounds)];
ydata 5 [0];
xgrid 5 0.01;
ygrid 5 0.01;
figure
handle 5 scatter(xdata, ydata, 'filled');
xlim(xbounds);

ylim(ybounds);
for t 5 1:10000

p 5 0.5;
dx 5 ((rand . p) - 0.5) * 2;
dy 5 ((rand . p) - 0.5) * 2;
xdata 5 xdata1 dx*xgrid;
% these two lines assure the molecule stays in x bounds
xdata(find(xdata , xbounds(1))) 5 xbounds(1);
xdata(find(xdata . xbounds(2))) 5 xbounds(2);
ydata 5 ydata1 dy*ygrid;
% these two lines assure the molecule stays within y bounds
ydata(find(ydata , ybounds(1))) 5 ybounds(1);
ydata(find(ydata . ybounds(2))) 5 ybounds(2);
set(handle, 'xdata', xdata, 'ydata', ydata);
drawnow;

end

Some sample screenshots of the resulting animation are shown in Figure 26.1. In the
preceding code, the handle of the scatterplot is stored in a variable. Much like matrices or
scalar numbers, variables can store other types of information. In this case, you are storing
a handle. Most of the graphics functions in MATLAB return a handle when invoked. You
can use the handle to modify properties at a later time, as done previously with set.

398 26. SYNAPTIC TRANSMISSION

IV. DATA MODELING WITH MATLAB

The function set allows specifying properties of a graphics object. The first argument
should be the handle. Following this should be a series of property, value pairs, consisting
of the name of a property in single quotation marks and the desired value of the property.
Here, the x and y data for the scatterplot are changed. Each time the variables xdata and
ydata are modified, set is invoked to update the coordinates of the point in the scatterplot.

After set comes the function drawnow. Even though set updates the coordinates of the
point in the scatterplot, MATLAB will not redraw the figure without notification. draw-
now provides notification that the figure has changed and forces a redraw. Try running
the preceding code with drawnow commented out.

EXERCISE 26.4

Modify the preceding code to model multiple particles (try 100).

As the number of particles increases, modeling the motion of individual particles
becomes computationally limiting. Instead, you can model concentrations rather than par-
ticle counts.

26.3.4 Modeling Diffusion

To model the process as a concentration, you need to use the diffusion equation:

@φ
@t

5Dr2φ ð26:3Þ

Or in two dimensions, you can use:

@φ
@t

5D
@2φ
@x2

1D
@2φ
@y2

ð26:4Þ

where D is the constant of diffusion and φ is the concentration of acetylcholine, ACh.

2 4 6 8 100
0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 6 8 100
0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 6 8 100
0

0.5

1

1.5

2

2.5

3

3.5

4

FIGURE 26.1 Screenshots of the animation for the diffusion of a single neurotransmitter molecule across the
synaptic cleft for t5 1 (left), t5 500 (middle), and t5 10,000 (right).

39926.3 EXERCISES

IV. DATA MODELING WITH MATLAB

In this chapter, you will use a finite difference approach to estimate the change in the
probability distribution over time. The finite difference method estimates the infinitely
small derivatives by finite differences. Because this approximates the continuous equation
with discrete differences, we should mention that large time steps can produce
unstable results.

To approximate φ over time and space, assume both are discrete yet partitioned into
very small steps. Use the following notation to denote an element of phi in space and
time:

φtime
space ð26:5Þ

Thus, a superscript denotes a time index, and a subscript denotes a space index.
To generate the finite difference equation, replace the derivatives with differences:

φt11
x;y 2φt

x;y

Δt
5D

ððφt
x11;y 2φt

x;yÞ2 ðφt
x;y 2φt

x21;yÞÞ
ðΔxÞ2 1

ððφt
x;y11 2φt

x;yÞ2 ðφt
x;y 2φt

x;y21ÞÞ
ðΔyÞ2

" #
ð26:6Þ

With some rearrangement, you get:

φt11
x;y 5φt

x;y 1DΔt
ðφt

x11;y 2 2φt
x;y 1φt

x21;yÞ
ðΔxÞ2 1

ðφt
x;y11 2 2φt

x;y 1φt
x;y21Þ

ðΔyÞ2

" #
ð26:7Þ

which provides an expression for a concentration at a given spatial location and time in
terms only of concentrations at previous time steps. If you use the same grid spacing for x
and y, you can simplify even further:

φt11
x;y 5φt

x;y 1DΔt
ðφt

x11;y 1φt
x;y11 1φt

x21;y 1φt
x;y21 2 4φt

x;yÞ
ðΔxÞ2

" #
ð26:8Þ

You already saw an efficient way to compute this spatial second derivative in
MATLAB. As will be further discussed in Chapter 30, “Fitzhugh-Nagumo Model:
Traveling Waves,” this is found via a two-dimensional convolution of φ with the filter
[0 1 0; 1 4 1; 0 1 0]/dx^2. To encode the dynamics of the ACh concentration diffusion in
MATLAB, use a three-dimensional array: two spatial dimensions and one temporal
dimension.

The following code implements iterations of the previous equation, using a three-
dimensional array to track change in concentration. The time steps are in 10 ns increments,
and the spatial steps are in 1 nm increments. The diffusion constant here is 43 1026 cm2/
sec, and free boundary conditions are used:

% phi : 100 x steps (100 nm), 40 y steps (40 nm)
% 100 t steps (1 t 5 10 us)
clear all
close all
phi 5 zeros(100, 40, 100);
dt 5 1e-10; % time in steps of 10 ns
dx 5 1e-9; % space from 0 to 50

400 26. SYNAPTIC TRANSMISSION

IV. DATA MODELING WITH MATLAB

D5 4e-6 * (1/100)^2;
phi05 5000/(dx^2);
phi(50,1,1) 5 phi0; % initial condition
F 5 [0 1 0; 1 -4 1; 0 1 0]/dx^2;
for t 5 1:99

phi(:,:,t1 1) 5 phi(:,:,t) 1...
D*dt*conv2(phi(:,:,t),F,'same');

t
end

You can plot a time-slice of the concentration using surf(phi(:, :, t)). Sample screenshots of
the concentration diffusing in the synaptic cleft using the surf function are shown in
Figure 26.2. Similarly, you can visualize this using the command imagesc(phi(:,:,t), [0 phi0]),
where the [0 phi0] input to the function ensures that the color scale is the same for all t.

EXERCISE 26.5

Generate an animated display to show

the evolution of the ACh concentration

diffusion using surf(). Capture the handle

and use set() with the property 'zdata'.

EXERCISE 26.6

The algorithm could be changed to save

only the current and previous time steps,

allowing an unlimited number of time steps

to be calculated if so desired without

exceeding the memory of MATLAB.

Obviously, this approach is less than

optimal if all the time step calculations are

needed, but, for an animation, only the cur-

rent time step is necessary. Modify the algo-

rithm to store only the current and previous

time step and animate the diffusion.

10000

5000

0
100

50

0 0
10

20
30

40

800

600

400

200

0
100

50

0 0
10

20
30

40

100

50

0
100

50

0 0
10

20
30

40

FIGURE 26.2 Screenshots of the animation for the diffusion of the concentration of acetylcholine, ACh, in the
synaptic cleft for t5 10 μs (left), t5 250 μs (middle), and t5 1000 μs (right).

40126.3 EXERCISES

IV. DATA MODELING WITH MATLAB

26.4 PROJECT

At this point you can combine the vesicular release of neurotransmitters with the diffu-
sion of the neurotransmitters across the synaptic cleft. This can be accomplished by com-
bining the neurotransmitter release code with the code for diffusion.

To do so, use a single time loop for both the vesicular release and the diffusion code. At
any given time slice, the code will need to determine the number of vesicles released. If
vesicles are released during a given time slice, then (1) a location along the presynaptic
edge of the diffusion grid needs to be selected, and (2) the concentration of ACh in that
square of the finite difference grid needs to be increased. Create an animated display of
synaptic transmission by showing the evolution of the ACh concentration diffusion gener-
ated by multiple released vesicles over time.

MATLAB FUNCTIONS, COMMANDS, AND
OPERATORS COVERED IN THIS CHAPTER

set
drawnow
surf
poissrnd

402 26. SYNAPTIC TRANSMISSION

IV. DATA MODELING WITH MATLAB

C H A P T E R

27

Modeling a Single Neuron

27.1 GOAL OF THIS CHAPTER

The goal of this chapter is to incorporate previous models of voltage-gated ion channels
into a model of single neuron dynamics. This chapter will continue to follow work done
by Hodgkin and Huxley (1952) resulting in a system of four ordinary differential equa-
tions that model action potential generation in neurons.

27.2 BACKGROUND

Neurons communicate with each other by transmitting and receiving electrochemical
signals called action potentials. These action potentials are transient fluctuations in the cell’s
membrane potential, which propagate down a cell’s axon without attenuation. In the cen-
tral nervous system, action potentials have a duration on the order of milliseconds
(1�2 msec usually) and can often be divided into three phases. The first phase of the
action potential is a rapid depolarization of the membrane called the rising phase or
upstroke of the action potential. This is followed by a repolarization of the membrane called
the falling phase or downstroke of the action potential. The last phase follows a hyperpolari-
zation of the membrane and is called the undershoot. A depiction of the action potential is
shown in Figure 27.1.

Some of the earliest experiments to elucidate the mechanism underlying action poten-
tials were performed by Hodgkin and Katz (1949), who showed that reducing the extracel-
lular concentration of sodium led to a shorter upstroke phase of the action potential in
giant squid axon. They inferred from this that the upstroke of the action potential depends
on the cell increasing its permeability to sodium. They also suggested that the falling
phase was due to an increase in potassium permeability. Therefore, they concluded that
the action potential was generated by selective changes in membrane permeability to
sodium and potassium. We now know that ion channels are responsible for this selective

403MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00027-8 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00027-8

permeability. These experiments were later followed up by Hodgkin and Huxley (1952),
who performed voltage-clamp experiments to characterize the dynamics of these changes
in permeability and then proposed the mathematical model of action potential generation
outlined in the following section.

27.2.1 The Model

Neurons are incredibly complex. Like all eukaryotic cells, they are composed of many
organelles, including a nucleus, mitochondria, an endoplasmic reticulum, etc. Each of
these organelles has a role that enables the cell as a whole to perform its functions, includ-
ing generating action potentials. Trying to capture all the complexity of a real neuron in a
single model is impossible. Fortunately, it is also unnecessary, since, for purposes of this
chapter, you are interested only in understanding action potential generation in neurons,
and not any of the other complex processes that neurons undergo. Therefore, you should
restrict your neuron model to include only those elements that contribute most directly to
generating action potentials and ignore elements of a neuron that contribute less to action
potential generation. In general, it is often not clear what elements of a complex biological
system are most directly related to a behavior of interest, and the choices you make in

60

40

20

0

−20C
C

 IN
 0

 (
m

V
)

−40

−60

−80

0.2 0.4 0.6
Time (s)

0.8 1

FIGURE 27.1 Intracellular action potential spike train from a deep pyramidal neuron recorded from the fron-
tal cortex of a mouse. (Courtesy of Amber Martell)

404 27. MODELING A SINGLE NEURON

IV. DATA MODELING WITH MATLAB

constructing a model are often not validated until the results of the model can be com-
pared to experiments.

In this model, assume that action potential generation in neurons is mainly carried out
by the electrical properties of the cell membrane. Several factors contribute to the electrical
properties of the cell membrane. For instance, ion channels such as Nav, Kv, and leak chan-
nels span the membrane and selectively pass ions across it. The voltage-gated channels are
represented in Figure 27.2 as variable resistors (the resistors with an arrow going through
them) because the amount of resistance to flow depends on the membrane potential,
whereas the leak channel, which has a constant resistance to ion flow, is represented by an
ordinary resistor. The phospholipids that comprise the membrane, which do not conduct
electric charges, allow for most of the cell membrane to function as a dielectric, an insula-
tive material that separates ions in the cytoplasm from those in the extracellular milieu.
Although ions cannot flow through the phospholipid bilayer of the cell directly, charge
can accumulate on one side of the cell membrane, inducing an opposed charge buildup on
the opposite side of the membrane just as a capacitor does. This charge buildup involves
charges moving toward the membrane and represents a capacitive current. Finally, the cell
membrane contains many other transmembrane proteins such as the Na1/K1-ATPase that
helps maintain ion concentration gradients across the cell membrane. The presence of a
sodium concentration gradient, for example, ensures that when sodium ions have equili-
brated across the Nav channels of the neuron, there will be a nonzero potential across the
membrane. This potential is called the sodium reversal potential. Similarly, there will be a
reversal potential for the Kv channel. The electrical properties mentioned so far can be
summarized by creating an electric circuit equivalent to the neuronal model. The circuit is
shown in Figure 27.2. Notice that current flows from the inside of the cell (at the top of the
electrical circuit) to the outside of the cell by either inducing a charge buildup at the mem-
brane (represented by the capacitor) or by flowing through one of the three ion channels
present in the membrane. From simple electrical circuit theory, you can represent the fol-
lowing circuit using a set of equations. In the next section, we will review the important
concepts of electrical circuits needed to understand the circuit in Figure 27.2.

To express the circuit as a set of equations, you need to know four fundamental laws of
electronics. The first is Ohm’s law, which states that for some resistors (called Ohmic

IL

GL

EL

IK

GK

EK

Outside

INa

Vm Inside

GNa

ENa

Cm

FIGURE 27.2 An electrical circuit diagram of a single
axonal compartment of a neuron. (Bower JM, Beeman D.
The Book of Genesis: Exploring Realistic Neural Models with
the GEneral NEural SImulation System, 2003)

40527.2 BACKGROUND

IV. DATA MODELING WITH MATLAB

resistors) the voltage drop across the resistor, VR, is related to the current flowing through
the resistor, I, and the resistance of the resistor, R, by the equation:

VR 5 IR ð27:1Þ
which can also be written as:

I5 gVR ð27:2Þ
where g is the conductance of the resistor (note g1/R). The second law you will need states
that the voltage drop across a capacitor, VC, is related to the current induced by the capaci-
tor, I, and the capacitance of the capacitor, C, by the equation

VC 5
1

C

ð
IðtÞdt ð27:3Þ

The last two laws that you will need are collectively known as Kirchhoff’s Loop Rules. The
first rule, Kirchhoff’s Current Rule, states that the sum of current entering a circuit junction
equals the sum of current exiting it, and a circuit junction is any intersection of wire where
current has more than one path to flow down. The equation for this rule is given by:X

Iin 5
X

Iout ð27:4Þ
The second rule, Kirchoff’s Voltage Rule, states that the potential drop between any two

points on a circuit is independent of what path was taken to arrive there. If you assume
that the start and end point are the same, then this rule implies that the voltage drop
across any closed loop is zero, and can be written as:X

loop

V5 0 ð27:5Þ

Now you can use these simple rules to calculate the membrane potential of the circuit
in Figure 27.2. The membrane potential is defined as the potential difference between the
inside and the outside of the cell. Therefore, in Figure 27.2 the membrane potential is the
potential drop across any path from the inside of the cell to the outside. Beginning with
the path that includes the capacitor, you see that the voltage drop across the capacitor is
just the membrane potential, so Equation 27.3 becomes:

VM 5
1

CM

ð
IðtÞdt ð27:6Þ

which can be rearranged to give:

I5CM
dVM

dt
ð27:7Þ

Now examine the potential drop across the second path (the sodium channel), which
consists of two elements, a resistor and a battery. The total drop across both these ele-
ments is just the potential difference between the inside and outside of the cell, VM, so:

VM 5VR 1ENa.VR 5VM 2ENa ð27:8Þ

406 27. MODELING A SINGLE NEURON

IV. DATA MODELING WITH MATLAB

Upon substitution into Equation 27.2, you have:

INa 5 gNa � ðVM 2ENaÞ ð27:9Þ
Following the same process across the last two paths produces equations nearly identi-

cal to Equation 27.9 for IK and IL:

IK 5 gK � ðVM 2EKÞ ð27:10Þ
IL 5 gL � ðVM 2ELÞ ð27:11Þ

Finally, use Kirchhoff’s Current Rule to see that if you inject a current into the cell of
Iinj, then:

Iinj 5 I1 INa 1 IK 1 IL ð27:12Þ
Rearranging Equation 27.12 and substituting in Equations 27.7 and 27.9 through 27.11

gives:

CM
dVM

dt
52 gNa � ðVM 2ENaÞ2 gK � ðVM 2EKÞ2 gL � ðVM 2ELÞ1 Iinj ð27:13Þ

Recall that the sodium and potassium channels are voltage-gated, so their conductances
are functions of voltage. In Chapter 25, “Voltage-Gated Ion Channels,” you modeled the
potassium conductance as:

gK 5 gK � n ð27:14Þ
where

dn

dt
5 k1n 2 ðk1n 1 k21nÞn ð27:15Þ

and the sodium conductance by:

gNa 5 gNa �m � h ð27:16Þ
where

dm

dt
5 k1m 2 ðk1m 1 k21mÞm

dh

dt
5 k1h 2 ðk1h 1 k21hÞh

ð27:17Þ

If you substitute Equation 27.14 and 27.16 into Equation 27.13 and collect Equations
27.15 and 27.17, you get the following system of equations:

Cm
dVM

dt
52 gNamhðVM 2ENaÞ2 gKnðVM 2EKÞ2 gLðVM 2ELÞ1 Iinj

dn

dt
5 k1n 2 ðk1n 1 k21nÞn

dm

dt
5 k1m 2 ðk1m 1 k21mÞm

dh

dt
5 k1h 2 ðk1h 1 k21hÞh

ð27:18Þ

40727.2 BACKGROUND

IV. DATA MODELING WITH MATLAB

In the original Hodgkin-Huxley model, the final equations proposed were as follows:

Cm
dVM

dt
52 gNam

3hðVM 2ENaÞ2 gKn
4ðVM 2EKÞ2 gLðVM 2ELÞ1 Iinj

dn

dt
5 k1n 2 ðk1n 1 k21nÞn

dm

dt
5 k1m 2 ðk1m 1 k21mÞm

dh

dt
5 k1h 2 ðk1h 1 k21hÞh

ð27:19Þ

The changes to the first equation were made so that the model would better fit with the
experimental data, although some explanation of the addition of these exponents has since
been made from first principles.

Many of the parameter values needed to evaluate the system of Equation 27.19 are men-
tioned in Chapter 25, “Voltage-Gated Ion Channels.” Table 27.1 identifies these parameter
values along with some additional parameter values for the leak channel and capacitance
of the membrane.

The functional forms for the transition rates between conformational states of the
sodium and potassium channels are given in Equations 27.20�27.22. These rates were dis-
cussed in more detail in Chapter 25, “Voltage-Gated Ion Channels.”

k1n 5
0:01 � ð102VMÞ

exp
102VM

10

0
@

1
A2 1

k21n 5 0:125 � exp 2VM

80

0
@

1
A

ð27:20Þ

TABLE 27.1 Parameter Values for Hodgkin-Huxley Model

Parameter Value

CM 1 µF/cm2

gK 36 µS/cm2

gNa 120 µS/cm2

gL 0.3 µS/cm2

EK 212 mV

ENa 115 mV

EL 10.613 mV

408 27. MODELING A SINGLE NEURON

IV. DATA MODELING WITH MATLAB

k1m 5
0:1 � ð252VMÞ

exp
252VM

10

0
@

1
A2 1

k21m 5 4 � exp 2VM

18

0
@

1
A

ð27:21Þ

k1h 5 0:07 � exp 2VM

20

0
@

1
A

k21h 5
1

exp
302VM

10

0
@

1
A1 1

ð27:22Þ

27.3 EXERCISES

Trying to write code to implement a set of equations such as Equation 27.19 while keep-
ing track of all the rate functions and necessary parameters can seem daunting. The key to
keeping larger coding projects manageable is to write many smaller functions first and
then put them together to create larger functions until eventually the project is complete.
For example, the following code is for a function n_prime that takes the current value of n
and the current membrane potential V_m and returns the derivative of n according to the
second equation of the Hodgkin-Huxley model:

function dn5n_prime(V_m, n)
%This function takes two arguments the membrane potential and the current value
%of the state variable n, and returns the value of the derivative of n for these values.
%First calculate the values of the forward and backward rate constants, k_1n and
%k_2n.
k_1n5 0.01*(10-V_m)/(exp((10-V_m)/10)-1);
k_2n5 0.125*exp(-V_m/80);
%Next calculate the value of the derivative.
dn5k_1n � (k_1n1k_2n)*n;

EXERCISE 27.1

Write a function m_prime(V_m, m) simi-

lar to the one in the preceding example that

calculates the derivative of m given its cur-

rent value and membrane potential.

40927.3 EXERCISES

IV. DATA MODELING WITH MATLAB

EXERCISE 27.2

Write a function h_prime(V_m, h) simi-

lar to the one in Exercise 27.1 that calculates

the derivative of h given its current value

and membrane potential.

EXERCISE 27.3

Write a function V_prime(V_m, n, m, h,

I_inj) that calculates the derivative of V_m

given its current value, the values of the

other state variables, and the injected

current. Hint: Just repeat what you’ve done

so far using the first equation of the

Hodgkin-Huxley model.

27.4 PROJECT

In this project, you will model the voltage dynamics of a Hodgkin-Huxley neuron. You
should perform the following:

1. Write a function hodgkin_huxley(t, I_inj) that takes a time series t and a constant
representing injected current and returns the value of V at every point in t. Assume that
the initial value for V is 210 mV. Assume that all channels are initially closed. Hint: See
Chapter 25, “Voltage-Gated Ion Channels,” for a similar example.

2. Plot V versus t for injected currents of 5, 10, and 15 A/cm2.
3. Determine what happens to the frequency of firing as the injected current increases.
4. Indicate how the action potential generated by this model compares to the result in

Figure 27.1.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

length
for-loop
plot
hold on

410 27. MODELING A SINGLE NEURON

IV. DATA MODELING WITH MATLAB

C H A P T E R

28

Models of the Retina

28.1 GOAL OF THIS CHAPTER

The goal of this chapter is to understand the basic structure of the retina and to see
how to create simple models of neuronal interactions. In this chapter you will build a sim-
ple model describing the interaction between cone cells and horizontal cells of the retina
and solve it exactly by taking advantage of the capability of the MATLAB® software to
easily manipulate matrices.

28.2 BACKGROUND

28.2.1 Neurobiological Background

The retina is the part of the eye that transforms light into an electrochemical message
sent to the brain for processing. The mechanism is quite complicated, but we will give a
brief overview. Light first contacts the cornea, a transparent tissue covering the pupil and
the iris. The cornea helps converge light through the pupil. Next, light passes through the
lens, where it is further focused onto the retina in the back of the eye. The retina has five
distinct classes of neurons arranged into cell layers. Light first contacts the innermost
layers of the retina, but it is the outermost layer that first processes the incoming light sig-
nal. The layer responsible for processing the incoming light is composed mainly of two
different cell types: cones and rods. Rods are mainly responsible for sensing brightness,
and cones are responsible for detecting color.

This chapter pertains to cones, which we will discuss exclusively from now on.
Mammals such as humans have three types of cones. Each type is adept at “seeing” a
certain color: red, green, or blue. Cones have a G-protein coupled receptor on their cell
surface called rhodopsin. This receptor is closely associated with a chromophore called 11-
cis-retinal. When a photon of light hits the chromophore, it isomerizes to 11-trans-retinal.
This conformational change is detected by the rhodopsin molecule, and a G-protein is

411MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00028-X © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00028-X

activated, which eventually closes ion channels on the cell membrane. The result is that
ions (i.e., current) can no longer enter the cell, and the cell hyperpolarizes.
Hyperpolarization decreases the cone’s release of glutamate, a neurotransmitter that often
has excitatory postsynaptic effects, which in turn decreases activity in postsynaptic cells in
the next retinal layer. These postsynaptic cells are called horizontal cells (H-cells). H-cells
normally maintain reciprocal synaptic connections with the cones that synapse onto them.
H-cells release GABA, a neurotransmitter that has inhibitory postsynaptic effects. When
the cones hyperpolarize in response to light and the H-cells decrease activity, the cones
become disinhibited and begin to depolarize. This process is referred to as negative feedback
because the initial light that induced hyperpolarization causes H-cells to feed back upon
the cones in a way that counteracts the initial hyperpolarization. It is believed that this
negative feedback is a regulatory mechanism to control color contrast. When the level of
negative feedback of horizontal cells to cones is changed, the cones’ response can be
altered. Slight changes in feedback might be responsible for helping to determine changes
in color. After all, although we have only three types of cones, humans can distinguish
between millions of different colors! In addition to feeding back onto cones, horizontal
cells also send signals to bipolar cells, which signal to amacrine cells, which finally signal
to ganglion cells. The axons of these ganglion cells make up what anatomists call the optic
nerve, the large nerve that connects the eye to the brain. The brain is then responsible for
decoding the information sent from the retina to create what you “see” when you look at
an object.

28.2.2 The Model

The model used in this chapter will be a system of two linear differential equations.
The first will describe changes in the current leaving the cone of the retina, C(t), and the
second will describe the current leaving the horizontal cell, H(t). We could build a larger
system to account for the bipolar cells, amacrine cells, and ganglion cells, but we will keep
it simple for now. The system is represented as follows:

dC

dt
5

1

τC
ð2C2 kH1 LÞ ð28:1Þ

dH

dt
5

1

τH
ð2H1CÞ: ð28:2Þ

The first equation has three terms. The first indicates that the change in current is nega-
tively proportional to the amount of current inside the cone, C. The second term represents
the fact that the change in current is proportional to the current inside the horizontal cell,
H, which negatively feeds back on the cell, and the third term indicates that the change in
current into the cone is dependent on the light level, L. If the light level is high, then many
photons will pass through the pupil, land on the retina, and activate the cones, resulting
in a large change in current. The second equation states that the change in current in the
horizontal cells depends negatively on the amount of current in the horizontal cells and
the current of the cone cell that synapses onto the horizontal cell. Recall that the horizontal
cells do not respond directly to light stimuli, so there is no term for the light intensity in

412 28. MODELS OF THE RETINA

IV. DATA MODELING WITH MATLAB

the second equation. All other symbols in the preceding equations represent parameters
(i.e., constants). Typical values for these parameters are τC5 0.025 sec, τH5 0.08 sec, and
k5 4. Now also assume that the light intensity, L, is a constant, particularly L5 10. Finally,
for the initial conditions, choose that C(0)5H(0)5 0. There is no current moving through
either cell at t5 0.

The model equations as they are currently written can be simplified by a clever substi-
tution. If you let:

~C5C2
L

k1 1
and ~H5H2

L

k1 1
; ð28:3Þ

and substitute these equations into the previous equations, then you get:

d ~C

dt
5

1

τC
ð2 ~C2 k ~HÞ ð28:4Þ

d ~H

dt
5

1

τH
ð2 ~H1 ~CÞ: ð28:5Þ

This is the model that you will study in its final form in this chapter. Note that the ini-
tial conditions now give:

~Cð0Þ5 ~Hð0Þ5 L

k1 1
ð28:6Þ

28.2.3 Mathematical Background

Systems like the one in Equations 28.4 and 28.5 are especially suitable for study in
MATLAB because they can be readily solved using simple matrix manipulations, as illus-
trated in the following simple example. Suppose you wanted to solve the system shown in
Equations 28.7 and 28.8:

dx

dt
5 x1 y ð28:7Þ

dy

dt
5 4x1 y ð28:8Þ

You begin by writing this system in matrix form to get:

dx

dt

dy

dt

2
6664

3
77755

1 1
4 1

� �
x
y

� �
: ð28:9Þ

If you let the vector

x
y

� �
5 v

-
and A5

1 1
4 1

� �
; ð28:10Þ

41328.2 BACKGROUND

IV. DATA MODELING WITH MATLAB

then the system in Equations 28.7 and 28.8 becomes:

d~v

dt
5A � v

-
: ð28:11Þ

Based on the Eigendecomposition Theorem (see Appendix B, “Linear Algebra
Review”), you can substitute in for A to get the following equation:

d~v

dt
5VDV21 � v

-
: ð28:12Þ

Next, you multiply across the left by V21 to get:

V21 d~v

dt
5V21VDV21 � v

-
5DV21 � v

-
: ð28:13Þ

If you letV21 �~v5~u, then Equation 28.11 becomes:

d~u

dt
5D � u

- ð28:14Þ

This equation is similar to Equation 28.11, except for one very important exception: D is
diagonal. The eigendecomposition of:

A5
1 1
4 1

� �

gives the eigenvalue matrix

D5
3 0
0 21

� �

and the eigenvector matrix

V5
1 1
222

� �
:

If you substitute in for D and convert Equation 28.14 into a system of equations,
you get:

d~u

dt
5

du1
dt

du2
dt

2
6664

3
77755

3 0
021

� �
� u1

u2

� �
5

3u1
2u2

. ð28:15Þ

du1
dt

5 3u1

du2
dt

52 u2:

414 28. MODELS OF THE RETINA

IV. DATA MODELING WITH MATLAB

This system is also a system of differential equations. However, each equation can be
solved independently of one another to yield the solution:

u
-

5
u1
u2

� �
5

C1e
3t

C2e2t

� �
: ð28:16Þ

Finally, recall that you let V21~v5~u; so that V~u5~v, and:

~v5
x

y

" #
5

1 1

2 22

" #
�

C1e3t

C2e2t

" #
5

C1e3t 1C2e2t

2C1e3t 2 2C2e2t

" #
5C1

1

2

" #
e3t 1C2

1

22

" #
e2t.

xðtÞ5C1e
3t 1C2e

2t

yðtÞ5 2C1e
3t 2 2C2e

2t:

ð28:17Þ

Notice where the eigenvalues and eigenvectors appear in the preceding solution. The
eigenvalues, 21 and 3, appear in the exponents, and the eigenvectors appear as constant
vectors multiplying the exponential with the corresponding eigenvalue. In general, the
solution to any system of the form given in Equation 28.11 is:

v
-

5
x
y

� �
5C1 � EV1 � eλ1t 1C2 � EV2 � eλ2t ð28:18Þ

where λ1 and λ2 are distinct (not equal) eigenvalues of the matrix A, and EV1 and EV2 are
the corresponding eigenvectors. If A has eigenvalues that are the same, then Equation 28.18
does not apply.

28.3 EXERCISES

You can see from Equation 28.18 that any set of equations that can be made into the
form of Equation 28.11 can be solved by finding the eigenvalues and eigenvectors of the
matrix A, as long as A has distinct eigenvalues. You can do this easily in MATLAB with
the following command:

.. [V, D] 5 eig(A);

For example, typing the command

.. [V, D] 5 eig([1 1;4 1])

produces the response:

V 5
0.4472 2 0.4472
0.8944 0.8944

D 5
3.0000 0
0 21.0000.

41528.3 EXERCISES

IV. DATA MODELING WITH MATLAB

The matrix D is a diagonal matrix with diagonal elements given by the eigenvalues
of A. The columns of the matrix V correspond to the eigenvectors of A. The matrix D
is the same as the one given earlier used to derive Equation 28.15, but the matrix V
produced by MATLAB is different from the one used to derive Equation 28.17.
Nonetheless, you still have the relationship that A5VDV21. You can check this by
typing the command

.. V*D*inv(V)
ans 5

1.0000 1.0000
4.0000 1.0000.

The inv() function determines the inverse of a matrix.
Reexamining Equation 28.18 reveals that in order to find x(t) and y(t), you still need to

solve for C1 and C2. It can be shown that if you have the initial conditions that x(0)5 xo
and y(0)5 yo, then:

C1

C2

� �
5V21 xo

yo

� �
ð28:19Þ

Therefore, you can find these constants in MATLAB by typing the command

.. [c_1; c_2] 5 inv(V)*[x_o; y_o];

Finally, you can create v according to Equation 28.18 by typing:

.. v 5 c_1*V(:, 1)*exp(D(1,1)*t)1 c_2*V(:, 2)*exp(D(2,2)*t);

for some previously defined vector t. You can access the separate solutions x and y with v
(1, :) and v(2, :), respectively.

EXERCISE 28.1

Use MATLAB to check that if you let A5 [1 1; 4 1], V5 [1 1; 2 22], and D5 [3 0; 0 21],

then A5VDV21 also holds.

EXERCISE 28.2

Put the system of equations in Equations 28.4 and 28.5 into matrix form. What is the

matrix A?

416 28. MODELS OF THE RETINA

IV. DATA MODELING WITH MATLAB

28.4 PROJECT

In this project, you will solve the retinal feedback system described previously.
Specifically, you should do the following:

1. Write a function solution(A,init) that takes a matrix with distinct eigenvalues and a set
of initial conditions, and plots the solutions x(t) and y(t) on the same graph. The
function should return an output message if the input matrix does not have distinct
eigenvalues. Hint: See the error() function help for producing output messages for
functions that you want to throw an error message under certain conditions.

2. Use the function solution(A,init) to plot the solution of the retinal feedback system. In
low light levels (L5 3), it takes longer for cells to respond. The measured parameters
under low light level conditions are τC5 0.1 sec, τH5 0.5 sec, and k5 0.5. Plot the
solution to the system with these parameters and compare with the previous plots.
Under which conditions do the cones respond more strongly? Does this make sense?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

eig
inv
error

417MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

IV. DATA MODELING WITH MATLAB

C H A P T E R

29

Simplified Model of Spiking Neurons

29.1 GOAL OF THIS CHAPTER

The goal of this chapter is to study a computationally efficient spiking cortical neuron
model first introduced by Izhikevich (2003), and to generalize this model to a network of
neurons. Ultimately, you will obtain and examine a raster plot of modeled network
activity.

29.2 BACKGROUND

The task of understanding how different areas of the brain interact with each other to
perform higher level functions such as motor coordination and speech is a major interest
of modern neuroscience, but also an extremely difficult one. Many factors contribute to
the global dynamics of neural networks. First, neurons isolated from a network exhibit a
variety of patterns and behaviors. Some examples include regular spiking neurons, fast
spiking neurons, intrinsic bursting neurons, and subthreshold membrane oscillations, as
shown in Figure 29.1. Some of these behaviors are more common than others. For exam-
ple, under normal conditions there are more regular spiking neurons in the cortex than
intrinsic bursting ones. How these different dynamics are manifested at the network level
remains an open area of current research. Second, the synaptic coupling between neurons
can have a large impact on the network’s dynamics leading to synchronization among the
neurons and network oscillations.

Network oscillations in the brain are often categorized by their frequency.
Oscillations with a frequency less than 4 Hz are called delta rhythms. Oscillations
between 4 and 8 Hz are called theta rhythms. Rhythms from 8 to 12 Hz are called alpha
rhythms, and rhythms from 12 to 30 Hz are called beta rhythms. Rhythms above 30 Hz
are called gamma rhythms.

419MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00029-1 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00029-1

29.2.1 The Model

The model for this chapter is a two-dimensional system of ordinary differential equa-
tions with a reset condition, as shown in Equations 29.1�29.3:

dv

dt
5 0:04v2 1 5v1 1402 u1 I ð29:1Þ

du

dt
5 aðbv2 uÞ ð29:2Þ

The reset condition is:

if: v$ 30 then
v’c

u’u1 d:

�
ð29:3Þ

The variable v represents the membrane potential of the neuron while u represents a
generic recovery variable that feeds back negatively onto v. There are five additional para-
meters in the model: I, a, b, c, and d. The parameter I represents external input to the neu-
ron. This input could be thought of as external input to the neuron from outside the
network or even synaptic input from a neuron within the network. The parameter a con-
trols the rate of recovery of u, and b controls the sensitivity of recovery to subthreshold
fluctuations of the membrane potential. The parameters c and d control the after-spike
reset values for v and u, respectively. If you choose certain parameter combinations, this
simple model can exhibit all the firing patterns and behaviors shown in Figure 29.1.

Intrinsically bursting (IB)

Fast spiking (FS) Resonator (RZ)

Regular spiking (RS)

v(t)

i(t)

FIGURE 29.1 Known types of neurons. (An electronic version of the figure and reproduction permissions are
freely available at www.izhikevich.org/publications/spikes.htm.)

420 29. SIMPLIFIED MODEL OF SPIKING NEURONS

IV. DATA MODELING WITH MATLAB

http://www.izhikevich.com

To model a whole network of neurons, you will have to couple many neurons together
where each neuron behaves according to Equations 29.1�29.3. This means that you will
have to select a value for each parameter for every neuron you model. Additionally, since
the network is coupled (i.e., the neurons are connected to each other), the input I to a par-
ticular neuron will depend on other neurons in the network that synapse onto it.
Therefore, you will need to model the connectivity of the network. You could choose to
make every neuron in the network be connected to every other neuron in the network, or
possibly make neurons connect only to neurons that are close. Additionally, you need to
choose whether a connection between neurons will be excitatory or inhibitory and how
strong the connection will be.

29.3 EXERCISES

The code for implementing Equations 29.1�29.3 is not very complicated. You can solve
the equations using Euler’s method, as introduced in Chapter 25, “Voltage-Gated Ion
Channels.” The script for implementing a single neuron is as follows (adapted from
Izhikevich, 2003):

%These are some default parameter values
I5 10;
a5 0.02;
b5 0.2;
c5 -65;
d5 8;
%The initial values for v and u
v5 -65;
u5b*v;
%Initialize the vector that will contain the membrane potential time series.
v_tot5 zeros(1000, 1);

for t5 1:1000
%set v_tot at this time point to the current value of v
v_tot(t)5 v;
%Reset v and u if v has crossed threshold. See Eq. 29.3 earlier.
if (v .5 30)

v5 c;
u5u1d;

end;
%Use Euler’s method to integrate Eqs. 29.1 and 29.2 from earlier. Here v is
%calculated in 2 steps in order to keep the time step small (0.5 ms step in the
%line below).
v5 v1 0.5*(0.04*vˆ21 5*v1 140-u1 I);
v5 v1 0.5*(0.04*vˆ21 5*v1 140-u1 I);
u5u1 a*(b*v-u);

end;

42129.3 EXERCISES

IV. DATA MODELING WITH MATLAB

%This line uses the function find to locate the indices of v_tot that hold elements
%with values greater than or equal to 30 and then sets these elements to 30.
%This normalizes to heights of the action potential peaks to 30.
v_tot(find(v_tot .5 30))5 30;
%Plot the neuron’s membrane potential.
plot(v_tot);

EXERCISE 29.1

Before going on to generalize this model

to a network of neurons, you should

explore this model thoroughly. See if you

can discover what parameter sets lead to

regular spiking, fast spiking, or intrinsically

bursting behavior. What kinds of behaviors

do the following parameter sets produce?

a. [a, b, c, d]5 [0.02, 0.2, 265, 8]

b. [a, b, c, d]5 [0.02, 0.2, 255, 4]

c. [a, b, c, d]5 [0.1, 0.2, 265, 2]

d. [a, b, c, d]5 [0.1, 0.25, 265, 2]

Now consider how to modify this script to model a network of neurons where each
neuron is described by the dynamics of Equations 29.1�29.3. First, convert the parameters
from numbers to vectors. The vectors will hold the value of each parameter for each neu-
ron in the network. Since you want some neurons in the network to be regular spiking
and others to be intrinsically bursting, you will need to have different values for the ele-
ments of the vectors. The modified code should begin as follows:

% The number of excitatory neurons in the network. The mammalian cortex has
% about 4 times as many excitatory neurons as inhibitory ones.
Ne5 800;
%The number of inhibitory neurons in the network.
Ni5 200;
%Random numbers
re5 rand(Ne, 1);
ri5 rand(Ni, 1);
%This will set the value of a for all excitatory neurons to 0.02 and the value of a
%for inhibitory neurons to a random number between 0.02 and 0.1
a5 [0.02*ones(Ne, 1); 0.021 0.08*ri];
%This will allow b to range from 0.2�0.25
b5 [0.2*ones(Ne, 1); 0.25�0.05*ri];
%This will allow the spike reset membrane potential to range between -65 and -50
c5 [-651 15*re.^2; -65*ones(Ni,1)];
%This will allow the recovery reset value to range between 2 and 8
d5 [8-6*re.^2; 2*ones(Ni, 1)];
^

422 29. SIMPLIFIED MODEL OF SPIKING NEURONS

IV. DATA MODELING WITH MATLAB

Before you continue with the code, it is worthwhile to consider how these definitions of
the parameters impact the composition of the network.

EXERCISE 29.2

What parameter sets are most neurons

likely to possess? Is there any correlation

between excitatory neurons as represented

in this model and regular spiking neurons,

for example?

The next line of code should create a weight matrix that holds the strength of the con-
nectivity between every pair of neurons in the network. Since the network has Ne1Ni
neurons, then the weight matrix will be a square matrix with these dimensions. The code
to implement this is:

S5 [0.5*rand(Ne1Ni, Ne), -rand(Ne1Ni, Ni)];

Notice that this definition allows the strength of connections of excitatory neurons onto
other neurons to range from 0 to 0.5, whereas inhibitory neurons have a synaptic strength
between 0 and 21. According to this definition, a single inhibitory neuron can have, in
general, a stronger effect on the neurons it contacts than a single excitatory neuron, which
is supported by current experimental research. Also notice that very few elements of S
will be exactly 0, so in this model almost every neuron has synaptic contacts with all other
neurons in the network. The rest of the code for the network model is:

%The initial values for v and u
v5 -65*ones(Ne1Ni,1);
u5b.*v;
%Firings will be a two-column matrix. The first column will indicate the time that a
%neuron’s membrane potential crossed 30, and the second column will be a number
%between 1 and Ne1Ni that identifies which neuron fired at that time.
%firings5 [];
for t5 1:1000

%Create some random input external to the network
I5 [5*randn(Ne, 1); 2*randn(Ni,1)];
%Determine which neurons crossed threshold at the current time step t.
fired5 find(v .5 30);
%Add the times of firing and the neuron number to firings.
firings5 [firings; t*ones(1, length(fired)), fired];
%Reset the neurons that fired to the spike reset membrane potential and
%recovery variable.
v(fired)5 c(fired);
u(fired)5u(fired)1d(fired);
%Add to the input, I, for each neuron a value equal to the sum of the synaptic

42329.3 EXERCISES

IV. DATA MODELING WITH MATLAB

%strengths of all other neurons that fired in the last time step connected to that
%neuron.

I5 I1 ;sum(S(:,fired), 2);
%Move the simulation forward using Euler’s method.
v5 v1 0.5*(0.04*v^21 5*v1 140-u1 I);
v5 v1 0.5*(0.04*v^21 5*v1 140-u1 I);
u5u1 a*(b*v-u);

end;
%Plot the raster plot of the network activity.
plot(firings(:,1), firings(:,2),'.');

29.4 PROJECT

In this project, you will examine the behavior of a cortical network of spiking neurons.
Specifically, you are asked to do the following:

According to the definition of the parameter values for c in the network model,
determine whether an inhibitory neuron can be an intrinsically bursting neuron. Will
there be more regular spiking neurons in the network or intrinsically bursting neurons?
Examine the raster plot produced by the preceding code. Are there any oscillations
present in the network? If so, are they delta rhythms, theta rhythms, alpha rhythms,
etc.?
Modify the code by redefining c and d to allow for more bursting neurons to be present
in the network. What effect, if any, does this have on the presence of network
oscillations?
Alter the weight matrix so that there are fewer connections between neurons of the
network. What effect does this have on the network dynamics?

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

rand
randn
plot
find

424 29. SIMPLIFIED MODEL OF SPIKING NEURONS

IV. DATA MODELING WITH MATLAB

C H A P T E R

30

Fitzhugh-Nagumo Model:
Traveling Waves

30.1 GOALS OF THIS CHAPTER

The purpose of this chapter is to learn how to model traveling waves in an
excitable media. This entails the solution of a partial differential equation involving a
first derivative in time coordinates and a second derivative in spatial coordinates. You
will learn how to compute a second derivative in the MATLAB® software, and use a
modification of the Fitzhugh-Nagumo model introduced in Chapter 15, “Exploring the
Fitzhugh-Nagumo Model,” to generate traveling waves in both one and two
dimensions.

30.2 BACKGROUND

The Fitzhugh-Nagumo model is often used as a generic model for excitable media
because it is analytically tractable. You will use it as a simple model to generate traveling
waves by the addition of a diffusion term: a second derivative in spatial coordinates. In
this chapter, you will modify the Fitzhugh-Nagumo model introduced in Chapter 15 in
this way, and study its behavior in one and two dimensions. Thus you can simulate action
potential wave propagation along the axon of a single neuron or the spreading of electrical
potential waves in a network of cortical neurons.

There are many forms of the equations for the voltage, v, and recovery, r, variables in
the Fitzhugh-Nagumo model. In general they are given by:

@v

@t
5 fðvÞ2 r1 I1

@2v

@x2
ð30:1Þ

425MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00030-8 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00030-8

@r

@t
5 av2 br ð30:2Þ

The function f(v) is a third order polynomial that provides positive feedback, whereas
the slower recovery variable r provides negative feedback. By making the voltage and
recovery variables functions of spatial coordinates as well as time, you can model dynam-
ics in a spatially extended regime. The final term in the first equation introduces diffusion
into the system, and thus the first equation is known as a reaction-diffusion equation.

A note of caution: As with ordinary differential equations, whenever you attempt to solve
partial differential equations computationally, you must be careful that the various errors
that can be introduced, such as truncation errors and roundoff errors, are not significant
and that the necessary conditions for stability are met. See Strauss (1992) for a more in-
depth discussion of such matters. If you are not careful, then the solutions produced by
your code may stray quite significantly from the true solutions you seek.

30.3 EXERCISES

30.3.1 Second Derivative Operator

How do you model a second derivative computationally in MATLAB? There are a few
approaches to this, but the one you will use here is the simplest computational approxima-
tion known as the centered second difference:

d2vðxÞ
dx2

B
vðx1ΔxÞ2 2vðxÞ1 vðx2ΔxÞ

ðΔxÞ2 ð30:3Þ

This approach can be justified by combining the Taylor expansions for v(x1Δx) and v
(xΔx) (Strauss, 1992). If the mesh size of the spatial variable is represented by Δx, then the
jth element of the array v, vj, is the value of v for x5 jΔx, so you have:

d2vj
dx2

B
vj11 2 2vj 1 vj21

ðΔxÞ2 ð30:4Þ

The second derivative can thus be computed by convolving the array v with the second
derivative operator filter F5 [1 22 1]/(Δx)2. This can be extended to two dimensions as
well. Assuming equal mesh spacing along both directions (Δx5Δy), then the two-
dimensional second derivative operator filter is given by F5 [0 1 0; 1 24 1; 0 1 0]/(Δx)2.

Now create a function in MATLAB for the second derivative operator in one dimension,
and name it secDer.m. Its input will be the one-dimensional array v(x) and the spatial
mesh size, dx, and the output will be the second derivative, v’’(x). This function will use
the convolution function conv, which, by default, introduces undesirable edge effects.
Also include an option to improve the edge effects by making the boundary conditions
periodic. You’ll do this by adding a third input to the function, BC, which, if set to 1, will
return the default conv output found by padding the input matrix with zeros, also known
as free boundary conditions, and if set to 2, then you will have periodic boundary conditions.

426 30. FITZHUGH-NAGUMO MODEL: TRAVELING WAVES

IV. DATA MODELING WITH MATLAB

Periodic boundary conditions means that the boundaries of the input array (i.e., the first
and last elements) are considered neighboring points. You could use the if, elseif control
structure to carry out the options for the boundary conditions, but instead we will intro-
duce you to another useful control structure that MATLAB offers: switch.

function V5 secDer(v,dx,BC)
%
%F is the discrete 2nd derivative filter in 1D
F 5 [1 22 1]/dx^2;
%
%BC determines your boundary conditions
switch BC

case 1 %free bc's
V5 conv(v,F);
V5V(2:end-1); %return an array the same size as the input array

case 2 %periodic bc's
%since the convolution filter is of length 3 then we only have to
%pad the input array v by 1 element on either side
pv5 zeros(1,length(v)1 2); %extend the input array by 2
pv(2:end-1) 5 v;
%now we fill in these two padded points with the values that the extended
%input array would have if the first element of v and the last element of v
%were neighbors
pv(1)5 v(end);
pv(end)5 v(1);
V5 conv(pv,F);
V5V(3:end-2); %return the valid portion of the convolution

end

Give this a try and see how it works by testing it on a function whose second derivative
is well known: cosine. If f(x)5 cos(x), then f’’(x) 5 -cos(x). You can compare the output of
the second derivative function, secDer, with the analytic solution by running the following
script, whose output is shown in Figure 30.1.

x5 linspace(-pi,pi,100); %forces even spacing in array of 100 pts from �pi to pi
dx5 x(2)-x(1); %determines this spacing, the spatial mesh size
x5 x(2:end); % for periodicity knock of 1st term in x array so that we don't have repeat

% value of cos(x) at the endpoints of x (since cos(-pi)5 cos(pi))
f5 cos(x); %input array
d2f5 secDer(f,dx,2); %computational solution to the second derivative

% of f with periodic BC
d2fA5 -cos(x); %analytic solution to the second derivative of f
plot(x,f,'k','LineWidth',3) %plot input f
hold on
plot(x,d2f,'b','LineWidth',5) %plot computational result of f"
plot(x,d2fA,'k:','LineWidth',3) %plot analytic result of f"
axis([-pi pi -1 1]); set(gca,'fontsize',20)

42730.3 EXERCISES

IV. DATA MODELING WITH MATLAB

EXERCISE 30.1

Compare this with the result you get if

you use free boundary conditions. You can

do this by setting BC to 1 when calling the

secDer function. Remove or comment out

the last line of the script above, which sets

the limits for the axes in the plot, so that

you can see the effect of changing the

boundary conditions.

EXERCISE 30.2

Rewrite the secDer.m function using the

if, elseif control structure rather than the

switch control structure. Test your function

by using f5 sin(x) and compare your result

with the known solution f“5 -sin(x).

With this second derivative operator, you can now model a traveling wave in 1D. For
the one-dimensional problem, you will use the following form of the Fitzhugh-Nagumo
equations (Wilson, 1999):

@v

@t
5 10 v2

1

3
v3 2 r1D

@2v

@x2

� �
1 I ð30:5Þ

0.5

0

−0.5

−1
−3 −2 −1 0 1 2 3

1

FIGURE 30.1 Testing the second derivative function secDer.m. The solid black line is the input, cos(x), and
the blue line is the output of the secDer function with periodic boundary conditions. This matches exactly with
the analytic solution to the second derivative, -cos(x), shown as the dotted black line.

428 30. FITZHUGH-NAGUMO MODEL: TRAVELING WAVES

IV. DATA MODELING WITH MATLAB

@r

@t
5 p a1 1:25v2 br½ � ð30:6Þ

The variables v(x,t) and r(x,t) are the voltage and the recovery variables at position x at
time t. If modeling a pulse traveling along a nerve fiber, you can think of x as the position
along the nerve fiber. Similarly, if you want to model a traveling wave of activity across a
one-dimensional network of neurons, then x indicates the neuron location in the
one-dimensional population. Now consider the latter case. You will use the following
parameter values: D5 1, a5 1.5, b5 1, and p5 0.8. For this set of parameters, the steady
state values are v05�1.5 and r05�3/8, which you will use as your initial conditions for
these variables. The driving stimulus is given by I. To solve this system, you are going to
need an ODE solver.

30.3.2 Built-in ODE Solvers

In previous chapters, you solved differential equations through manually written ODE
solvers using the Euler method and the Runge-Kutta method, which had the advantage of
complete transparency in the mechanisms behind the operations. In this chapter, we will
introduce you to the most practical and commonly used of the built-in ODE solvers in
MATLAB: the function ode45. This solver is based on an explicit Runge-Kutta formula
and has been optimized to adaptively find the most efficient time steps to produce a solu-
tion within a certain allowed relative error tolerance (1023 by default) and absolute error
tolerance (1026 by default). Look at the help section for ode45 for more information on
how to adjust these options as well as to learn about the other built-in ODE solvers offered
by MATLAB and the conditions under which to use them.

To familiarize yourself with the proper syntax for using the ode45 ODE solver, first con-
sider the simpler case of solving this system of equations for one point in space (i.e., for
one neuron). First, you must code the system of first-order ODEs as a function that the
solver can use. You will represent the Fitzhugh-Nagumo system in a function called F_N1.
The F_N1 function assumes that v and r become elements V(1) and V(2) of the two-
element input vector V. Although t and V must be the function’s first two arguments, the
function does not need to use them. The output vdot, the derivative of V, must be a
column vector, as shown in the following code:

function vdot 5 F_N1(t,V)
%
%set parameters of the model
a5 1.5; b5 1; p5 .08; I5 1.5;
%dv/dt:
vdot(1) 5 10*(V(1) - (V(1).^3)/3 - V(2)1 I);
%dr/dt
vdot(2) 5 p*(1.25*V(1)1 a � b*V(2));
vdot5 vdot'; %make correct dimensions for ODE solver: must be a column vector

42930.3 EXERCISES

IV. DATA MODELING WITH MATLAB

Note that the diffusion term is left out, since there is only one point in space and a spa-
tial derivative makes no sense in this case. For this one neuron system, you set the input
to 1.5 so that the model will initiate a series of action potentials. You can then generate
and plot the solution as follows:

v05 [2 1.5;2 3/8]; %initial conditions for V variable
tspan5 [0 100]; %beginning and end values of time
[t,v] 5 ode45('F_N1', tspan, v0);
plot(t,v(:,1),'k*','LineWidth',5);

Now look at what was produced by running the preceding script:

.. whos

Name Size Bytes Class
t 25973 1 20776 double
tspan 13 2 16 double
v 25973 2 41552 double
v0 23 1 16 double

Note that the time, which goes from 0 to 100, is a column vector of 2597 points. These
time points are not evenly distributed between 0 and 100; rather, the mesh size varies and
has been selected by the solver to most efficiently compute the differential equation within
the tolerated error. For example, consider how the spacing between time points varies in
just the first 10 time points:

.. t(1:10)
ans 5

0
0.0015
0.0031
0.0046
0.0061
0.0138
0.0214
0.0291
0.0367
0.0451

.. diff(t(1:10))
ans 5

0.0015
0.0015
0.0015
0.0015
0.0077
0.0077
0.0077

430 30. FITZHUGH-NAGUMO MODEL: TRAVELING WAVES

IV. DATA MODELING WITH MATLAB

0.0077
0.0084

The first column of the output vector, v(:,1), represents the voltage values at the corre-
sponding times starting with v0(1) at the first time point. Similarly, the second column of
the output vector, v(:,2), represents the recovery variable values for the corresponding
times, starting with v0(2).

When you specify specific time points in tspan, the ODE solver will still use its most
efficient time mesh to solve the differential equation; however, it will now return the
values of the outputs at the specific times indicated in tspan. Compare the previous result
with that found by specifying the time to be from 0 to 100 at intervals of 4:

hold on
tspan5 [0:4:100];
[t,v] 5 ode45('F_N1',tspan,v0);
plot(t,v(:,1),'b*','LineWidth',5)

This result is shown in Figure 30.2.

30.3.3 Fitzhugh-Nagumo Traveling Wave

You are now ready to tackle the full problem of simulating a propagating wave along a
line of neurons. Let the number of neurons be given by N. A naı̈ve approach might be to
allow the initial conditions to be a 23N matrix with the first row representing the N ini-
tial voltages and the second row the N values of the initial recovery variables. However,
recall that the ode45 solver will accept only a single column array for the initial conditions.
What you will do to satisfy this requirement is let the initial value column vector be of
length 2N and let the first N elements represent the initial voltages of the N neurons and
the last N elements represent the initial recovery values. The ODE solver will produce as

2

0V
ol

ta
ge

,v

Time, t

−1

1

−2
0 20 40 60 80 100

3

FIGURE 30.2 Voltage, v, versus time, t, output of Fitzhugh-Nagumo system of equations for one point in
space found using the ode45 solver with tspan5 [1 100] (black dots) and with tspan5 [1:4:100] (blue dots).

43130.3 EXERCISES

IV. DATA MODELING WITH MATLAB

its output a t3 1 time vector, and a t3 2N matrix, whose first N columns represent the
evolution of the voltage of the population of neurons as time progresses and whose second
N columns represent the evolution of the recovery variables.

The stimulus to initiate the wave that you will use is I5 6 for the first 0.5 s; then the
stimulus will be off, I5 0, for the rest of the time. You can choose where along the line of
neurons to initiate the wave. In the following example, you stimulate the center
cells. The following script, FNmain.m, will produce a traveling wave of activity along a
one-dimensional population of N neurons whose dynamics are governed by the
Fitzhugh-Nagumo equations, as shown in Figure 30.3.

%FNmain.m
clear all; close all
%
global N I BC %by making these variables global they can exist within
%the workspace of functions without explicitly being input to the functions
N5 128; %number of neurons
v0(1:N)521.5; %initial conditions for V variable
v0(N1 1:2*N)523/8; %initial conditions for R variable
I5 6; %the input stimulus value
BC 5 2; %set to 1 (free) or 2 (periodic boundary conditions)
%
tspan5 [0:.1:.5]; %time with stimulus
[t1,v1] 5 ode45('F_N',tspan,v0);
tspan5 [.5:.1:25]; % time without stimulus
I5 0;%turn off stimulus
[t2,v2] 5 ode45('F_N',tspan,v1(end,:)'); %note: initial cond are final v1 values
%piece together (concatenate) time (t1 and t2) and solution (v1 and v2)
%variables without double counting the seam values
t5 [t1; t2(2:end)]; v5 [v1; v2(2:end,:)];
%spacetime plot of v variable w/ neurons along y axis, time along x-axis
figure(1); imagesc(v(:,1:N)') ; colorbar
%spacetime plot of r variable w/ neurons along y axis, time along x-axis
figure(2); imagesc(v(:,N1 1:end)'); colorbar

2

1

0

−1

−2
0 20 40 60

Time, t

V
ol

ta
ge

, V

80 100 120

1

2

0

−1

−2
200 40 60

Time, t

80 100 120

1

2

0

−1

−2
0 20 40 60

Time, t

80 100 120

FIGURE 30.3 Traveling Fitzhugh-Nagumo wave in one dimension for t5 1 (left), t5 5 (center), and t5 10 (right).

432 30. FITZHUGH-NAGUMO MODEL: TRAVELING WAVES

IV. DATA MODELING WITH MATLAB

%create a movie of the traveling wave
figure(3)
for ii5 1:length(t)

plot(v(ii,1:N))
axis([0 N 22.1 2.2])
pause(.05)

end

When you run the preceding FNmain.m script, make sure that this M-file is in the same
directory as the secDer function previously created as well as the following function F_N,
since the main script calls these functions. The function F_N describes the coupled system
of differential equations used to model the dynamics.

function vdot 5 F_N(t,v)
global N I BC
%
%set parameters of the model
D5 10; a5 1.5; b5 1; p5 .08;
%dv/dt:
vdot(1:N) 5 10*(v(1:N) - (v(1:N).^3)/3 - v(N1 1:end))1 D*secDer(v(1:N),1,BC)';
%add input I to the center five cells
vdot(round(N/2)-2:round(N/2)1 2) 5 vdot(round(N/2)-2:round(N/2)1 2)1 I;
%dr/dt:
vdot(N1 1:2*N) 5 p*(1.25*v(1:N)1 a � b*v(N1 1:end));
%
vdot5 vdot'; %make correct dimensions for ODE solver

EXERCISE 30.3

Use periodic boundary conditions, as in

the preceding example, but change the loca-

tion of the wave initiation to some point off

center. For example, rather than stimulate

the center cells, stimulate cells a fourth of

the way from the edge. Watch the two

waves initiated annihilate each other.

EXERCISE 30.4

Change the boundary conditions to

make them free boundary conditions and

start the wave at the left end of the array to

create a traveling wave that goes from left

to right. Play with the parameters to see

how they affect the dynamics.

43330.3 EXERCISES

IV. DATA MODELING WITH MATLAB

30.4 PROJECT

In this project, you will simulate a traveling wave of activity in a two-dimensional
N3N array of cortical neurons. This time you will use these versions of the Fitzhugh-
Nagumo equations (Murray, 2002):

@v

@t
52 vða2 vÞð12 vÞ2 r1

D@2v

@x2
ð30:7Þ

@r

@t
5 bv2 gr ð30:8Þ

with the parameters taking on the values a5 0.25, b5 0.001, g5 0.003, and D5 0.05.
You will compute the solution using a similar method as that used for the one-
dimensional problem. This time the initial value column vector will be of length 2N2,
where the first N2 elements will represent the initial voltages of the N3N neuron
array and the last N2 elements will represent the initial recovery values. The ODE
solver will produce as its output a t3 1 time vector, and a t3 2N2 matrix, whose first
N2 columns represent the evolution of the voltage of the population of neurons as
time progresses and whose second N2 columns represent the evolution of the recovery
variables. For a given row of this output matrix, i.e., a particular time point, you can
reconstruct the N3N array of voltage variables from the 13N2 array using the reshape
function, whose input is the matrix to be reshaped as well as the number of rows and
columns desired in the output.

.. A5 [1 2 3 4 5 6 7 8 9]
A 5 1 2 3 4 5 6 7 8 9

.. a5 reshape(A,3,3)
a 5 1 4 7

2 5 8
3 6 9

You will need to do this when you call the two-dimensional second derivative function
as well as when you wish to visualize the results. There are more elegant and efficient
ways to handle the issue of programming the two-dimensional partial differential equa-
tion, but here we will present a way to solve the problem in MATLAB that is conceptually
simple, allowing you to use the tools previously used while not introducing any more
complicated commands.

In the following script, FN2main.m, you will create an .avi file of the simulation and
name it TravelingWave.avi:

%FN2main.m
clear all; close all
% next 4 lines are to create the movie file of the wave
fig5 figure;
set(fig,'DoubleBuffer','on');
set(gca,'NextPlot','replace','Visible','off')

434 30. FITZHUGH-NAGUMO MODEL: TRAVELING WAVES

IV. DATA MODELING WITH MATLAB

mov 5 avifile('TravelingWave.avi')
%
tspan5 [0:5:800]; %simulation time
global N BC
BC5 1; %boundary conditions: 1 free, 2 periodic
N5 32; %number of neurons
v0(1:N^2)5 0; %initial conditions for V variable
v0(N^21 1:2*N^2)5 0; %initial conditions for R variable
v0(1:N) 5 .6; %initially stimulate all cells along left edge of population
[t,v] 5 ode45('F_N2',tspan,v0);
%obtain min and max values of output
clims 5 [min(min(v(:,1:N^2))) max(max(v(:,1:N^2)))];
%generate the movie of the voltage
for ii5 1:size(v,1)

figure(1)
im 5 imagesc(reshape(v(ii,1:N^2),N,N), clims);
axis square
set(im,'EraseMode','none');
Frame5 getframe(gca);
mov 5 addframe(mov,Frame);

end
mov 5 close(mov);

Specifying the same clims in the imagesc option for each time frame of the
imaged voltage array ensures that the same colormap is used throughout the movie, which
is analogous to using consistent z-axis limits. The preceding main script calls on a number
of functions that need to be created and stored in the same directory as the main script.
These functions, F_N2, SecDer2, and conv2periodic, follow. Note that you will need to
complete the F_N2 function. The SecDer2 function is just an extension of the SecDer func-
tion to two dimensions and employs the reshape function to carry out the 2D convolu-
tions. The conv2_periodic function has been written in a generic form so that it can
handle input matrices of various sizes for future applications.

function vdot 5 F_N2(t,v)
global N BC
%
D5 .05; a5 0.25; b5 .001; g5 .003; %set the parameters
%
%dV/dt
vdot(1:N^2)5 -(v(1:N^2)).*(a-(v(1:N^2))).*(1-(v(1:N^2)))-...

v(N^21 1:end)1D.*secDer2(v(1:N^2),1,BC);
%dR/dt
vdot(N^21 1:2*N^2)5 ???
%
vdot5 vdot';

43530.4 PROJECT

IV. DATA MODELING WITH MATLAB

function V5 secDer2(v,dx,BC)
global N
%
F 5 [0 1 0; 1 24 1; 0 1 0]/dx^2;
%determines your boundary conditions
switch BC

case 1 %free bc's
V5 conv2(reshape(v,N,N)',F,'same');
V5 reshape(V',N*N,1);

case 2 %periodic bc's
V5 conv2_periodic(reshape(v,N,N)',F);
V5 reshape(V',N*N,1);

end

function sp 5 conv2_periodic(s,c)
% 2D convolution for periodic boundary conditions.
% Output of convolution is same size as leading input matrix
[NN,M]5 size(s);
[n,m]5 size(c); %% both n & m should be odd
%enlarge matrix s in preparation convolution with matrix c via periodic edges
padn 5 round(n/2) - 1;
padm 5 round(m/2) - 1;
sp5 [zeros(padn,M1 (2*padm)); ...

zeros(NN,padm) s zeros(NN,padm); zeros(padn,M1 (2*padm))];
%fill in zero padding with the periodic values
sp(1:padn,padm1 1:padm1M)5 s(NN1 1-padn:NN,:);
sp(padn1 11NN:2*padn1NN, padm1 1:padm1M)5 s(1:padn,:);
sp(padn1 1:padn1NN,1:padm)5 s(:,M1 1-padm:M);
sp(padn1 1:padn1NN,padm1M1 1:2*padm1M)5 s(:,1:padm);
sp(1:padn,1:padm)5 s(NN1 1-padn:NN,M1 1-padm:M);
sp(padn1NN1 1:2*padn1NN,1:padm)5 s(1:padn,M1 1-padm:M);
sp(1:padn,padm1M1 1:2*padm1M)5 s(NN1 1-padn:NN,1:padm);
sp(padn1NN1 1:2*padn1NN,padm1M1 1:2*padm1M)5 s(1:padn,1:padm);
%
%perform 2D convolution
sp 5 conv2(sp,c,'same');
% reduce matrix back to its original size
sp 5 sp(padn1 1:padn1NN,padm1 1:padm1M);

In this project, you should do the following:

1. Create the main script and the functions given here in the same working directory.
Complete the F_N2 function by replacing the symbols ??? with the proper quantities so
that F_N2 implements the Fitzhugh-Nagumo model equations as given in this section.
Run the main script to generate a plane wave from the left, as shown in Figure 30.4.

436 30. FITZHUGH-NAGUMO MODEL: TRAVELING WAVES

IV. DATA MODELING WITH MATLAB

2. Alter the code so that the wave is initiated from one of the corners or in the center of
the array and forms a propagating ring. Also try running the simulation with periodic
boundary conditions. Play with the various parameters to see how they affect the wave
dynamics.

3. Now use the model to generate a spiral by resetting the upper half of the voltage and
recovery variables to 0 when the traveling plane wave is approximately halfway across
the neural network. Start with the original code, as in the first part of the project so that
a plane wave is initiated along the entire left edge of the array. In the main script,
change the name of the .avi file that will be created to SpiralWave.avi. Let N5 60 and
tspan5 [0:5:1800]. This will cause the simulation to take more time to run but will allow
you to view the spiral well.
In the main script, create a variable Reset that can take on the value 0 or 1. Use the

switch control structure so that when Reset is equal to 0, it runs the original script, and
when it is equal to 1, the line [t,v] 5 ode45('F_N2',tspan,v0); will not be executed, and
in its place the following lines will be executed:

[t,v] 5 ode45('F_N2',tspan,v0);
[t1,v1] 5 ode45('F_N2',tspan(1:round(length(tspan)/3)),v0);
vR5Vreset(v1(end,:));
[t2,v2] 5 ode45('F_N2',tspan(round(length(tspan)/3):end),vR);
v5 [v1; v2(2:end,:)];
t5 [t1; t2(2:end,:)];

Create the following Vreset function in the same directory as the main file:

function vR5Vreset(v)
global N
%
%reset half of voltage variables to zero

5

10

15

20

25

30

5

10

15

20

25

30

5

10

15

20

30

35

5 10 15 2520 305 10 15 2520 30 5 10 15 2520 30

FIGURE 30.4 Two-dimensional traveling wave produced by the Fitzhugh-Nagumo equations for t5 0 (left),
t5 300 (center), and t5 600 (right).

43730.4 PROJECT

IV. DATA MODELING WITH MATLAB

VR 5 reshape(v(1:N^2),N,N)';
VR(:,1:round(N/2))5 0;
%reset half of recovery variables to zero
RR 5 reshape(v(N^21 1:end),N,N)';
RR(:,1:round(N/2))5 0;
%
vR5 [reshape(VR',N*N,1);reshape(RR',N*N,1)];
Explain how the Vreset function works. Submit the main script and set of functions
that give the option to generate spiral waves. Plot screenshots of the spiral wave
generated at various timesteps t(i) by using the command:

imagesc(reshape(v(i,1:N^2),N,N), clims); axis square

for various values of i, as shown in Figure 30.5. Again, you can play with the various
parameters to see how they affect the wave dynamics.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

switch
ode45
global
imagesc
reshape

10

20

30

40

50

60
10 20 30 5040 60

10

20

30

40

50

60
10 20 30 5040 60

10

20

30

40

50

60
10 20 30 5040 60

FIGURE 30.5 Spiral wave produced by the Fitzhugh-Nagumo equations for t5 500 (left), t5 1000 (center),
and t5 1500 (right).

438 30. FITZHUGH-NAGUMO MODEL: TRAVELING WAVES

IV. DATA MODELING WITH MATLAB

C H A P T E R

31

Decision Theory

31.1 GOALS OF THIS CHAPTER

In this chapter, you will learn how to implement progressively more comprehensive
mathematical models of decision making using MATLAB®. The exploration of decision
models will introduce solving partial differential equations as finite differences, focusing
on the diffusion equation. A simple model accounting for perceptual decisions and corre-
sponding activity in cortical areas LIP and MT will be discussed.

31.2 BACKGROUND

One of the fundamental behavior characteristics of choice and reaction time (RT) is a
trade-off between accuracy (selecting the correct choice) and speed (e.g., Swensson, 1972).
Research participants asked to make decisions limited by time make more errors as the
time allotment grows shorter. Any serious model for reaction time should account for this
phenomenon.

However, accuracy does not improve infinitely. Participants still err, even when given
large time windows. Not only must any model handle the inverse relationship between
accuracy and speed, but it must also still maintain a small probability of error.

There are many possible ways of addressing this aspect of decision-making behavior.
For decades, one of the most successful models has been the diffusion drift model (DDM)
(Ratcliff, 1978). In the diffusion drift model, decision processes are described in terms of
evidence accumulation over time, with larger durations allowing greater amounts of evi-
dence to accumulate.

Neurobiological investigations of choice in sensory systems have proposed putative
mechanisms for the behavior described by the DDM and similar evidence accumulation
models of decision. Later in this chapter, we will discuss a biological model for decision
behavior in the perception of motion.

439MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00031-X © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00031-X

31.3 SIMPLE ACCUMULATION OF EVIDENCE

To begin, we can write a naı̈ve model of evidence accumulation for a simple task (Go/No
Go) in discrete time, in which each time step allows for the accumulation of a small amount
of evidence. We will use a basic, discrete version of the diffusion drift model (DDM), a well-
established model of decision processes (Ratcliff, 1978).

In this formulation of the accumulation, the evidence will take on continuous values.
We can represent this as a differential:

dX5Bdt1σdW

Here, dX represents the change in evidence during the time step dt. B is a constant bias
that directs the evidence total over time. The magnitude and sign of B influences the long
term behavior of the evidence accumulation process. Larger values cause faster accumula-
tion and smaller magnitude values cause slower accumulation.

The last term, dW, represents a discretized Brownian motion term. Simply put, a
Brownian motion is a random walk in which steps follow a Gaussian distribution. (The
dW label originates from the Wiener process, another name for Brownian motion.)
Formally, the Brownian motion term is characterized by three properties:

1. W(0) 5 0
2. W(t) is continuous in t
3. For any two values of t, t1, and t2, the difference betweenW(t1) and W(t2) follows an

independent normal distribution with mean 0 and variance equal to the difference t22 t1.

Consequently, one important aspect of the Brownian motion term is its scaling with
respect to time. Since dW follows an N(0, dt) distribution, increasing or decreasing the time
step size increases or decreases the variance of the random portion of the walk. The scalar
scaling constant σ allows for adjustments to uncertainty.

To complete our simple model, we need a start point x0. The start point will represent
the evidence accumulated prior to the experiment. Often, we can treat this as completely
undecided. An evidence total above the start point implies a positive choice, and an evi-
dence total below the start point will imply a negative choice. In most cases, we will
choose a value of 0 for x0, so that a positive accumulation will indicate a positive choice.

We now have enough to write a simple simulation for a Go/No Go task with a fixed
time interval. This would correspond to presenting a stimulus and requiring the research
participant to select a choice at the end of the time interval.

function choice 5 simple_model(bias, sigma, dt, time_interval)
x 5 [0];
time 5 0;
while time , time_interval

time 5 time1 dt;
dW 5 randn * (dt^0.5); % randn is always N(0,1)
dX 5 bias * dt1 sigma * dW;
% add dx to the most previous value of x
x 5 [x ; x(length(x))1 dX];

end

440 31. DECISION THEORY

IV. DATA MODELING WITH MATLAB

% time is up
choice 5 x(length(x)) . x(1);

end

EXERCISE 31.1

Simulate 20 choice experiments, each 1

second long, with B5 1 per second, σ5 1,

dt5 0.1 second. What is the distribution of

results? Modify simple_model to return the

evidence (x) as well as the resulting choice.

Examine the time course of the evidence for

B5 1, B5 10, B5 0, B5 0.1, and B5 2 1

over a 10-second trial.

Under this testing paradigm, in which the participant is interrogated at the end of a
fixed time interval, we cannot directly evaluate reaction time. However, we can examine
error rate (ER) as a function of the time interval.

EXERCISE 31.2

Explore how the time interval influences

the error rate. Generate 10 trials each for

tasks ranging in duration from 0.5 to 10 sec-

onds. Use parameters B5 0.1 per second,

σ5 1, dt5 0.1 second. Assume that a posi-

tive response is correct. How does ER

change with time?

As the time interval increases, the influence of the bias parameter affects the evidence
accumulation more and more strongly. To explore the probability distribution of the evi-
dence total, X, at some time t, we can integrate the previous difference equation. It is
important to note that, being stochastic, the Brownian motion term cannot be integrated
using standard integration techniques. Here, the integral is the sum of t/dt independent
normally distributed variables with equal mean (0) and variance (dt). Thus, the total
should be distributed normally with mean 0 and variance (t/dt)(dt)5 t. This corresponds to
the distribution of W(t) as defined earlier.ð

dX5

ð
Bdt1

ð
σdW

XðtÞ5Bt1σWðtÞ
With this expression of X(t), we can calculate an expectation of the first moment (i.e.,

the mean).

E½XðtÞ�5E½Bt1σWðtÞ�
E½XðtÞ�5E½Bt�1E½σWðtÞ�
E½XðtÞ�5Bt1 0

E½XðtÞ�5Bt

44131.3 SIMPLE ACCUMULATION OF EVIDENCE

IV. DATA MODELING WITH MATLAB

EXERCISE 31.3

Show that the variance (the expectation

of the centered second moment or

E½ðXðtÞ2E½XðtÞ�Þ2� is σ2t. Generate evidence

trajectories for 10 trials over 10 seconds

with parameters B5 0.1 per second, σ5 1,

dt5 0.1 second. Calculate mean and vari-

ance over time. Plot the trajectories, mean

trajectory, and one standard deviation

above and below the mean. Compare the

trajectories to the expected value.

Knowing the distribution of evidence at time t under the fixed time paradigm, we can
determine the probability of being above threshold and the expected error rate. X(t) follows
a normal distribution with mean Bt and variance σ2t. The proportion of this distribution
above the threshold is the probability of exceeding the threshold at time t. The standard
function for expressing this is ΦðzÞ, the cumulative distribution function for the standard
normal distribution. The value of ΦðzÞ is defined as the integral of the standard normal
probability density from negative infinity to z. This is also the probability that a random
variable with a standard normal distribution will have a value less than or equal to z.

Because the value of interest here is the probability of exceeding the threshold, the
probability of exceeding the threshold at time t is equivalent to

12Φ
x0 2Bt

σ
ffiffi
t

p
� �

The Statistics Toolbox supplies a function to calculate the value of the cumulative stan-
dard normal distribution, but we can easily define it using a function available in the
MATLAB core functions, specifically the error function erf. Defined in terms of the error
function,

ΦðzÞ5 1

2
11 erf

zffiffiffi
2

p
� �� �

With erf, finding a value of ΦðzÞ is as simple as

.. phi 5 0.5 * (11 erf(1/2^0.5))
phi 5

0.8413

EXERCISE 31.4

Write a MATLAB function for the cumula-

tive standard normal distribution, ΦðzÞ. Write

a function simple_model2 that accepts bias,

time limit, and start point, and that returns

the choice. simple_model2 should use

phi and the equations above to calculate the

probability of being above or below the start

point without iterating through a trajectory.

Once a probability of the evidence total being

above or below the start point is calculated, a

draw from a uniform random distribution

can be used to choose an option.

442 31. DECISION THEORY

IV. DATA MODELING WITH MATLAB

31.4 FREE RESPONSE TASKS

By adding positive and/or negative thresholds, we can extend our model to simulate a
testing paradigm that allows a free response. Under such a paradigm, if the evidence
exceeds a threshold, then the trial ends and a choice is made.

A model may have both a positive and a negative threshold or only a single threshold.
Which a model has will depend on the task to be simulated. A Go/No Go task in which
a participant must respond before an interval when a signal is perceived would be a
good match to a simulation paradigm with a single positive threshold. Evidence accumu-
lation would be towards the Go response. Such a simulation would also have a time
limit. Trials failing to accumulate enough evidence by the time limit would produce a
No Go result.

Two thresholds, positive and negative, could be appropriate for simulating a two
alternative forced choice (2 AFC) task. In the simplest case, the two thresholds are equi-
distant from the evidence start point, x0, but the distances from the start can be asym-
metric. Even with two thresholds, there is a single accumulator with only one bias
parameter.

EXERCISE 31.5

Write a function two_choice_trial that

accepts five parameters: positive and nega-

tive thresholds θ1 and θ2, a variance for

accumulation error σ, a start value x0, and a

bias B. The function should use the discrete

time representation of the decision process

by calculating values for the total evidence

at successive time intervals until evidence

exceeds a threshold. The time at the thresh-

old crossing is the reaction time. The func-

tion should return both the reaction time

and 1 or 2 1 for the response.

Now that our model allows an immediate return once sufficient evidence is accumu-
lated, we can investigate the relationship between error rate (ER) and reaction time (RT)
more stringently.

EXERCISE 31.6

Generate a large number of trials using a

free response decision paradigm. Choose a

relatively small bias. Plot a red point at

(RT, 1) for each correct response (assuming

that a response in the direction of the bias

is correct), where RT is the response time.

Plot a blue point at (RT, 2 1) for each incor-

rect response. Does the distribution of

points say anything about the relationship

between RT and ER?

44331.4 FREE RESPONSE TASKS

IV. DATA MODELING WITH MATLAB

31.5 MULTIPLE ITERATORS: THE RACE MODEL

The discrete version of the diffusion drift model can accommodate a two threshold para-
digm, but even with two thresholds, the single iterator allows for only a single set of bias and
variance values. Under some two choice scenarios, the race model may be a better match.

Under the race model, each of the two choices has an independent iterator and thresh-
old. The first process whose accumulated evidence exceeds its threshold is the choice of
the system. This choice “wins the race.”

The function below simulates a multiple choice task with free response. Parameters are
vectors with length equal to the numbers of choices in the task. To specify a set of choices, set
the parameters to vectors whose length is equal to the number of choices desired for the task.

It should be noted that while the race model has been demonstrated to account accu-
rately for experimental results in tasks with two choices, the appropriateness of multiple
choice models is a subject of active debate.

function [choice, rt] 5 race_trial(dt, biases, sigmas, thetas, initial_values)
X 5 initial_values;
t 5 0;
while X , thetas

t 5 t1 dt;
% draw from Weiner process
dW 5 randn(size(biases))*dt;
dX 5 biases * dt1 sigmas.*dW;
X 5 X1 dX; end

choice 5 find(X . thetas);
rt 5 t;

end

EXERCISE 31.7

Extend race_trial to accept a fixed time interval, and to return the best choice if the total

time reaches the maximum interval without a clear winner.

31.6 CORTICAL MODELS

Any neurobiological model should account for the perceived successes of the diffusion
model in describing the characteristics of reaction time in decision processes under psy-
chometric testing. One such model has been proposed (Shadlen and Newsome, 2001;
Mazurek et al., 2003) to account for interactions between visual areas MT and LIP. Area
MT is a cortical area sensitive to visual motion, and area LIP is a cortical area implicated
in decision processes. Neurons in area MT have been found to respond strongly to motion,
with directional specificity. Many neurons appear to have a characteristic direction, and
respond preferentially to stimuli moving in that direction. Mean rates of neurons varying
with direction relative to preferred orientation can be found in Figure 31.1.

444 31. DECISION THEORY

IV. DATA MODELING WITH MATLAB

Under the model proposed by Shadlen and Newsome, the activity of individual neu-
rons in LIP reflects the activity of associated neurons in MT over a long time period.
Moreover, area MT neurons directionally tuned to opposite directions inhibit the LIP neu-
ron of the oppositely directed cell. Thus, under this model, LIP neurons integrate the dif-
ference in activity between sensory cells with opposing preferred directions.

If we equate evidence with neural activity, we can take spike counts as evidence. This is
a subtle difference in from the discrete models we have used thus far, in that evidence
will be discrete counts of spikes rather than continuous. Another difference is the absence
of a mechanism for retrograde accumulation in the evidence count. Once a spike is
counted, it remains counted.

We can represent the spike counts from an MT neuron as N. At any time interval dt, we
can simulate activity by drawing from a uniform random distribution and comparing to
the mean rate per time interval dt. The mean rate will vary with both time and the current
stimulus, if any.

Likewise, we can simulate activity in LIP by adjusting the probability of firing by the
current evidence count. The model described above also has a feed-forward inhibitory
term to account for strong evidence in the opposite direction. To account for both connec-
tions, we will adjust probability of firing by the difference between the two evidence
counts. Neural activity above a certain threshold implies sufficient evidence for a choice.

The function lip_activity ahead models the activity of a single LIP neuron with fixed
probabilities for its corresponding excitatory and inhibitory MT neurons.

function rt 5 lip_activity(MT_p_values, ...
LIP_weights, ...
LIP_threshold)

% Parameters:
% MT_p_values - a vector with 2 elements, firing probabilities for the

5
5

5

5

5

10

15

20
30

20

15

10

5

5

5

5

FIGURE 31.1 Mean firing rates for an idealized MT
neuron, tuned to respond to upward motion.

44531.6 CORTICAL MODELS

IV. DATA MODELING WITH MATLAB

% excitatory and inhibitory neurons, resp.
% LIP_weights - a length 2 vector of weighting factors for the evidence
% from the excitatory (positive) and
% inhibitory (negative) neurons
% LIP_threshold - the LIP firing rate that represents the choice threshold
% criterion
% use fixed time scale of 1 ms
dt 5 0.001;
N 5 [0 0]; % plus is first, minus is second
rate 5 0.0;
LIP_event_times 5 [];
while rate , LIP_threshold

t 5 t1 0.001;
dN 5 rand(2) , MT_p_values;
N 5 N1 dN;
p_LIP 5 sum(N.*LIP_weights);
LIP_event 5 rand , p_LIP;
LIP_event_times 5 [LIP_event_times t];
% check LIP mean rate for last M spikes
rate 5 M/(t - LIP_event_times(N_LIP - M));

end
rt 5 t;

end

The function expects MT neuron probabilities, weights for the LIP neurons, and a firing
threshold for the LIP neuron in impulses per second (ips).

EXERCISE 31.8

Modify lip_activity to return the event

times for the simulated LIP neuron. Modify

the function to capture and return the event

times for the two MT neurons. Generate a

sample set of coordinated MT and LIP sim-

ulated event times and examine them as a

raster. How do the patterns of activity

differ?

31.7 PROJECT

In this project, you are asked to write a simulation of MT-LIP neurons using the
Shadlen-Newsome model discussed in the previous section. Specifically, you are asked to
do the following:

• Write code to simulate the effect of presenting a directionally oriented stimulus during
intervals of time. This will involve generating a time series where the value at each step
is an orientation or a value that indicates the absence of a stimulus.

446 31. DECISION THEORY

IV. DATA MODELING WITH MATLAB

• You need to allow the probability of firing for the two MT neurons in the model to
change with time, based on the orientation of any presented stimulus.

• The model should include two MT neurons and two LIP neurons. Each MT neuron
should have feed forward connections to both LIP neurons, one excitatory and one
inhibitory.

• Generate activity patterns for both MT neurons and both LIP neurons for various
stimulus presentations.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

erf()

447MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

IV. DATA MODELING WITH MATLAB

C H A P T E R

32

Markov Models

32.1 GOAL OF THIS CHAPTER

In this chapter, you will learn about modeling sequential phenomena using Markov
processes. Simple Markov models will be introduced to characterize sequences in behav-
ior. Hidden Markov models will be introduced with the HMM functions within the
Statistics Toolbox in MATLAB®. Finally, hidden Markov models will be used to extract
timing data from electrophysiological data by taking advantage of the sequential pattern
in the waveform shape.

32.2 INTRODUCTION

From the sequential depolarization then hyperpolarization of a neural spike to chains of
motor gestures, sequential data is quite common in neuroscience. How can we model data
within the context of preserving the sequential relationship?

A Markov model describes a system as a set of discrete states and transition probabilities
of moving between states. Additionally, Markov models are characterized by adherence to
the Markov property, which states that the transition probability from any state in the net-
work depends only on some finite set of prior states. Thus, only a limited, recent subset of
the state transition history of the model is necessary to determine transition probabilities
for the next state. Formally, given random variables X1,X2, X3,... Xt taking on values x1, x2,
x3, ... xt, a Markov model asserts that

PðXt 5 xt X1 5 x1;X2 5 x2;X3 5 x3; . . .Xt21 5 xt21Þ
��

5PðXt 5 xt Xt212n 5 xt212n;Xt2n 5 xt2n; . . .Xt21 5 xt21Þ
��

The preceding equation indicates that, given a history of random variable values for a
system x1, x2, x3,... xt where xn denotes the state at time step n, the probability of the state at
time t given the entire history of the system is equivalent to the probability given only the n

449MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00032-1 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00032-1

previous states. The number of prior states n necessary to characterize the model is the order
of the Markov model. In this chapter, we will focus exclusively on first-order Markov mod-
els, in which the knowledge of the current state only is sufficient to determine the transition
probabilities for the possible successor state. For the first-order Markov model,

PðXt 5 xt X1 5 x1;X2 5 x2;X3 5 x3; . . .Xt21 5 xt21Þ5PðXt 5 xt Xt21 5 xt21Þ
����

We will characterize a model M as {S, T, s, O, E}, where

S is a set of all states in the model of cardinality (size) N
T is an N3N matrix of probabilities for transition between pairs of states
s is the initial state
O is a set of output values of cardinality M
E is a set of pairs (s, o), mapping a state s with an emitted output value o

As a first example, we will examine syllable order in birdsong as model behavior.
Songbird behavior is widely studied in the context of neuroscience as a model for sensori-
motor learning and auditory perception. For our purposes, the sequential, repetitive, and
hierarchical structure of song lends itself quite well to a Markov model representation. A
sample song from a zebra finch can be found in Figure 32.1. The lower graph shows
amplitude variation over time. The upper graph shows a spectrogram of the data, which
shows the frequency content of the amplitude signal over time.

Within the structure of the song, there is a clear substructure of elements separated by
relatively quiet intervals. These larger groupings are termed motifs. Within the motifs are
smaller discrete elements, termed syllables. The division of the song into these parts might
be clearer in the spectrogram. Note that the syllable order within a motif is fairly regular
from motif to motif. During the analysis of the song, noting the sequence of syllables is
often of interest. A plausible annotation is shown in Figure 32.2. Note that syllable 2
repeats, and syllables 1 and 8 are optional.

From this annotation, we can attempt to generate a Markov model for a single motif.
We can design a fairly straightforward model by incorporating a separate state for each
syllable in sequence. Figure 32.3 illustrates the state transitions for such a model.

In Figure 32.3, each circle represents a separate state of the model. The numbers in the
states represent the syllable’s output according to the syllable annotation in Figure 32.2.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

2000
4000
6000
8000

10000

0 1 2 3 4 5 6
–0.15
–0.1

–0.05
0

0.05
0.1

FIGURE 32.1 Sonogram (top; frequency
components over time) and sound amplitude
(bottom) of three motifs from a zebra finch
adult.

450 32. MARKOV MODELS

IV. DATA MODELING WITH MATLAB

Note that we have two states that output syllable 2, we will denote these as 2a and 2b.
This accounts for the repetition in the natural sequence within the song. For those two
states, it is important to distinguish between the two states, which transition to different
succeeding states (2b or 3), and the output, which is the same.

Also, the transition diagram currently lacks transition probabilities. An accurate estima-
tion of transition probabilities would require examining transitions throughout a large
sample of annotated song. As an initial example, however, we will limit the sample to the
three motifs in the annotated Figure 32.2. The state transition diagram in Figure 32.3 has
11 separate states (don’t forget the start and end states!). With the set of states and the
transition probabilities estimated from the song sample, we can generate a transition
matrix T. Here, the column indicates the current state and the row indicates the putative
next state, and the matrix has been filled with transition probabilities calculated from our
admittedly small data set above.

T5

0 0 0 0 0 0 0 0 0 0 0
1=3 0 0 0 0 0 0 0 0 0 0
2=3 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 2=3 0 1 0
0 0 0 0 0 0 0 1=3 0 0 0
0 0 0 0 0 0 0 0 1 0 0

2
66666666666666664

3
77777777777777775

For example, looking down the first column (i.e., in the start state), there is a probability of
1/3 of transitioning to the 1 state, and a probability of 2/3 of transitioning to the 2 state.

0 1 2 3 4 5 6
–0.15

–0.1

–0.05

0

0.05

0.1
1 2 2 3 4 5 6 7 2 2 3 4 5 6 8 7 2 2 3 4 5 6

FIGURE 32.2 Annotated song.

FIGURE 32.3 State tran-
sitions for the annotated
song.

45132.2 INTRODUCTION

IV. DATA MODELING WITH MATLAB

Another example worth examining is the two columns corresponding to states 7 and 8. In the
column corresponding to state 7, all values are zero except the bottom row, indicating that the
succeeding state is always the end state. In the column corresponding to state 8, only the row
corresponding to state 7 is non-zero, denoting a transition to state 7 from state 8. The sum of
probabilities within a column must equal 1, but the sum of probabilities within a row often
do not.

In MATLAB, we can build this matrix easily by starting with a matrix of zeros and
inserting all the non-zero values.

.. T5 zeros(11, 11);

.. T(2,1)5 1/3;

.. T(3,1)5 2/3;

.. T(2:8, 1:7)5 eye(6); % this adds the diagonal ones

.. T(9,8)5 2/3;

.. T(10,8)5 1/3;

.. T(11,9)5 1;

.. T(9,10)5 1;

To complete the specification of the Markov model, we need to supply S (the set of states), s
(the starting state), O (the set of outputs), and E (the pairs mapping a state to its output). The
set of states is simply the set of values from 1 to 11, and the starting state is state 1.

Now, given a state s (valued 1�11), we can obtain the transition probabilities by defin-
ing a state vector s, where the elements of s are defined as:

si 5
1 i5 n
0 i 6¼ n

�

and then the vector of transition probabilities is simply the product of the transition matrix
T and the state vector s.

p5Ts

In MATLAB syntax, if we let n be the current state, we can choose an appropriate next
state using rand.

% n is the current state
% build the state vector
s5 zeros(11,1);
s(n)5 1;
p5T*s;
% p now contains probabilities for transition
p
% build a cumulative probability function
cdf5 cumsum(p);
new_n5 0;
choice5 rand();
for ii5 1:11

if choice , cdf(ii) then
new_n5 ii;

452 32. MARKOV MODELS

IV. DATA MODELING WITH MATLAB

break;
end

end
% new_n now contains the new state

%
% NB: the above for loop could be replaced by
% new_n5min(find(cdf . choice));
% The comparison returns a vector of 1 or 0 values, find locates the indices of
% all non-zero values (i.e. indices where the comparison is true), and min returns
% the first one.
% Both bits of code are equally correct. The solution with find is more succinct
% is will likely execute more quickly for longer arrays. The solution with the for
loop
% shows the algorithm more explicitly.
%

EXERCISE 32.1

Write a function markov_sequence that

accepts as parameters a transition matrix T,

a start state start, and end start end and

generates a plausible sequence of states.

Remember that this is a sequence of states,

not syllables, so the start state will be 1, the

two states corresponding to productions of

syllable 2 will have different numbers, etc.

EXERCISE 32.2

Modify the code written in Exercise 32.1

to accept a vector of syllables to emit for

each state. Choose appropriate values for

the start and end states (e.g., 21 or 0).

EXERCISE 32.3

Load a larger recording of the same bird,

and create a Markov model for multiple

motifs. A longer recording can be found in

file zf_y89.wav on the web site repository.

Load the file using wavread().

45332.2 INTRODUCTION

IV. DATA MODELING WITH MATLAB

32.3 FINDING THE MOST PROBABLE PATH: THE VITERBI
ALGORITHM

For a set of outputs, what is the most probable path through a corresponding model?
Given the probabilistic nature of a Markov model, it’s entirely feasible that a sequence

of outputs might correspond to multiple sets of states. For small models, all possible paths
can be explored, but what do we do for larger, more complex models? With greater inter-
connectivity, traversing all possible paths can be rather costly computationally, especially
for models with recurrent loops.

There is an established algorithm, the Viterbi algorithm, which can answer this question
fairly efficiently. Initially, we start with the first observation and state. We will denote
states with the variables qi, time steps with t, and observations with the variable xi. The
probability of the most probable path (the Viterbi path) at time t for observation x will be
denoted by Vt,x.

So, for the first observation, we have:

V0;0 5Pðx0js0Þ
This states that the most probable path to generate the first observation is the probabil-

ity of producing the first observation from the initial state. At the initial time step, no tran-
sitions have occurred, so the state at time t must be the starting state.

The algorithm specifies steps later in time as a function of the steps immediately prior.

Vt11;i 5Pðxt11jSt11 5 siÞmax
j

ðVt;jPðSt11 5 sijSt 5 sjÞÞ

The first term is the probability of the observation xt11 at time step t1 1 from state si.
The second term calculates the probability of reaching si. The Viterbi algorithm assumes
that the optimal path to a state will include the optimal path to one of its predecessors.
This allows breaking the problem into simpler, yet similar subproblems.

This inherent structure in the problem space allows us to break the problem up in a
coherent way and build the overall solution from the components of the smaller sub-
problems. In our case, we will use a matrix to store values of the Viterbi probability as
they are calculated so that the expression inside the max operator becomes a simple
element-wise multiplication. This type of decomposition of a problem space is called
dynamic programming, and is a common approach to reducing the complexity of ame-
nable problems.

The most probable path is the set of j values that maximize the Viterbi probability.
Thus, it is necessary to save the value in a matrix for later. Once the full probability is cal-
culated, the path can be output by stepping through the values of j.

function [path, P]5 simple_viterbi(seq, start, T, E)
% Calculates the path for the most probable route through a Markov
% model that produces a set of observations.
% Parameters:
% seq : sequence of observations, numbered 1..M
% T : transition matrix, SxS, where

454 32. MARKOV MODELS

IV. DATA MODELING WITH MATLAB

% T(n,m) is the probability of a transition
% from state m to n
% E : emission matrix, MxS, where
% E(m,s) is the probability of emitting
% output m when in state s
% start : the start state as a scalar value
%
% Returns:
% path : the most likely sequence of states
% to produce input parameter seq
% P : the probability of the returned path

% create matrix for storing calculations and path
state_count5 size(T);
state_count5 state_count(1);
time_count5 length(seq);
V5 zeros(time_count, state_count);
max_state5 zeros(time_count, state_count);

% at t5 1, only V(1, start) has value
% there is no probability for other states
V(1, start)5E(seq(1), start);

for t5 2:time_count
for s5 1:state_count

P_arrival5T(s, :).*V(t-1,:);
max_P_arrival5max(P_arrival);
argmax_P_arrival5 find(P_arrival 55 max_P_arrival);
emission5E(seq(t), s);
V(t, s)5max_P_arrival*emission;
max_state(t, s)5 argmax_P_arrival;

end
end

% now, grab the best probability
P5max(V(time_count, :));
path5 [find(V(time_count, :) 55 P)];
% build path
for t5 time_count:-1:2

prev_best5max_state(t, path(1));
path5 [prev_best; path];

end
end

45532.3 FINDING THE MOST PROBABLE PATH: THE VITERBI ALGORITHM

IV. DATA MODELING WITH MATLAB

EXERCISE 32.4

With a large model and multiple transi-

tions, the probability can “underflow,”

becoming indistinguishable from zero as

represented with the floating point numbers

used by MATLAB. One way to circumvent

this is to convert take the logarithm of the

probability and work in a logarithmic scale,

converting the value back before returning.

Update the above function to calculate the

probabilities as logarithms. You will need

to address zero-valued probabilities. This

may be as simple as using negative infinity

(in MATLAB, log(0)5 2Inf).

32.4 HIDDEN MARKOV MODELS

Up to now, we have only considered models with simple correspondences between the
output and the state. Many systems require models with a more computationally expres-
sive output. We can formally extend the simple Markov model to allow each state to out-
put one of multiple possible outputs, each with a distinct emission probability. Our more
comprehensive model M is {S, T, s, O, E}, where

S is a set of all states in the model of cardinality (size) N
T is an N3N matrix of probabilities for transition between pairs of states
s is the initial state
is a set of output values of cardinality M
E is an N3M matrix of probabilities for emitting output m from state n

We can view our prior Markov models as special cases of the more comprehensive
model in which for every row i of matrix E, there is a value Ei,j5 1. (In other words, every
row has a single output whose emission probability is unity.)

Because in practice these more comprehensive models are applied to problem domains
where only partial information about the state and output sequences is available, this
more comprehensive model is usually called a hidden Markov model (HMM). Typically, it is
the sequence of output values that is available, and the corresponding sequence of states
is hidden. This is the scenario that we will address here.

32.5 TRAINING AN HMM: THE BAUM-WELCH ALGORITHM

Given a putative HMM and a sample data set, the Baum-Welch algorithm provides a
means of estimating transition and emission probabilities for the model. While an exten-
sive discussion of the algorithm is beyond the scope of this chapter, we will briefly explain
the algorithm.

The Baum-Welch algorithm is an iterative algorithm, in that it is run repeatedly until a
desired convergence is met. The iterative nature of the algorithm is guaranteed to con-
verge under most circumstances, but that convergence is not necessarily the best solution,

456 32. MARKOV MODELS

IV. DATA MODELING WITH MATLAB

merely a local optimum. To calculate new probability estimates, we need to calculate for-
ward and backward probabilities. These are probabilities at each time step of the model’s
current state given an output sequence. Forward probabilities are calculated working from
the start of the sequence, and backward probabilities are calculated from the end.

αt11;i 5Ei;outðtÞ

�X
j

αt;jTi;j

�

βt;i 5
X
j

βt11;jTj;iEj;outðtÞ

Forward and backward probabilities thus defined, the probability of being in state i at
time t can be calculated as the product of the forward and backward probabilities for state
i and time t, normalized by the total probabilities for all such states at time t.

γt;i 5
αt;iβt;iX
i

αt;iβt;i

To estimate probabilities, we will also need to estimate the probability of transition
between states i and j at time t given the sequence of outputs. This value can be expressed as

ξt;i;j 5
αt;iTi;jβt11;jEj;outðtÞX

i

αt;iβt;i

This probability is the product of (1) the probability of a valid output sequence from the
start state to time step t, (2) the probability of a valid output sequence from the state j to the
end of the model, (3) the transition from state i to state j, and (4) the probability of emitting
the observed value from state j, all normalized by the total probability of all states at time t.

Our new transition probabilities can be estimated by dividing the probability of transi-
tioning between i and j by the probability of being at state i at time t:

T0
i;j 5

X
t

ξt;i;j
X
t

γt;i

Similarly, new emission probabilities can be estimated from the proportion of the prob-
ability of reaching state i when output x was emitted:

E0
i;x 5

X
ftjoutðtÞ5 xg

γt;i
X
t

γt;i

The Statistics Toolbox provides an implementation of the Baum-Welch algorithm as the
function hmmtrain(). We will use this function in the next section.

45732.5 TRAINING AN HMM: THE BAUM-WELCH ALGORITHM

IV. DATA MODELING WITH MATLAB

32.6 A SIMPLE EXAMPLE

As a simple initial illustration, we will demonstrate how to apply HMMs to the auto-
mated annotation of syllables in a large corpus of song. In the domain of syllable classifica-
tion, we will assume that our HMM model states denote the “true” syllable in the
underlying sequence, and the auditory recording is the output sequence. The sequence of
states will then be the annotated sequence of syllables.

To simplify the example here, we will rate syllables using only one metric: duration. A
more rigorous effort would make use of multiple metrics, likely including spectral charac-
teristics of the sound.

We will use the file training-segments.txt, which contains an N3 3 matrix stored as a
text file. Columns 1 and 2 are the start and stop of sound segments that roughly corre-
spond to syllable start and stop times in milliseconds from a common t5 0 point. Column
3 is a number that uniquely groups segments that are in the same bout of song. All rows
with the same value in column 3 we will treat as in the same sequence.

In addition to working only with duration, we will discretize the continuous duration
value into bins of 5 ms each. The Statistics Toolbox function hmmtrain expects either a sin-
gle sequence or a cell array of sequences. For our data, we will supply a cell array of
sequences. The function make_sequences ahead will transform the loaded matrix from
training_segments.m to a cell array. Since the minimum segment size is 30 ms, the values
of 1 and 2 will be used to denote the beginning and end of a sequence respectively.

function seqs5make_sequences(seg_array, max_duration)
% From an Nx3 segment array, this function produces
% a cell array of sequences

seqs5 {};
current_seg5 [];
bouts5unique(seg_array(:,3));
sample5 1;
granularity5 5;
max_duration5max_duration/granularity;
for bout5 1:length(bouts)

in_bout5 find(seg_array(:,3)55bouts(bout));
dur5 seg_array(in_bout,2) - seg_array(in_bout,1);
dur5 floor(dur/granularity);
if max(dur),max_duration

seqs{sample}5 [1 dur' 2];
sample5 sample1 1;

end
end

end

Load the segment timing data and generate sequences. Examine the first sequence.

.. segments5 load('training-segments.txt');

.. seqs5make_sequences(segments, 400);

458 32. MARKOV MODELS

IV. DATA MODELING WITH MATLAB

.. seqs{1}

ans 5

Columns 1 through 30:

1 12 10 10 11 6 10 12 23 21 14 25 21 15 24 21 16 48 15 24
22 16 24 23 15 25 22 15 8 11

Columns 31 through 41:

25 22 15 25 23 16 24 23 16 6 2

The last step before estimating probabilities with hmmtrain is the construction of initial
transition and emission matrices. We could build a feasible model, but in many cases the
Baum-Welch algorithm will find a reasonable set of transition probabilities with random
starting data.

Here, we start with entirely random transition probabilities using a uniform distribu-
tion, and normalize them. hmmtrain expects that the matrix element at T(a,b) is the transi-
tion probability between state a and state b. Likewise, the matrix element at E(a,b) is the
probability of emitting output b at state a.

.. T5 rand(12);

.. normed_T5T./repmat(sum(T,2), 1, 12);

The initial emissions matrix will also be nearly random. Because the sequences have
explicit start and stop values, the initial emissions probabilities will reflect this. The emis-
sions probabilities for rows 1 and 12, corresponding to states 1 and 12, will be set to all
zeros except in columns 1 and 2, which will have values of 1. This sets the probability for
any state but 1 to output a 1 to zero, and the probability for any state but 12 to output a 2
to zero.

.. E5 rand(12,400/5);

.. E(:,1:2)5 0;

.. E(1,:)5 0;

.. E(12,:)5 0;

.. E(1,1)5 1;

.. E(12,2)5 1;

.. E(:,1:6)

ans 5

1.0000 0 0 0 0 0
0 0 0.6744 0.3785 0.9552 0.6392
0 0 0.2424 0.1119 0.6278 0.2518
0 0 0.1684 0.8595 0.8191 0.4199
0 0 0.8611 0.7132 0.1890 0.1718
0 0 0.3266 0.5750 0.7515 0.8845
0 0 0.3252 0.7411 0.2216 0.3410
0 0 0.4002 0.7537 0.4164 0.2051

45932.6 A SIMPLE EXAMPLE

IV. DATA MODELING WITH MATLAB

0 0 0.7635 0.5551 0.7909 0.7954
0 0 0.1641 0.8009 0.4000 0.0245
0 0 0.6883 0.6703 0.0451 0.0398
0 1.0000 0 0 0 0

.. normed_E5E./repmat(sum(E,2), 1, 400/5);

Now, we can invoke hmmtrain and estimate probabilities.

.. [estT, estE]5hmmtrain(seqs, normed_T, normed_E);

.. estT

estT 5

0.5000 0 0.5000 0 0.0000 0.0000 0 0 0 0 0.0000 0
0 0 0 0 0 0 0 1.0000 0 0 0 0
0 0.0000 0.6085 0.1456 0.1500 0.0000 0 0 0.0477 0.0000 0.0481 0
0 0 0.0000 0.0744 0.2843 0 0 0 0.5689 0 0.0000 0.0724
0 0.1008 0.0000 0.0000 0.0000 0.0000 0.0274 0 0.0000 0.0000 0.8718 0
0 0.4870 0.0000 0.2570 0.0104 0 0 0 0.0435 0.0881 0 0.1140
0 0.0000 0.0000 0.0000 0.0000 0 0 0.0000 0.0000 1.0000 0 0.0000
0 0 0 0 0 0.9671 0.0266 0 0 0 0 0.0063
0 0.0000 0.0000 0.0000 0.0570 0.0000 0 0 0.2180 0 0.7250 0.0000
0 0 0 0 0 0.7265 0.2549 0 0 0 0 0.0185
0 0.7401 0.0000 0.0427 0.0000 0 0 0 0.0000 0.2172 0.0000 0
0 0 0 0 0 0 0 0 0 0 0 1.0000

The actual values that hmmtrain produces will depend on the set of starting values. In
this case, the probabilities indicate a fairly straightforward network.

With a viable set of transition and emission probabilities, we can use the Viterbi algo-
rithm to calculate the most probable set of states. For example, the most probable state
sequence for segment sequence 5 indicates that the state sequence 2-8-6 is likely a motif.

.. hmmviterbi(seqs{5},estT, estE)

ans 5

Columns 1 through 30:

1 3 4 9 9 11 2 8 6 2 8 6 2 8 6 4 9 9 11 2 8 6 4 9 11
2 8 6 2 8

Columns 31 through 40:

6 2 8 6 9 11 2 8 6 12

460 32. MARKOV MODELS

IV. DATA MODELING WITH MATLAB

EXERCISE 32.5

Look at the distribution of duration

probabilities for each your states (each row

of estE). Do they make sense? Is it

reasonable to assert that the states corre-

spond to distinct segments?

32.7 PROJECT

The sequential nature of HMMs has been used to locate spike waveforms as an alterna-
tive to threshold-based waveform identification (Herbst et al., 2008). As a project, you will
use an approach similar to that in (Hahnloser et al.), albeit simpler, to extract event times
from an extracellular electrophysiological recording of spontaneous neural activity.

Appropriate neural data can be found in ch32_project_data.mat. The file contains data
sampled at 20 kHz. Each state will approximate a single sample, or .05 ms. The initial
model will have two recurrent loops. The first involves a single recurrent state to handle
noise. The second is the bulk of the model, a 60 state loop to model the shape of the spike
waveform over 1 ms. Thus, state 1 will have two outgoing transitions: one to state 2 and a
recurrent one back to state 1. The remaining states will each have one outgoing transition
to the next state until state 60, which will have an outgoing transition to state 1.

.. RA_T5 zeros(60);

.. RA_T(1,1)5 1.0;

.. RA_T(1:59,2:60)5 eye(59);

.. RA_T(60,1)5 1.0;

.. normed_RA_T5RA_T./repmat(sum(RA_T,1), 60, 1);

To use the HMM functions included in the Statistics Toolbox, the output values must
be discrete. Much like the duration data, the sampled data can be binned. A rescaling of
the signal by a factor of 50 and shifting will allow a reasonable number of bins (320).

When setting initial values for the emission matrix, the values in row 1 (i.e., for state 1)
should be highest around the baseline. To catch the waveform, there should be higher
probabilities for the larger indices (i.e., larger output values, greater signal) for the first
few indices and higher probabilities for smaller indices (lower than baseline) for the next
few indices. The following are feasible choices for the initial emission matrix (remember to
normalize the two matrices!).

.. RA_E5 rand(60,320)/10;

.. RA_E(1,140:180)5 1.0;

.. RA_E(2:7,180:320)5 1.0;

.. RA_E(8:18,1:140)5 1.0;

46132.7 PROJECT

IV. DATA MODELING WITH MATLAB

If hmmtrain runs extremely slowly, it may be best to cut out the 100 samples immedi-
ately around 3-4 different spikes to acquire the waveform in the HMM. If this is done, it
may be necessary to adjust the emission probability distribution for state 1. Setting this to
a normal distribution centered on the baseline after the training process might be neces-
sary for the Viterbi algorithm to work properly.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

hmmtrain
hmmviterbi

462 32. MARKOV MODELS

C H A P T E R

33

Modeling Spike Trains
as a Poisson Process

33.1 GOALS OF THIS CHAPTER

This chapter focuses on point process models for characterizing and simulating trains
of actions potentials generated by neurons. Initially, a simple homogeneous Poisson pro-
cess model will be introduced to capture fundamental characteristics. Models with greater
sophistication will be introduced to incorporate more complex activity, such as refractory
periods and bursting.

33.2 BACKGROUND

Often when attempting to characterize extracellular activity, plausible values for simu-
lating the underlying intracellular phenomena driving the activity are not available. In
such cases, a stochastic description of the observed activity can be a useful model for the
event train produced by the cell.

Consider the spike train in Figure 33.1. How can the sequence of neural events be char-
acterized? A very simple characterization is the mean event rate per unit time. In this case,
that value is 11.3 ips. This value has the advantage of being a scalar: easily computed and
easily manipulated. However, reducing all the activity in a spike train to a single number
discards any temporal structure in the events.

Still, even a simple characterization can lead to useful insights. If we choose a temporal
interval substantially smaller than the mean rate, we can treat the mean rate as an event
probability during that event. Such a model, with discrete intervals of time, is described
by a Bernoulli process.

463MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00033-3 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00033-3

33.3 THE BERNOULLI PROCESS: EVENTS IN DISCRETE TIME

A Bernoulli process generates a sequence of event times corresponding to positive events
from a series of Bernoulli trials. However, in a Bernoulli process, time is measured discretely,
so that the event “time” is the index of the corresponding discrete time interval. Each discrete
interval corresponds to a Bernoulli trial with probability p of success or 12 p of failure. For
example, taking heads as a success, a sequence of coin tosses in which the time intervals of
the successful (i.e., heads) tosses are noted constitutes a Bernoulli process.

Taking each time interval as a trial, we can treat the simple model just described as a
Bernoulli process.

EXERCISE 33.1

Use a Bernoulli process to simulate a

spike train from the mean activity rate for

the spike train in Figure 33.1. Take the

mean rate of 11.3 ips, and use a time slice of

1 ms. Generate a 20 s train (i.e., 20,000 time

slices). Treat each time slice as a Bernoulli

random variable with a small probability of

a neural event. The p value (probability of

an event) should be chosen so that the

mean successes over 1000 trials equals the

mean rate, or Np5 11.3 events, where N is

the number of time slices in one second. A

success will correspond to a neural event

occurring during the time slice. To pick a

8000

6000

4000

2000

–2000

–4000

–6000

–8000
0 2 4 6 8 10

Time, in seconds

12 14 16 18 20

0

FIGURE 33.1 An extracellularly recorded spike train.

464 33. MODELING SPIKE TRAINS AS A POISSON PROCESS

IV. DATA MODELING WITH MATLAB

uniform random number between 0 and 1,

rand can be used:

.. rand

ans 5

0.1270

.. rand(2,2)

ans 5

0.9134 0.0975

0.6324 0.2785

Unfortunately, the Bernoulli process falls short in some important ways. Most importantly,
as mentioned earlier, the Bernoulli process is discrete: a consequence of this is that the event
times are no more precise than the time interval. Looking at a distribution of the interspike
intervals with a bin size smaller than the time interval used for the Bernoulli process illus-
trates this quite clearly. Fortunately, there is an analogous process for continuous time: the
Poisson process. Exploring the Poisson process will be the focus of the next section.

33.4 THE POISSON PROCESS: EVENTS IN CONTINUOUS TIME

Like the Bernoulli process, a Poisson process is a counting process (i.e., the event count
increases with increasing time), but instead of counting discrete events, a Poisson process
describes events in continuous time.

A Poisson process adheres to the following criteria:

1. Event counts in disjoint intervals are statistically independent, and depend only on the
size of the interval.

2. No two events occur simultaneously.

From these simple properties, the form of the Poisson distribution can be derived.
Below is the probability mass function for the Poisson distribution.

Pðx5 kÞ5 λk

k!
e2λ

A Poisson distribution is parameterized by a single value, lambda. Lambda is often
interpreted as the rate of success. This interpretation falls out of the expectation of the
distribution.

E X½ �5
XN
x50

x
λx

x!
e2λ

E X½ �5 e2λ
XN
x50

x
λx

x!

E X½ �5 e2λ 01
XN
x51

λx

ðx2 1Þ!

" #

46533.4 THE POISSON PROCESS: EVENTS IN CONTINUOUS TIME

IV. DATA MODELING WITH MATLAB

E X½ �5 e2λ
XN
x50

λx11

x!

E X½ �5 e2λ
XN
x50

λ
λx

x!

E X½ �5λe2λ
XN
k50

λx

x!

The term on the far right hand side is the Taylor expansion at 0 for eλ, which when mul-
tiplied by the adjacent e2λ cancels, leaving

E½X�5λðe2λÞðeλÞ5λ

as the expectation. In other words, the mean event count of a Poisson distribution with
value lambda is lambda. The parameter lambda can also be interpreted as the mean event
count over an interval T, for which λ can be written as λ5 rT. When expressed as the
mean event count over an interval of length T, r represents the mean event count per unit
interval. Thus, for an interval T0 5 2T, the corresponding lambda λ0 is 2λ.

From the criteria above, the distribution of time intervals between events can be shown
to follow an exponential distribution. Unlike the Poisson distribution of event counts, the
exponential distribution is a continuous distribution, with probability density function
(PDF) instead of a probability mass function. Here is the PDF for an exponential distribu-
tion with parameter λ:

fðx;λÞ5λe2λx; x$ 0

EXERCISE 33.2

Demonstrate that the variance of the

Poisson distribution is the same as the

mean, λ. Demonstrate that the mean of the

exponential distribution is 1=λ.

It should be noted that while the distribution of time intervals between consecutive events
follows an exponential distribution, the distribution of event times follows a uniform distribu-
tion. This implies that any one event is no more probable at one time than any other.

33.4.1 Simulating an Event Train Using a Poisson Model

Here, we will introduce two approaches for simulating an event train with a Poisson
model. A simple approach is to draw intervals between consecutive events from an expo-
nential distribution. This approach works quite well when needing to generate consecutive
events without an explicit time bound.

466 33. MODELING SPIKE TRAINS AS A POISSON PROCESS

IV. DATA MODELING WITH MATLAB

Alternatively, one can use a different approach if working with a fixed time bound.
Building on the principle that event times are uniformly distributed, one can draw a sam-
ple event count for the interval from an appropriate Poisson distribution, and then draw
times for each event by picking from an appropriate random distribution for each event.

1. Take an interval T and a rate r
2. Draw a sample event count N for interval T from a Poisson distribution with parameter

λ5Tr
3. Draw N times, t1, t2, t3, . . . tN, from a uniform distribution ranging from 0 to T
4. Return t1, t2, t3, . . . tN as the event times.

33.4.2 Picking Poisson and Exponentially Distributed Values

In most cases, the Statistics Toolbox will be available. The Statistics Toolbox offers a wide
selection of functions to calculate probability density functions, cumulative distribution func-
tions, inverse cumulative distribution functions, and generate random variables. Naming con-
ventions for various distributions typically add a suffix denoting the type of calculation, such
as cumulative distribution function or random variable generation, to an abbreviated name of
the distribution. For example, here are functions for the Poisson distribution:

poissrnd—Poisson distributed random variables
poisspdf—Poisson probability density function
poisscdf—Poisson cumulative distribution function
poissinv—inverse Poisson cumulative distribution function

EXERCISE 33.3

Demonstrate that both methods of gener-

ating event trains produce similarly distrib-

uted values. For each method, generate at

least 5 minutes of event data for a cell with

a mean rate of 10 ips. Compare empirical

distributions of ISI and event counts per

second. The Statistics Toolbox provides the

functions poissrnd, exprnd, and unifrnd to

draw from Poisson, exponential, and uni-

form distributions respectively.

(If the Statistics Toolbox is not available, see the next section for alternatives.)

33.5 PICKING RANDOM VARIABLES WITHOUT THE
STATISTICS TOOLBOX

If the Statistics Toolbox is not available, there are a number of methods for drawing
exponential and Poisson distributed random variables using only a uniformly distributed
random variable between 0 and 1. The MATLAB® function rand, introduced earlier, is not
part of the Statistics Toolbox and should be available under even a basic installation.

46733.5 PICKING RANDOM VARIABLES WITHOUT THE STATISTICS TOOLBOX

IV. DATA MODELING WITH MATLAB

33.5.1 Exponential Distributions

A simple method for generating values with an exponential distribution, the inversion
method, relies on the uncomplicated form of the inverse of the cumulative probability func-
tion. For a given value of a random variable, the cumulative probability function returns the
probability that a random variable will be less than the given value. The cumulative probabil-
ity function is calculated from the probability density function f(x) through the integral

FðxÞ5
ðx

2N

fðtÞdt

The cumulative probability function maps a value of the distribution to a probability.
The inverse of the cumulative probability function maps a probability to a corresponding
random variable in the distribution. With an inverse cumulative probability function and
a uniform distribution from 0 to 1, we can generate exponentially distributed values (this
is actually valid for any inverse cumulative probability function).

The inverse cumulative function takes the form

X52
lnU

λ
where U is uniformly distributed over 0. . .1.

EXERCISE 33.4

Derive the inverse cumulative probabil-

ity function from the probability density

function. Hint: the quantity 12U, where U

is a uniformly distributed random variable

from 0. . .1, is itself also a uniformly distrib-

uted random variable from 0. . .1.

To generate the next event time for a Poisson process with parameter λ:

1. Select a random value, U, uniformly distributed from 0. . .1
2. Calculate Δt52(ln U)/λ (This is the interval between events, not the event time itself!)
3. Return event time tn5 tn211Δt

The following MATLAB function implements the above algorithm, generating a valid
time for the next event given a lambda value and the time of the previous event.

function t 5 next_event(lambda, event)
U 5 rand;
dt 5 -log(U)/lambda;
t 5 event1 dt;

end

468 33. MODELING SPIKE TRAINS AS A POISSON PROCESS

IV. DATA MODELING WITH MATLAB

33.5.2 Poisson Distributions

If a viable generator for exponentially distributed variates is available, successive expo-
nential values can be generated until the combined time exceeds the interval over which a
Poisson trial is needed. Then, the Poisson success count is the number of exponential vari-
ables whose summed time is less than the interval.

1. Start with parameter lambda, λ, the interval T
2. Let T0, the cumulative time, and N, the event count, be set to 0
3. Select t, an exponentially distributed interval with parameter λ
4. If T0 1 t.T, return N as the number of events in the interval
5. T0 5T0 1 t
6. N5N1 1

The inversion method (i.e., using the inverse cumulative distribution) can also be used
with the Poisson distribution. Since the Poisson distribution is discrete, we do not neces-
sarily need to derive the inverse cumulative distribution in closed form to attain accurate
results.

1. Select a value U from a uniform random distribution over 0. . .1
2. Let k, the number of Poisson successes, and P, the cumulative probability, both be set to

0
3. Calculate pi5

λk

k!
e2λ

4. P5P1 pi
5. If P exceeds U, return k as the number of successes in the trial
6. If P does not exceed U, increment k and return to step 3.

EXERCISE 33.5

Write a MATLAB function that accepts

two parameters, a time interval T and a

lambda value λ, and returns a scalar event

count and a vector of event times for events

randomly generated from appropriate

Poisson/exponential distributions. Use only

rand to generate random values.

33.6 NON-HOMOGENEOUS POISSON PROCESSES: TIME-
VARYING RATES OF ACTIVITY

In the formulation of the Poisson process, we have thus far limited our discussion to
those processes having a constant mean rate of events, represented as a constant parame-
ter λ. Such Poisson processes are termed homogeneous. To capture fluctuations in rate, we
can generalize the λ of the Poisson process to a time-varying function. Processes in which
lambda varies with time are called non-homogeneous.

The non-homogenous Poisson process provides a convenient extension of our
existing model to handle time-varying rates. Fortunately, generating variates for the

46933.6 NON-HOMOGENEOUS POISSON PROCESSES: TIME-VARYING RATES OF ACTIVITY

IV. DATA MODELING WITH MATLAB

non-homogeneous Poisson process does not require substantial additional complexity
beyond our existing methods.

A fairly straightforward approach to event-time generation is an application of the
acceptance-rejection approach, in which a number of possible event times are generated
and then pruned (von Neumann, 1951). In the case of a non-homogeneous Poisson func-
tion, we can generate event times using an appropriate homogeneous Poisson process
with constant λ, then eliminate a proportion of the events, depending on the relationship
between λ and λ(t) at the given time t.

1. Select a constant λc such that λc $λðtÞ for all t. This is the constant rate that will be used
in a homogeneous Poisson process to generate events. Because we will generate excess
events and then prune them, the constant rate must exceed the time-varying rate at all
time points.

2. Generate the next event time t using the constant rate λc.
3. Determine the time-varying rate at time t from λðtÞ.
4. Accept the next event time t with probability λðtÞ=λc (i.e., pick a value v from a uniform

distribution 0. . .1—if v exceeds λðtÞ=λc, then the event time must be discarded).
5. If not accepted, return to step 2 and generate a new potential event time. Otherwise,

return the event time t.

EXERCISE 33.6

In the web site repository, you can find

the file MT.mat, which represents the

responses of a neuron in visual area MT.

Cells were exposed to a stimulus paradigm

which incorporated 4 seconds of idle activ-

ity, after which a visually relevant stimulus

was presented for 500 ms. Formulate a

plausible lambda function λ(t) and simulate

additional spike trains. A simple approach

to estimating λ(t) is to construct a piece-

wise function consisting of mean rates in

each of the three time regimes (pre-presen-

tation, presentation, post-presentation).

Compare to the spike train in MT.mat.

Up until now, we have not addressed refraction or burstiness. We can further general-
ize our time-varying lambda to a conditional lambda, λðtjθÞ, where θ represents a parame-
terization of the lambda value. Creating an intensity function conditional on having
proximity to the most recent event allows incorporation of the refractory period into our
model. For example, we could define λðtjθÞ to return 0 for values of t less than the refrac-
tory period immediately following an event.

Alternatively, we could estimate λðtjθÞ from the cell itself. To do this, we will calculate
the ISI distribution. Once the ISI distribution is obtained, this can be used to estimate the
intensity for an offset t from the most recent spike.

470 33. MODELING SPIKE TRAINS AS A POISSON PROCESS

IV. DATA MODELING WITH MATLAB

33.7 PROJECT

In the web site repository, you will find the file RA_test.mat, which contains a full sig-
nal of spontaneous neural activity from area RA, a motor nucleus in the birdsong system.
Identify the locations of neural events. (Hints: Use a relational operator to obtain a 1 or 0
signal, with a 1 reserved for periods where a threshold is exceeded. Use diff to identify
only the transitions across the threshold. Use find to locate the indices corresponding to
the transitions.)

From the event times, create an ISI histogram and estimate the ISI distribution. From
the ISI estimate, obtain an appropriate λðtjθÞ that accounts for the refractory period.
Generate sample event trains and compare to the original data file.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

rand
poissrnd
exprnd
unifnd

471MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

IV. DATA MODELING WITH MATLAB

C H A P T E R

34

Exploring the Wilson-Cowan
Equations

34.1 GOAL OF THIS CHAPTER

In this chapter, we will continue to apply phase plane analysis to a model of two
interacting neuronal populations, an excitatory and an inhibitory population known as the
Wilson-Cowan (W-C) equations. Rather than relying on the pplane7 program used in
Chapter 15, “Exploring the Fitzhugh-Nagumo Model,” we will apply the knowledge
gained thus far to write our own rudimentary phase plane code for nonlinear systems. It
is highly recommended that Chapter 14, “Introduction to Phase Plane Analysis,” be com-
pleted prior to beginning this chapter.

34.2 BACKGROUND

Understanding the interplay between populations of neurons can be incredibly difficult
because of the vast number of dynamic variables inherent in the problem. For example,
suppose that one wants to model a population of 100 excitatory neurons and 100 inhibi-
tory neurons all interconnected to each other. One possible method to proceed is to model
each individual neuron; for example, by using the Hodgkin-Huxley formalism (see
Chapter 27, “Modeling a Single Neuron”), and then connecting the neurons together in
some fashion to form interacting populations. This method is the essence behind biophysi-
cal models often seen in current literature. One drawback of this method is the necessary
computational power required to simultaneously solve the hundreds of coupled differen-
tial equations that result from treating each neuron individually as a complicated nonlin-
ear dynamical system. From this perspective, it would be advantageous to have a model
that describes the evolution of the average activity of an entire population of excitatory
neurons and couples this to the dynamics of the average activity of an entire inhibitory

473MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00034-5 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00034-5

population, thereby reducing the system down from hundreds of dynamical variables to
just two. Additionally, such a simple system would be amenable to phase plane analysis,
making it much easier to predict the behavior of such a complicated network of intercon-
nected neurons.

34.3 THE MODEL

The most famous population-based dynamical model is the Wilson-Cowan (W-C)
model (Wilson and Cowan, 1972). The basic dynamical variables of this model are E, the
fraction of neurons in the excitatory population which are currently active, and I, the frac-
tion of active inhibitory neurons within the population. The equations governing the inter-
action between these variables are

dE

dt
52αE1 ð12EÞ � fðsEÞ

dI

dt
52αI1 ð12 IÞ � fðsIÞ;

where α is the time constant for the decrease in activity in a population with no input
current to the population to sustain activity, sE and sI are the input current to the excitatory
and inhibitory populations respectively, and f is the gain function of the system. A detailed
derivation of these equations requiring the temporal coarse-graining of a set of integro-
differential equations can be found in the original paper by Wilson and Cowan (1972); how-
ever, a heuristic understanding of the final results can be appreciated as follows.

In the absence of any input current to a population the total amount of activity in that
population will decay to 0 with rate alpha. This idea is captured by the first term of the
W-C equations. If there is an external source of current driving a population, then the pop-
ulation activity level will increase at a rate that depends upon the fraction of neurons
within the population that are sensitive to incoming current, and therefore not already
active (represented by the 12E and 12 I factors), that are receiving above threshold exci-
tation by the total input current to that population (represented by the f(sE) and f(sI)
factors).

If we consider the input current to the excitatory population in more detail, then we
realize that there are three main sources of current input into the excitatory population:
action potentials from excitatory neurons to other excitatory neurons within the same pop-
ulation, action potentials from neurons within the inhibitory population synapsing onto
neurons of the excitatory population, and current from neurons or external sources outside
either neuronal population. A similar set of arguments applies to the total current entering
the inhibitory population, and so we can express the total input currents as a sum from
these three sources as

sE 5WEE
� E2WEI

� I1 hE

sI 5WIE
� E2WII

� I1 hI:

474 34. EXPLORING THE WILSON-COWAN EQUATIONS

IV. DATA MODELING WITH MATLAB

The various Wxy constants represent the strength of synaptic contacts between neurons
in the two different populations; so for instance, WEI represents how strongly the inhibi-
tory neurons synapse onto the excitatory ones.

Note that the form of these current equations makes sense because the amount of cur-
rent provided to the excitatory population from other neurons within the same population,
sE, should be proportional to the amount of activity within the population. In other words,
if the excitatory population is completely inactive and E is 0, then there should be no con-
tribution to sE from the excitatory population.

The only part of the equations left to specify is the gain function, f. Since the fraction of
active neurons within a population cannot exceed 100%, the gain function should asymp-
totically approach 1 for large input currents. Similarly, there can never be less than zero
active neurons within a population, so f should asymptotically approach 0 for negative
total input currents. For intermediate amounts of input current, the gain function should
monotonically increase from 0 to 1 as the input current is increased. A set of mathematical
functions that obey these rules are called sigmoidal functions. The most common sigmoidal
functions are the hyperbolic tangent function (tanh), the error function (erf), and the
Boltzmann sigmoid function.

34.4 EXERCISES

Let’s plot an example sigmoidal function, in particular, the tanh function. In order
to ensure that this function saturates at 0 and 1 as discussed above, it must be shifted
and scaled. Type the following at the command prompt to produce the appropriate
function.

.. x5 -5:0.1:5;

.. y5 0.5*(11 tanh(x));

.. plot(x,y);

Similarly, we can plot a scaled, shifted error function (erf) in MATLAB® as follows:

.. x5 -5:0.1:5;

.. y5 0.5*(11 erf(x));

.. plot(x,y);

If you plot the two functions together, you can see that they are not equivalent (as
shown in Figure 34.1).

The tanh function rises more steeply towards 1 than the erf function, indicating that the
response of a population with the tanh gain function has a higher level of activation for
the same total input current than another population whose gain function is described by
the erf function. In general, one can modify the W-C equations to allow for different sig-
moidal gain functions for the two populations.

In the projects that follow, we will use yet another gain function closely related to the
tanh function. Rather than rescaling and shifting the tanh function, we will multiply it by
the Heaviside step function. Although there is a Heaviside step function command in

47534.4 EXERCISES

IV. DATA MODELING WITH MATLAB

MATLAB, it does not return a number if the argument is 0; so the easiest way to generate
this gain function is with the following command:

.. y5 tanh(x)*(x. 0);

Plot this function alongside the other gain functions and compare them.

34.5 PROJECTS

In order to write our own version of pplane8, a function we’ll call nonlin_phase_plane,
we are going to rely upon several already completed projects, and a new MATLAB data
structure called a cell array. The general layout of our function will parallel the function
phase_plane written in Chapter 14, “Introduction to Phase Plane Analysis.” A sketch of
this function is shown ahead.

function stable5phase_plane(A, init)

%Determine nullclines of the linear system described by the matrix A
x5 -5:0.1:5;
x_null5 -1*A(1,2)/A(1,1)*x;
y_null5 -1*A(2,1)/A(2,2)*x;

%Determine stability of fixed point of system which depends upon the eigenvalues of A.
%Note that for a linear system there is only one fixed at the origin.
eigvals5 eig(A);
stable5 classify_fixed_pts(eigvals);

–5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
tahh
erf

FIGURE 34.1 tanh and erf functions plotted in MATLAB.

476 34. EXPLORING THE WILSON-COWAN EQUATIONS

IV. DATA MODELING WITH MATLAB

%Determine the vector fields for the phase plane
x5 -5:0.1:5;
y5 x;
[X, Y]5meshgrid(x,y);
F5A(1,1)*X1A(1,2)*Y;
G5A(2,1)*X1A(2,2)*Y;

%Determine a trajectory from an initial condition using rk4 see Chapter 19,
%“Voltage-Gated Ion Channels
trajectory5 rk4(necessary input arguments);

%Plot everything including nullclines, vector field (using the quiver command), and
the trajectory.

Updating this code to be able to handle nonlinear systems such as the W-C system
requires several modifications, which we will now consider. The first part of phase_plane
determines the nullclines based on the matrix A. In the nonlinear case, the nullclines are
described by the curves where the derivatives are zero, so for the general nonlinear system

dx

dt
5 fðx; yÞ

dy

dt
5 gðx; yÞ

The x- and y-nullclines are the curves defined by f5 0 and g5 0, respectively. In order
to make our nonlin_phase_plane generic enough to handle different nonlinear systems,
we will employ the feval command and a function handle to call upon another function to
determine the nullclines. Since the nullclines are no longer linear, they may intersect
never, once, or more than once, producing a variable number of fixed points. Therefore,
unlike in the linear case, nonlin_phase_plane will also have to determine where the null-
clines intersect, and potentially analyze the stability of multiple fixed points.

Another crucial difference in analyzing the stability of fixed points for nonlinear
systems is that the Jacobian of the system must be determined and evaluated at each
fixed point in order to classify its stability (for a refresher, see Chapter 15, “Exploring
the Fitzhugh-Nagumo Model”). Since different nonlinear systems will have different
Jacobians, another function handle will be needed here. Depending upon how you
write your code, there may be more function handles needed to keep nonlin_phase_-
plane generic enough to handle multiple nonlinear systems.

Obviously, these various function handles must be passed into nonlin_phase_plane
as input arguments, but in order to keep the total number of input arguments to non-
lin_phase_plane at a minimum, we can create a cell array input where each element
of the array is a function handle. Cell arrays are MATLAB’s way of grouping dissimi-
lar data structures such as character strings of different lengths or certain data types
such as function handles. Working with cell arrays is similar to working with arrays
that hold other data types, except that the syntax for cell arrays uses the curly bracket

47734.5 PROJECTS

IV. DATA MODELING WITH MATLAB

symbols instead of the square bracket ones. For instance, the following line of code
creates a cell array with four elements, each a function handle:

.. system_file5 {@WCnullclines, @calculate_Jacobian, @WC_determ, @WC_plot};

You can also construct a cell array by using the cell command. The syntax would be as
follows:

.. system_file5 cell(1,4);

.. system_file{1}5@WCnullclines; %etc.

Accessing the first element of the cell array for use with the feval command would look
something like this:

.. feval(system_file{1}, input_args_to_WCnullclines);

A general sketch of the code for nonlin_phase_plane is shown below. Feel free to use it
as a guide when writing your own phase plane analysis code.

function [x0, y0, net_act]5nonlin_phase_plane(system_file, params, init, t, x, y)
%function [x0, y0, net_act]5nonlin_phase_plane(system_file, params, init, t, x, y)
%The input arguments are
%1) system_file is a cell array where each element of the array is a function
%handle. The first function handle calls a function for plotting the
%nullclines of the system. The second calls a function to determine the
%Jacobian of the system. The third calls a function containing the differential
%equations that define the system and are used to determine the vector
%field of the phase plane. The last function handle calls a function to
%control plotting the system. Example,
%system_file5 {@WCnullclines, @calculate_Jacobian, @WC_determ, @WC_plot};
%2) params contains all parameters needed by the system. Example for WC system,
%params5 [W_EE, W_EI, W_IE, W_II, h_E, h_I, alpha];
%3) init contains the initial condition of the system for calculating
%trajectories. Example,
%init5 [0.1 0];
%4) Contains the time interval that the trajectory should be simulated for.
%t5 0:0.01:500;
%5&6) The last two arguments specify the spacing of the vector fields on the
%phase plane in the x and y-directions. Example,
%x5 0:0.1:1;
%y5 x;

%Determine nullclines for the system
[Enull, Inull, vec]5 feval(system_file{1}, params);

%Find fixed points where nullclines intersect.
[x0,y0]5 intersections(vec,Enull,Inull,vec);

478 34. EXPLORING THE WILSON-COWAN EQUATIONS

IV. DATA MODELING WITH MATLAB

%Determine the stability of the fixed points by calculating
%the Jacobian and evaluating it at each fixed point.

stable5 cell(1, length(x0));
for k5 1:length(x0)
%Returns the Jacobian, J, evaluated at the k-th fixed point
J5 feval(system_file{2}, x0(k), y0(k), params);
%Find eigenvalues and eigenvectors of Jacobian
eigvals5 eig(J);

%Classify fixed point based on eigenvalues of J
stable{k}5 classify_fxd_point(eigvals);

end;

%Determine the vector field for the phase plane.
lx5 length(x);
ly5 length(y);
u5 zeros(lx, ly);
v5u;
for ii5 1:lx

for jj5 1:ly
point5 [x(ii), y(jj)];
%Determine x and y component of vector field
sol5 feval(system_file{3}, point, params);
u(ii,jj)5 sol(1);
v(ii,jj)5 sol(2);

end;
end;
[X, Y]5meshgrid(x, y);

%Find trajectories and plot them.
%Use 4th order Runge-Kutta to simulate system.
net_act5 rk4(system_file{3}, init, params, t);

%Handle details of plotting the phase plane for the particular system in
%question.
feval(system_file{4}, vec, Enull, Inull, x0, y0, stable, X, Y, u, v, net_act, t);

1. Use the sketch above while writing the necessary supporting functions to create your
own version of pplane8.

2. Create functions to handle the W-C system nullclines, Jacobians, and vector fields.
Study the phase plane under the following conditions:

For all three parameter sets we will fix α5 0.1, and the initial condition will be
(Eo, Io)5 (0.1, 0).
a. W_EE5W_IE5 0.5, W_EI5W_II5 0.3, h_E5h_I5 0.001.
b. W_EE5W_IE5W_II5 1, W_EI5 1.6, h_E5 0.325, h_I5 0.175.
c. W_EE5W_IE5W_EI5 1.2, W_II5 0.8, h_E5 0.1, h_I5 0.001.

47934.5 PROJECTS

IV. DATA MODELING WITH MATLAB

What type of fixed points do each of these parameter sets exhibit? Based on these
findings is it possible that synaptic plasticity could drive a population of neurons to
produce periodic activity in the population average?

3. Create the system files necessary for the F-N model studied in Chapter 15, “Exploring
the Fitzhugh-Nagumo Model,” and compare results to those obtained with pplane8.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

tanh()
erf()
cell()

480 34. EXPLORING THE WILSON-COWAN EQUATIONS

IV. DATA MODELING WITH MATLAB

C H A P T E R

35

Neural Networks as Forest Fires:
Stochastic Neurodynamics

35.1 GOALS OF THIS CHAPTER

The purpose of this chapter is to familiarize you with simulating a stochastic process.
We will be modeling a large-scale network of firing neurons through the analogy of forest
fires. In the process, you will become more adept at using convolutions and creating
movies of neural population dynamics.

35.2 BACKGROUND

The brain is made up of approximately 33 1010 neurons, each supporting up to 104 syn-
aptic connections. Even after allowing for the specializations of neural circuitry that must
exist to achieve coordinated activity, it is remarkable that such activity is not completely
random. It seems reasonable, however, that large-scale neocortical activity has some ran-
dom component, and thus its appropriate representation must be probabilistic. In creating
a large-scale model of neuronal population dynamics that includes this probabilistic
nature, we can use the analogy of a well-studied stochastic model of forest fires.

There exists a close correspondence between the dynamics and properties of large net-
works of spiking neurons and that of forest fires. In 1990, Bak, Chen, and Tang introduced
the forest fire model, a probabilistic cellular automaton defined on a lattice. Each lattice site
is occupied by either a green tree, a burning tree, or a burnt tree. The state of the system is
updated by the following rules: (1) a burning tree becomes a burnt tree with probability 1;
(2) a burnt tree grows into a green tree with probability p; (3) a green tree becomes a burning
tree if at least one of its neighbors is burning, or if it is hit by lightning (with probability f.)

Just as a forest contains green, burning, or burnt trees, neural networks contain quies-
cent, active, or refractory neurons. When the membrane voltage V(t) of a neuron is above

481MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00035-7 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00035-7

its resting potential (typically around 260 mV) and below the threshold potential
(around 240 mV), the neuron is said to be in the quiescent state. It can be excited, just as
a green tree can be ignited. When the membrane potential of the neuron exceeds the
threshold, the neuron is active, and the membrane potential spikes to a large positive
value for about a millisecond. Immediately afterwards, the neuron enters a refractory
state, during which the membrane potential of the neuron is hyperpolarized. With a
characteristic time constant determined by the membrane properties, the membrane
potential returns to the resting potential and thus the neuron can return to the quiescent
state (see Figure 35.1).

Models of neuronal activity, both as standard forest fires as well as networks of
integrate-and-fire neurons, are capable of displaying a variety of interesting behavior.
These include long-range (power law) temporal correlations in the inter-spike interval his-
tograms, stochastic resonance in the noise-driven appearance of spirals of neural activity,
and traveling waves.

35.2.1 Neural Analysis

The key conjecture (introduced by Bak, Chen, and Tang (1990) and elaborated by
Drossel and Schwabl (1992)) is that in the limit p - 0, f/p - 0 the dynamics of the forest
fire become critical. In words, the first condition says that the state is critical as long as
trees grow slowly, and the second condition guarantees that a lightning strike will
destroy a large number of trees. A critical state of a driven dynamical system is one in
which interactions between all its elements occur so that correlations develop at all
length scales in the system. Such a state is marginally stable and can support large fluc-
tuations. In the forest fire, this means that power law distributions of such quantities as
the size of clusters of burning trees would develop as the forest dynamics tend to the
critical limit.

–60 mV

40 mV

~I ms

a

q r

(A) (B)

FIGURE 35.1 A. The membrane potential of a typical spiking neuron. When the membrane potential of the
neuron is at or above its resting potential (dotted line) and below the threshold potential, the neuron is quiescent
(green). After the neuron fires the action potential (red), the neuron enters a refractory state (black), during which
the membrane potential of the neuron is less than the membrane potential. B. A neuron cycles through these
states with time, given its membrane properties and input from connecting neurons (dotted lines indicate transi-
tions that can occur with inhibitory input to the neuron).

482 35. NEURAL NETWORKS AS FOREST FIRES: STOCHASTIC NEURODYNAMICS

IV. DATA MODELING WITH MATLAB

In a neural network, 1/p is interpreted as the mean time it takes for a refractory neuron
to recover sensitivity, and thus return to the quiescent state, while 1/f is the mean time
between spontaneous activations of a neuron (produced, for example, by noise). An analy-
sis in the context of stochastic neurodynamics was carried out by Buice and Cowan (2007).
At first, we will consider a network of these simplified stochastic neurons that are con-
nected in a very simple way, having either nearest neighbor or next-to-nearest neighbor
excitatory connections.

35.3 EXERCISES

Our goal is to create a movie of the activity of an N3N array of neurons for T time
frames, i.e., the spatiotemporal dynamics of the neurons will be modeled in an N3N3T
matrix. Each pixel of the movie will either be green, red, or black to represent a neuron at
that site and time in the quiescent, active, or refractory state, respectively. We begin by
writing a function called ForestFireModel that will generate an avi file of the forest fire
simulation that can be viewed outside of MATLAB® and that will take the following
inputs: T, the number of iterations (time); p, the growth rate; f, the probability of spontane-
ous ignition; N, the lattice size; th, the threshold value. Furthermore, we will have the
input BC to be able to set the boundary conditions for our simulation to be either free or
periodic, and finally the input conn to be either 1 for nearest neighbor or 2 for next-to-
nearest neighbor connectivity. This is a simple approach, without going so far as to design
a GUI interface, to create a modeling environment in which you have numerous para-
meters that you may want to alter.

The downside to so many parameters, though, is that it could be inconvenient to popu-
late them all of the time. Therefore it is useful to include a series of nargin statements at
the top of our ForestFireModel function, providing a default set of parameters. Inside a
function, nargin indicates how many input arguments have been given in the function
call. We will use this to encode a good, working set of default parameters, and further-
more allow the function to be called without argument for convenience. Note the order in
which these parameters are given.

function Forest5 ForestFireModel(T,p,f,N,th,BC,conn)
% This function simulates a neural network as a forest fires

if nargin, 7, conn5 2; end %connectivity (1 nn, 2 nnn)
if nargin, 6, BC5 'periodic'; end %Boundary Cond. ('free' or 'periodic')
if nargin, 5, th5 .1; end %threshold
if nargin, 4, N5 64; end %lattice size
if nargin, 3, f5 2e-4; end %prob of spontaneous ignition
if nargin, 2, p5 .1; end %growth rate
if nargin, 1, T5 100; end %number of iterations (time)

mov5 avifile('Forest.avi'); %initialize the movie file that will be created

48335.3 EXERCISES

IV. DATA MODELING WITH MATLAB

We are going to assign numerical values to the three possible states of the neuron:

%a: 1 ,-- active state
%q: 0 ,-- quiescent state
%r: 100 ,-- refractory state

Next, we create our initial “forest,” F, of neurons, an N3N matrix. The command rand(N)
creates an N3N matrix of numbers uniformly distributed between 0 and 1, so rand(N), 0.4
creates a N3N matrix of 0s and 1s with a site being populated by 1 with a probability of 0.4.
We can multiply this by 100 to make this a matrix of 0s and 100s—a forest with mainly quies-
cent trees (0s) and about 40% in the refractory state (100 s):

%% initial conditions
F5 100*(rand(N), 0.4); %initialize forest with trees (q and r) here and there

%N*N matrix of 0's and 100's randomly placed

The connectivity matrix gives the weight of the connections of a given neuron to its
neighbors. The center of the matrix is the location of the source neuron, and it will thus
have a value of zero since we do not want to model self-stimulation. The weight of the
connection to a cell is proportional to the distance from the source neuron. Here we use
another MATLAB control structure, the switch/case statements:

%% ------------------------------
%% connectivity array
%% ------------------------------
switch conn
%% Nearest neighbor interactions

case 1
W5 [0 1 0; 1 0 1; 0 1 0];

%% Next-nearest neighbor interactions
case 2

W5 [0 0 1 0 0; 0 sqrt(2) 2 sqrt(2) 0; ...
1 2 0 2 1; 0 sqrt(2) 2 sqrt(2) 0; 0 0 1 0 0];

W5W/sum(sum(W)); %normalize for a net
end
%% ---end connectivity array -----

We are now ready for the main loop of the simulation. This will use the built-in conv2
function for free boundary conditions, and the conv2_periodic.m function introduced in
Chapter 16, “Convolution,” for the periodic boundary conditions.

%% -------------------------------
%% main loop
%% -------------------------------
for ii5 1:T

Ac5 (F55 1); %id's active fires in previous timestep
Qu5 (F55 0); %id's quiescent trees in previous timestep
Rs5 (F55 100); %id's refractive trees in previous timestep

484 35. NEURAL NETWORKS AS FOREST FIRES: STOCHASTIC NEURODYNAMICS

IV. DATA MODELING WITH MATLAB

if length(BC)55 4 %free
CoA5 conv2(double(Ac), W, 'same'); %convolve fires w/ connectivity array

elseif length(BC)55 8 %periodic
CoA5 conv2_periodic(Ac,W);

end

At this point we have defined three identifying matrices, Ac, Qu, and Rs, that are
N3N matrices of 0s taking on the value of 1 only if that neuron is in the active, quiescent,
or refractory state respectively. We have also created a matrix CoA that is the net input to
all of the neurons. It was found by convolving the active neurons (those elements of the
forest F with a value of 1 at time i) with the connectivity matrix.

Now we create a temporary N3N matrix, Fr, which is all 0s and only takes on the
value of 1 for those neurons who were in the quiescent state and whose input exceeded
the threshold value. We also create another N3N temporary matrix, Frn, which is all 0s
and only takes on the value of 1 with probability f if the neuron was in the quiescent state,
but its input did not exceed threshold. The use of element-wise matrix multiplication of
the identifying matrix Qu in the definition of these matrices ensures that only those sites
that were in the quiescent state (having a value of 0 in the forest matrix F) take on a non-
zero value. These two matrices identify those neurons in the forest that will transition
from the quiescent state to the active state.

Fr5 (CoA. th).*Qu; % id's q trees whose input exceeded threshold
Frn5 (Fr55 0).*(rand(N), f).*Qu; %with prob f selects trees from set q

%whose input does not exceed threshold

The forest matrix F is now updated by the transition rules:

F5 100*Ac1 100*(rand(N).p).*Rs1 Fr1 Frn; %updates forest by rules
%first term: a-. r w/ prob 1; second term: r-.q w/ prob p
% final terms: q-. a if input exceeds th or w/ prob f; ;

We can now redefine the identifying matrices:

Ac5 (F55 1); % redefine matrices of q,a & r tree locations
Qu5 (F55 0);
Rs5 (F55 100);

The next few lines generate the movie of the simulation, and save it to an AVI file. The
use of colormap(colorcube(12)) will cause a matrix element with a value of 7 to appear as
a green pixel, an element with a value of 5 as red, and one with a value of 10 as black (see
Figure 35.2):

figure(1)
colormap(colorcube(12));
im5 image(Qu*71Ac*51Rs*10);
axis square
Frame5 getframe(gca);
mov5 addframe(mov,Frame);
Forest(:,:,ii)5 F;

48535.3 EXERCISES

IV. DATA MODELING WITH MATLAB

end %ends the main loop
save Forest Forest
mov5 close(mov);

The entire spatio-temporal dynamics of this network is saved in the N3N3T matrix,
Forest, which can be loaded once the program has run using the command load Forest.

EXERCISE 35.1

Enter the ForestFireModel function given

above on your own computer. Make sure

that it runs, and that you understand each

part of the program. Run the model with

the following command: ForestFireModel

(100,0.1,0,64,.1,'periodic',2). Why does the

forest turn all green in the end?

EXERCISE 35.2

Now let p5 .5 and f5 .5, and describe the dynamics. Is this a realistic set of parameters

for a neural network?

EXERCISE 35.3

Now let p5 .01 and f5 .0075. How do

the dynamics differ? Continue to play with

the various input parameters to see how

they impact the dynamics of the network.

How many different behaviors can you get

out of the “forest” of neurons?

FIGURE 35.2 A snapshot of the neural network simulated as
a forest fire. Each pixel represents a single neuron, and it is
colored green, red, or black to represent the neuron being in the
quiescent, active, or refractory state, respectively.

486 35. NEURAL NETWORKS AS FOREST FIRES: STOCHASTIC NEURODYNAMICS

IV. DATA MODELING WITH MATLAB

35.4 PROJECTS

1. Of course, true neural networks are more complicated than forests. Neural dynamics
are more complex than the simple ignition of a tree. In addition, there are two types of
neurons: excitatory and inhibitory. About 25% of the neurons in the cortex of the brain
are inhibitory; they act to prevent other neurons from activating. To some extent the
first complexity doesn’t matter too much, but the existence of inhibition can radically
alter neural network dynamics. There is also some evidence that the spatial extent of
inhibition differs from that of excitation. This has profound consequences for the
dynamics of neural activation.

Forest fire models have been developed by Drossel, Clar, and Schwabl (1994) in
which trees have a certain immunity to fire, which acts like inhibition. Modify the forest
fire model to incorporate inhibition. Create simulations for a network of randomly
connected lattice sites in which proximal neighbor connections tend to be excitatory
and more distal ones tend to be inhibitory (i.e., a Mexican hat distribution of excitatory
and inhibitory interactions). You can take a peek at Chapter 16, “Convolution,” to help
setup the connectivity matrix. What new patterns of activity are you able to produce?
Can you find a parameter set that will create blobs or stripes?

2. The stochastic nature of the neuronal population can be introduced to the model in a
number of places. Incorporate additional noise to the system by making the threshold
follow Brownian motion within reflecting boundaries. Hint: you will need to introduce
an N3N matrix that contains the threshold value for each of the neurons and is
updated at each timestep. You will use the rand function to generate the amount by
which the threshold value is increased or decreased at each step, and impose a
minimum and maximum value that the threshold can be. If the random increment
exceeds the boundary by an amount x, then the new value of the threshold is a distance
x within the boundary.

3. For a more advanced project, modify the above simulations using noisy integrate-and-
fire neurons to populate the forest. See what interesting population dynamics you can
produce.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

nargin
avifile
switch
colormap

487MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

IV. DATA MODELING WITH MATLAB

C H A P T E R

36

Neural Networks Part I:
Unsupervised Learning

36.1 GOALS OF THIS CHAPTER

This chapter has two goals that are of equal importance. The first goal is to become
familiar with the general concept of unsupervised neural networks and how they may
relate to certain forms of synaptic plasticity in the nervous system. The second goal is to
learn how to build two common forms of unsupervised neural networks to solve a classifi-
cation problem.

36.2 BACKGROUND

Neural networks have assumed a central role in a variety of fields. The nature of this
role is fundamentally dualistic. On the one hand, neural networks can provide powerful
models of elementary processes in the brain, including processes of plasticity and learn-
ing. On the other hand, they provide solutions to a broad range of specific problems in
applied engineering, such as speech recognition, financial forecasting, or object
classification.

36.2.1 But What is a Neural Network?

Despite its “biological” sounding name, neural networks are actually quite abstract
computing structures. In fact, they are sometimes referred to as artificial neural networks.
Essentially, they consist of rather simple computational elements that are connected to
each other in various ways to serve a certain function. The architecture of these networks
was inspired by the mid- to late-20th-century notion of brain function, hence the term
“neural.”

489MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00036-9 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00036-9

At its conceptual core, a unit in a neural network consists of three things (Figure 36.1):

1. A set of inputs that can vary in magnitude and sign coming from the outside world or
from other neurons in the network.

2. A set of weights operating on these inputs that can vary in magnitude and sign
(implementing synaptic efficiency and type of synapse on a neuron). There is also a
bias weight b that operates on an input that is fixed to a value of 1.

3. A transfer function that converts the sum of the weighted inputs or net input, n, to an
output, o.

Inputs

iR

i2

i1

WR

W1

b

n o
ƒ

Weights Transfer function Output

FIGURE 36.1 The concept of a neural network.

The output of a unit can then become the input to another unit. Individual units are
typically not very functional or powerful. Neural networks derive their power from con-
necting up large numbers of neurons in certain configurations (typically called layers) and
from learning (i.e., setting the weights of these connections).

Neural networks are extremely good at learning a particular function (such as classify-
ing objects). There are several different ways to train a neural network, and we will
become acquainted with the most common ones in this and the next chapter.

Such trained multi-layer networks are extremely powerful. It has been shown that a
suitable three-layer (i.e., three layers of units) network can approximate any computable
function arbitrarily well. In other words, neural networks that are properly set up can do
anything that can be done computationally. This is what makes them so appealing for
applied engineering problems, because the problem solver might not always be able to
explicitly formulate a solution to a problem, but he might be able to create and train a neu-
ral network that can solve the problem, even if he doesn’t understand how it works. For
example, a neural network could be useful to control the output of a sugar factory given
known inputs.

36.2.2 Unsupervised Learning and the Hebbian Learning Rule

Despite the fact that neural networks are very far from real biological neural networks,
the learning rules that have been developed to modify the connections between computing
elements in neural networks nevertheless resemble the properties of synaptic plasticity in
the nervous system. In this chapter, we will focus on unsupervised learning rules (in contrast
to supervised or error-correcting learning rules), which turn out to be very similar to
Hebbian plasticity rules that have been discovered in the nervous system. Unsupervised
learning tries to capture the statistical structure of patterned inputs to the network without

490 36. NEURAL NETWORKS PART I: UNSUPERVISED LEARNING

IV. DATA MODELING WITH MATLAB

an explicit teaching signal. As will be clear in a moment, these learning rules are sensitive
to correlations between components of patterned inputs; they strengthen connections
between components that are correlated, and weaken connections that are uncorrelated.
These learning rules serve at least three computational functions: 1) to form associations
between two sets of patterns; 2) to group patterned inputs that are similar into particular
categories; and 3) to form content-addressable memories such that partial patterns that are
fed to the network can be completed.

Donald Hebb was one of the first to propose that the substrate for learning in the ner-
vous system was synaptic plasticity. In his book The Organization of Behavior, Hebb
stated, “When an axon of cell A is near enough to excite a cell B and repeatedly or per-
sistently takes part in firing it, some growth process or metabolic change takes place in
one or both cells such that A’s efficiency, as one of the cells firing B, is increased” (1949,
p. 62). In fact, William James, the father of American psychology, formulated the same
idea almost sixty years earlier in his book The Principles of Psychology when he stated,
“When two elementary brain-processes have been active together or in immediate suc-
cession, one of the them tends to propagate its excitement into the other” (1890, p. 566).
Nevertheless, the concept of synaptic plasticity between two neurons that are co-active
is usually attributed to Donald Hebb. Mathematically, Hebbian plasticity can be
described as:

Δwij 5 ε � prei � postj ð36:1Þ

where Δwij denotes the change in synaptic weight between a presynaptic neuron i and a
postsynaptic neuron j, prei and postj are the activities of presynaptic neuron i and post-
synaptic neuron j, respectively, and ε is a learning constant that determines the rate of
plasticity. The Hebbian learning rule states that a synapse will be strengthened when the
presynaptic and postsynaptic neuron are active. Neurophysiologically, this means that
the synapse will be potentiated when the presynaptic neuron is firing and the postsynap-
tic neuron is depolarized. In 1973, Bliss and Lomo first showed that the synapses
between the perforant pathway and the granule cells in the dentate gyrus of the hippo-
campus could be artificially potentiated using a stimulation protocol that followed the
Hebbian learning rule (Bliss and Lomo, 1973). The effects of the stimulation protocol
they used has been termed Long-Term Potentiation because the synapses appear to be
potentiated indefinitely. Since that time, may other experiments have shown that Long-
Term Potentiation could be implemented in many parts of the brain, including the neo-
cortex. Long-Term Potentiation (with initial capital letters), which refers to an artificial
stimulation protocol, should be distinguished from long-term potentiation (all lowercase),
which refers to the concept that synapses may be potentiated naturally when some form
of associative learning takes place.

From a computational perspective, the simple Hebbian rule can be used to form associa-
tions between two sets of activation patterns (Anderson et al., 1977). Imagine a feedfor-
ward network consisting of an input (presynaptic) and output (postsynaptic) set of
neurons, f and g respectively, that are fully connected as shown in Figure 36.2. The transfer
function of the f neurons is assumed to be linear and, thus, this network is referred to as a
linear associator (Anderson et al., 1977). The activation of each set of neurons can be viewed

49136.2 BACKGROUND

IV. DATA MODELING WITH MATLAB

as column vectors, f
,

and g
,
. Assume we want to associate a green traffic light with “go,” a

red traffic light with “stop,” and a yellow traffic light with “slow.” Furthermore, assume
that the green, red, and yellow traffic lights are coded as mutually orthogonal and normal

(i.e., unit length) f
,

vectors.
The Hebbian learning rule can be used to form these associations. Mathematically, the

learning rule generates a weight matrix as an outer-product between the f and g vectors:

W 5 g
-

f
-T

W 5 g
-

go f
-T

green 1~gstop f
-T

red 1 g
-

slow f
-T

yellow

Now, if we probe the network with the green presynaptic pattern, we get the following:

W f
-

green 5 g
-

go f
-T

green f
-

green 1 g
-

stop f
-T

red f
-

green 1 g
-

slow f
-T

yellow f
-

green

Given that the input patterns are orthogonal to each other and normal, the output of
the network is “go”:

W f
-

green 5 g
-

goU11 01 0

36.2.3 Competitive Learning and Long-Term Depression

Despite its elegant simplicity, the Hebbian learning rule as formulated in Equation 36.1
is problematic because it only allows for potentiation, which means that the synapse will
only grow stronger and eventually saturate. Neurophysiologically, it is known that synap-
ses can also depress using a slightly different stimulation protocol. Fortunately, there is a
neural network learning rule that can either potentiate or depress. It was proposed by
Rumelhart and Zipser (1985) and is referred to as the competitive learning rule:

W

ƒ
→ →

g

FIGURE 36.2 A simple linear associator network
composed of an input and output set of neurons that
are fully connected.

492 36. NEURAL NETWORKS PART I: UNSUPERVISED LEARNING

IV. DATA MODELING WITH MATLAB

Δwij 5 ε � prei � postj 2 ε � postj � wij ð36:2Þ
The first term on the right-hand side of Equation 36.2 is exactly the Hebbian learning

rule. The second term, however, will depress the synapse when the postsynaptic neuron is
active regardless of the state of the presynaptic neuron. Therefore, if the presynaptic neu-
ron is not active, the first term goes to zero and the synapse will depress. Also, notice that
depression is proportional to the magnitude of the synaptic weight. This means that if the
weight is very large (and positive), depression will be stronger. Conversely, if the weight
is small, depression will be weaker. The competitive learning rule can be described equiv-
alently as follows:

Δwij 5 ε � postj � ðprei 2wijÞ ð36:3Þ
The formulation in Equation 36.3 makes clear what the learning rule is trying to do.

Learning will equilibrate (i.e., terminate) when the synaptic weight matches the activity of
the presynaptic neuron. On a global scale, what this means is that the learning rule is try-
ing to develop a matched filter to the input, and can be used to group or categorize inputs.
To make this clearer, consider two kinds of patterned inputs corresponding to apples and
oranges. Each example of an apple or orange is described by a vector of three numbers
that describe features of the object such as its color, shape, and size. Consider the problem
of developing a neural network to categorize the apples and oranges (Figure 36.3).

Imagine the apple and orange vectors clustered in a three-dimensional space. The
weights feeding into either the apple unit or orange unit can also be viewed as vectors
with the same dimensionality as the input vectors. Before learning, the apple and orange
weight vectors are pointing in random directions (Figure 36.4). However, after learning,
the weight vectors will be pointing toward the center of the apple and orange input vector
clusters because the competitive learning rule will try to move the weight vectors to match
the inputs (Figure 36.5). Finally, notice how the two category units are mutually inhibiting
each other (the black circles indicate fixed inhibitory synapses which do not undergo plas-
ticity). This mutual inhibition allows only one unit to be active at a time, so that only one
weight vector is adjusted for a given input vector.

Apple Orange

Category units

Input units

Posti

Prei

→
wapple

→
worange

FIGURE 36.3 A two-layer neural network that takes
input vectors corresponding to apples and oranges, and
categorizes them by activating one of the two category
units.

49336.2 BACKGROUND

IV. DATA MODELING WITH MATLAB

36.2.4 Neural Network Architectures: Feedforward vs. Recurrent

As with real neural circuits in the brain, artificial neural network architectures are often
described as being feedforward or recurrent. Feedforward neural networks process signals in a
one-way direction and have no inherent temporal dynamics. Thus, they are often described
as being static. In contrast, recurrent networks have loops and can be viewed as a dynamic
system whose state traverses a state space and possesses stable and unstable equilibria. The
linear associator described above is an example of a feedforward network. The competitive
learning network is a sort of hybrid network because it has a feedforward component lead-
ing from the inputs to the outputs. However, the output neurons are mutually connected

Pre3

Pre1

Pre2

→
worange

→
wapple

Apple

Oranges

FIGURE 36.4 The weight vectors in an untrained com-
petitive learning neural network.

Pre3

Pre1

Pre2

worange
→→

wapple

FIGURE 36.5 The weight vectors in a competitive
learning neural network that has been trained.

494 36. NEURAL NETWORKS PART I: UNSUPERVISED LEARNING

IV. DATA MODELING WITH MATLAB

and, thus, are recurrently connected. An example of a purely recurrent neural network is
the Hopfield network (Figure 36.6). A Hopfield network uses a Hebbian-like learning rule to
generate stable equilibria corresponding to patterns that need to be stored. By providing
partial patterns of stored patterns to a Hopfield network, the network’s state will tend to
progress toward its stable equilibrium corresponding to the stored pattern, and, thus, com-
plete the pattern. This is an example of a content-addressable memory. The Hopfield net-
work is a fully interconnected network with the constraint that connections between pairs of
neurons are symmetric. Also, there are no self-connections. These constraints result in a
symmetric weight matrix with zeros along the main diagonal.

36.3 EXERCISES

36.3.1 Competitive Learning Network

Suppose you want to categorize the following 6 two-dimensional vectors into two classes:

.. inp 5 [0.1 0.8 0.1 0.9 0.2 0.7;0.7 0.9 0.8 0.8 0.75 0.9];

Each column of this matrix represents one two-dimensional input vector.
There are three vectors near the (0,1) and three vectors near (1,1). What now?
First, create a two-layer network with two input “feature” neurons and two output “cat-

egory” neurons. To do this, create a random 23 2 matrix of weights:

.. W5 rand(NCAT,NFEATURES);

where NCAT5 2 and NFEATURES5 2.
Competitive learning works optimally if the weight vector associated with each output

neuron is normalized to 1:

.. W5W./repmat(sqrt(sum(W.^2,2)),1,NFEATURES);

This network needs to be trained to classify properly. In this network, the output neu-
rons compete to respond to the input in a winner-take-all fashion such that only the
weight vector feeding into the winning output neuron is trained. We could implement this
by including inhibitory connections between the two output neurons, and let the dynamics

FIGURE 36.6 The architecture of a Hopfield neural
network. The weights (i.e., connections) between neu-
rons i and j are symmetric.

49536.3 EXERCISES

IV. DATA MODELING WITH MATLAB

of the network find the winner as in Figure 36.3. To make things easier, however, we will
use the max function in MATLAB® to find the winner, and then apply the competitive
learning rule to the winner’s weight vector. We will also assume that the winner’s activa-
tion equals 1. Create a function that implements the competitive learning training rule
with a learning rate parameter lr:

.. function [Wout]5 train_cl(W,inp,lr)

.. %competitive learning rule

.. out5W*inp;

.. [mx ind]5max(out);

.. W(ind,:)5W(ind,:)1 lr*(inp'-W(ind,:));

.. Wout5W./repmat(sqrt(sum(W.^2,2)),1,size(W,2));

end

Notice that the weight vectors associated with the winning output neuron are renorma-
lized after training.

Using this training rule, create a script to classify the six input vectors. In this script, you
will expose the network to all inputs one at a time over many epochs. In the script, plot the
inputs and the two weight vectors (with the quiver function) associated with each output
neuron after each epoch so that the learning process can be visualized (Figure 36.7).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 FIGURE 36.7 The evolution of the two weight vectors
(blue and red arrows) associated with the two output neu-
rons during training of a competitive learning neural net-
work. The six two-dimensional inputs are plotted as blue
stars.

The results of the trained network should be:

.. results 5 1 2 1 2 1 2

This indicates that the 1st, 3rd, and 5th input vectors activated neuron 1, and the 2nd,
4th, and 6th input vectors activated neuron 2. Of course, because this is an unsupervised
neural network, the results could also be the exact opposite:

.. results 5 2 1 2 1 2 1

496 36. NEURAL NETWORKS PART I: UNSUPERVISED LEARNING

IV. DATA MODELING WITH MATLAB

You may notice that your neural network does not always categorize your inputs into
two categories, but sometimes categorizes them instead into one category. This is because
one of the weight vectors is accidently very far away from any input and, therefore, never
wins the competition. These are called “dead units.” You will also notice that the winning
weight vector is pointing in between the two classes of inputs. Can you think of a way to
solve this problem?

36.3.2 Hopfield Network

We will now build a Hopfield neural network to store two four-dimensional patterns.
The two column vectors we will store are:

[1 1 2 1 2 1]' and [2 1 2 1 1 1]'

Place those two input vectors into a 43 2 matrix called inp (i.e., the external input to
the network). Create a matrix W that stores these two patterns using a Hebbian-type learn-
ing rule:

.. for ii5 1:size(inp,2)

.. W5W1 inp(:,ii)*inp(:,ii)';

.. end;

.. W5W-diag(diag(W));

The last line of this code ensures that the diagonals of the weight matrix are zero. This
is because the Hopfield network requires that there be no self-connectivity. Now, test to
see whether those two patterns were stored in the network. To do this, write code that
updates each neuron of the network with a certain probability p, which implies that not
all neurons will be necessarily updated at the same time (i.e., asynchronous updating). If
the neuron is updated, then a simple thresholding operation is performed. If the net input
to the neuron is greater than or equal to zero, then the output of the neuron should be set
to 1. Otherwise, the output of the neuron should be set to 2 1.

Create a function called update_hp that takes the net input, the weight matrix W, the
current state of the system, and the update probability p, and updates the state of the
network.

Let us now feed the trained Hopfield network with one of the two column vectors that
we used to build the network: [1 1 -1 -1]0. Let us set the state of the network at t50 to be
all zeros: state(0)5[0 0 0 0]0. The net input at each time point, t, is:

.. net_input5 [1 1 1 -1]'1W*state;

Therefore, at t50, net_input(0)5[1 1 -1 -1]0. Using the net input, update the state of the
network:

.. newstate5update_hp(W, state, net_input, p);

Repeat this multiple times (e.g., 1000 times) until the state of the system equilibrates.
Now feed partial input test patterns, Test, and see where the network equilibrates:

.. Test5 [1 1 0 0; 0 0 2 1 2 1]';

49736.3 EXERCISES

IV. DATA MODELING WITH MATLAB

The zeros correspond to missing features in the test patterns. Does the network fill in
the missing information?

36.3.3 The MATLAB Neural Network Toolbox

MathWorks has developed a specialized toolbox for neural networks. As we have
shown previously, everything that constitutes a neural network (inputs, weights, transfer
function, and outputs) can be implemented using matrices and matrix operations.
However, the Neural Network Toolbox has a rich variety of different types of neural net-
works that can be easily implemented and have been optimized.

36.4 PROJECT

FIGURE 36.8 Meet the Greebles. Image courtesy of Michael
J. Tarr, Brown University, http://www.tarrlab.org/.

Boges

Quiff

Dunth

FIGURE 36.9 The anatomy of a Greeble. Image courtesy of Michael J. Tarr,
Brown University, http://www.tarrlab.org/.

Greebles live in dangerous times (Gauthier and Tarr, 1997). Recent events led to the
creation of the “Department for Greeble Security.” You are a programmer for this
recently established ministry, and your job is to write software that distinguishes the

498 36. NEURAL NETWORKS PART I: UNSUPERVISED LEARNING

IV. DATA MODELING WITH MATLAB

http://www.tarrlab.org/
http://www.tarrlab.org/

“good” Greebles from the “bad” Greebles (Figure 36.8). Researchers in another section
of the department have shown that three parameters correlate with the tendency that
a Greeble is good or bad. These parameters, identified in Figure 36.9, are: “boges”
length, “quiff” width, and “dunth” height (Gauthier, Behrmann, and Tarr, 2004).
Specifically, it has been shown that good Greebles have long boges, thin quiffs, and
high dunths, while the bad Greebles tend to have short boges, thick quiffs, and low
dunths. Of course, this relationship is far from perfect.

A given individual Greeble might have any number of variations of these parameters.
In other words, this classification is not as clear-cut and easy as your superiors might
want it to be. That’s where you come in. You decide to solve this problem with a neural
network, since you know that neural networks are well-suited for this kind of problem.

In this project, you will be asked to create two neural networks.

1. The first neural network will be a competitive learning network that distinguishes good
Greebles from bad Greebles. Specifically, you should do the following:
a. Train the network with the training set provided on the companion website (it

contains data on Greebles who have been shown to be good or evil in the past, along
with their parameters for boges length, quaff width, and dunth height). Plot the
training data in three dimensions along with the two weight vectors associated with
the good and evil output neurons using quiver3.

b. Test the network with the test set provided on the companion website (it contains
parameters on Greebles that were recently captured by the department and
suspected of being bad—use your network to determine if they are more likely to be
good or bad).

c. Document these steps, but make sure to include a final report on the test set. Which
Greebles do you (your network) recognize as being bad? Which do you recognize as
being good?

d. Qualitatively evaluate the confidence that you have in this classification. Include
graphs and figures to this end.

Good luck! The future and welfare of the Greebles rests in your hands.

Hints:

• Load the two training populations using the command xlsread(‘filename’). Each file
contains measurements of three parameters (in inches): boges length, quaff width, and
dunth height. Each row represents an individual Greeble.

• Before you do anything else, you might want to plot your populations in a three-
dimensional space (you have three parameters per individual). You can do this by
using plot3(param1,param2,param3). In other respects, plot3 works just like plot.

• Merge the data into a big training vector.
• Create the competitive network.
• Train the competitive network.
• Download the test files, and test the population with your trained network.
• Your program should produce a final list of which Greebles in the test population are

good and which are bad. Also graph input weights before and after training.
• Disclaimer: No actual Greebles were hurt when preparing this tutorial.

49936.4 PROJECT

IV. DATA MODELING WITH MATLAB

2. The second neural network that you will create is a Hopfield network that will
store the prototypical good and bad Greebles. Specifically, you should do the
following:
a. Normalize the features of all the Greebles so that the largest feature value across all

Greebles for each of the three features is 1, and the lowest feature value is 21.
b. Create the prototypical good and bad Greebles by taking the average features of the

good and bad Greebles, respectively.
c. Build a Hopfield network to store the good and bad prototypes (i.e., two feature

vectors).
d. Use the test set to see if the Hopfield network can categorize the suspected Greebles

as prototypical good or bad Greebles. Compare these results with the results using
the competitive learning network.

The equilibrium state of the Hopfield network should be one of these two vectors:

[1 2 1 1] or [2 1 1 2 1] for the good and bad Greebles.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS
COVERED IN THIS CHAPTER

rand ('state', number)
.
quiver
quiver3
plot3
xlsread()
diag

500 36. NEURAL NETWORKS PART I: UNSUPERVISED LEARNING

IV. DATA MODELING WITH MATLAB

C H A P T E R

37

Neural Networks Part II: Supervised
Learning

37.1 GOALS OF THIS CHAPTER

This chapter has two primary goals. The first goal is to be introduced to the concept of
supervised learning and how it may relate to synaptic plasticity in the nervous system,
particularly in the cerebellum. The second goal is to learn to implement single-layer (tech-
nically a two-layer network but the first layer is not always considered a true layer) and
multi-layer neural network architectures using supervised learning rules to solve particu-
lar problems.

37.2 BACKGROUND

37.2.1 Single-Layer Supervised Networks

Historically, perceptrons were the first neural networks to be developed, and they hap-
pened to employ a supervised learning rule. A supervised learning rule is one in which there
is a teaching signal that provides the goal of the learning process. Inspired by the latest
neuroscience research of the day, McCulloch and Pitts (1943) suggested that neurons
might be able to implement logical operations. Specifically, they proposed a neuron with
two binary inputs (0 or 1), a summing operation in the inputs, a threshold that can be met
or not, and a binary output (0 or 1). In this way, logical operators like AND or OR can be
implemented by such a neuron (by either firing or not firing if a threshold is met or not).
See Table 37.1 from an example of implementing the logical AND operator with a thresh-
old value of 2.

Later, Frank Rosenblatt (1958) used the McCulloch and Pitts Model in combination with
theoretical developments by Hebb to create the first perceptron. It is a modified

501MATLAB® for Neuroscientists.

DOI: http://dx.doi.org/10.1016/B978-0-12-383836-0.00037-0 © 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-383836-0.00037-0

McCulloch and Pitts neuron, with an arbitrary number of weighted inputs. Moreover, the
inputs can have any magnitude (not just binary), but the output of the neuron is 1 or 0
depending on whether the total weighted input exceeds the threshold or not. The weight
can be different for each input. Setting the weights differently allows for more powerful
computations.

Perceptrons are good at separating an input space into two parts (the output). Training
a perceptron amounts to adjusting the weights and biases such that it rotates and shifts a
line until the input space is properly partitioned. If the input space is higher than two-
dimensions, the perceptron implements a hyperplane (with one dimension less than the
input space) to partition it into two regions. If the network consists of multiple percep-
trons, each can achieve one partition. The weights and biases are adjusted according to the
perceptron learning rule:

1. If the output is correct, the weight vector associated with the neuron is not changed.
2. If the output is 0 and should have been 1, the input vector is added to the weight

vector.
3. If the output is 1 and should have been 0, the input vector is subtracted from the

weight vector.

It works by changing the weight vector to point more towards input vectors categorized
as 1 and away from vectors categorized as 0.

Although a real neuron either fires an action potential or not (i.e., it generates a 1 or 0),
the response of a neuron is often described by its firing rate (i.e., the number of spikes per
unit time), resulting in a graded response (Adrian and Matthews, 1927). To model these
responses, we use a different neural network model, called a linear network. The main dif-
ference between linear networks and perceptrons lies in the nature of the transfer function.
Where the perceptron uses a step function to map inputs to (binary) outputs, a linear net-
work has a linear transfer function. The learning rule for the linear network is called the
Widrow-Hoff learning rule, and is essentially the same as that for the perceptron (Widrow
and Hoff, 1960). This rule attempts to minimize the sum squared error between the target,
T, and the output neurons’ (or, more properly, nodes’) activations, O, by going down the
gradient of the error surface in the multi-dimensional weight space. The sum squared error
is defined as the squared difference between target and output values summed over all
the output neurons. The gradient is the derivative of the error with respect to each weight:

Error5
X

k
ðTk2OkÞ2 ð37:1Þ

TABLE 37.1 Perceptron Implementing AND with a Threshold of 2

Input 1 Input 2 Sum Comparing with Threshold Output

0 0 0 ,2 0

0 1 1 ,2 0

1 0 1 ,2 0

1 1 2 5 2 1

502 37. NEURAL NETWORKS PART II: SUPERVISED LEARNING

IV. DATA MODELING WITH MATLAB

@Error

@wij
5

1

2
ðTj 2OjÞ

@Oj

@wij
ð37:2Þ

The output node’s activation is equal to the net input, net (i.e., the weighted sum of the
activations of the input neurons, I), because the transfer function is linear:

Oj 5
X

l
wljIl � netj ð37:3Þ

@Oj

@wij
5 Ii ð37:4Þ

@Error

@wij
5

1

2
ðTj 2OjÞIi ð37:5Þ

Δwij 5 EðTj 2OjÞIi ð37:6Þ
where Δwij is the weight change between input node i and output node j, ε is the learning
rate constant, Tj is the target on node j, Oj is the activation of output node j, and Ii is the
activation of input node i. Equation 37.6 is the Widrow-Hoff learning rule. Since the error
equation above is quadratic, this error function will have one global minimum (if it has
any). Hence, we can be assured that the Widrow-Hoff rule will find this minimum by
gradually descending into it from the starting point (given by the initial input weights). In
other words, we are moving into the minimum of an error surface. MATLAB® has a visual
demonstration of that: demolin1.

If the output node’s transfer function (i.e., activation function) is a differentiable,
non-linear function, f(x), the Widrow-Hoff learning rule can be adjusted by changing
Equation 37.4:

Oj 5 fð
X

l
wljIlÞ ð37:7Þ

@Oj

@wij
5 f 0ðnetjÞIi ð37:8Þ

where f 0ðnetjÞ is the derivative of the non-linear transfer function evaluated at netj.

@E

@wij
5

1

2
f 0ðnetjÞðTj 2OjÞIi ð37:9Þ

Δwij 5 Ef 0ðnetjÞðTj 2OjÞIi ð37:10Þ
Let’s define the error as seen by output neuron Oj as δj:

δj � f 0ðnetjÞðTj 2OjÞ ð37:11Þ

37.2.2 Multilayer Supervised Networks

Since perceptrons are vaunted for their ability to implement and solve logical functions,
it came as quite a shock when Minsky and Papert (1959) showed that a single layer

50337.2 BACKGROUND

IV. DATA MODELING WITH MATLAB

(technically a two-layer network but the first layer is sometimes not considered a true
layer) perceptron could not solve a rather elementary logical function: XOR (exclusive or;
see Figure 37.1). This finding also implies that all similar networks (linear networks, etc.)
can only solve linearly separable problems. These events caused a sharp decrease in the
interest in neural networks until its resurgence during the 1980s.

The revived interest in neural networks occurred in part with the advent of multilayer,
nonlinear networks with hidden units, and a learning rule used to train them called back-
propagation, which is a generalized Widrow-Hoff rule. The power of these networks is that
they can approximate any arbitrary nonlinear, differentiable function between the inputs
and outputs.

The backpropagation (or backprop, for short) learning rule is a generalization of the
Widrow-Hoff learning rule for multilayer, nonlinear networks that adjusts the weight
between a pre- and postsynaptic node proportional to the product of the presynaptic activ-
ity and a measure of the error registered at the postsynaptic node. For nodes at the output
layer, the error is straightforward. It is the difference between the target and the output
node’s activity multiplied by the derivative of the non-linear activation function as in the
single-layer, nonlinear case (see Equation 37.11). But what is the error for a hidden node?
By using the chain rule for differentiation, backprop can define such an error as follows:

δj � f 0ðnetjÞ
X

k
wO

jkδk ð37:12Þ

To derive this, let’s assume we have a network with four input nodes, three output
nodes, and one hidden layer with two hidden nodes (Figure 37.2). Let’s define the input,
hidden, and output layers as I, H, and O, and we will use subscripts m, l, and k to refer to
particular nodes in each layer, respectively. Let’s also designate the weights feeding into
the hidden nodes as wH, and the weights feeding into the output nodes as wO.

FIGURE 37.1 The XOR problem that a single layer network cannot solve.
The XOR problem requires that the neuron respond (i.e., white circles) when
only one (but not both) of the inputs is on. This is not solvable by a single-
layer perceptron or linear network because it is not linearly separable.

Output layer

Hidden layer

Input layer Im

wml

wIk
o

Ok

HIH

FIGURE 37.2 A three-layer neural network with one
hidden layer.

504 37. NEURAL NETWORKS PART II: SUPERVISED LEARNING

IV. DATA MODELING WITH MATLAB

The partial derivative of the sum squared error with respect to a weight connecting an
input node, i, to a hidden node, j, can be found by the following:

@Error

@wH
ij

5
1

2

X
k
ðTk 2OkÞ

@Ok

@wH
ij

ð37:13Þ

Ok 5 fðnetkÞ5 fð
X

l
wO

lkHlÞ ð37:14Þ

Hl 5 fðnetlÞ5 fð
X

m
wH

mlImÞ ð37:15Þ
@Ok

@wH
ij

5 f 0ðnetkÞ
@netk
@wH

jk

ð37:16Þ

@netk
@wH

ij

5
X

l
wO

lk

@Hl

@wH
ij

ð37:17Þ

@Hl

@wH
ij

5 f0ðnetjÞIi if l5 j; otherwise
@Hl

@wH
ij

5 0 ð37:18Þ

@Ok

@wH
ij

5 f 0ðnetkÞwO
jkf

0ðnetjÞIi ð37:19Þ

@Error

@wH
ij

5
1

2

X
k
f 0ðnetkÞðTk 2OkÞwO

jkf
0ðnetjÞIi 5

1

2
Iif

0ðnetjÞ
X

k
wO

jkf
0ðnetkÞðTk 2OkÞ ð37:20Þ

ΔwH
ij 5 εIif 0ðnetjÞ

X
k
wO

jkf
0ðnetkÞðTk 2OkÞ ð37:21Þ

δj � f 0ðnetjÞ
X

k
wO

jkδk ð37:22Þ

37.2.3 Supervised Learning in Neurobiology

Although there is no definitive evidence for neural plasticity that is guided by a “teach-
ing” signal as supervised learning requires, there are some intriguing experimental findings
which suggest the possibility that the physiology of the cerebellum may support a form of
supervised plasticity. David Marr and James Albus independently proposed that the unique
and regular anatomical architecture of the cerebellum could instantiate error-based plasticity
that might underlie motor learning. In particular, they proposed that the climbing fibers act-
ing on Purkinje cells from the inferior olive could provide an error signal to modify the syn-
apses between the parallel fibers and the Purkinje cells. Experimental support for this
theory first came from Ito and Kano (1982), who discovered that long-term depression could
be induced at the synapse between the parallel fibers and the Purkinje cells. By electrically
stimulating the parallel fibers and at the same time stimulating the climbing fibers (each of
which forms strong synaptic contacts with a particular Purkinje cell), the parallel fiber syn-
apse could be depressed. Because the Purkinje cells are inhibitory on the deep cerebellar
nuclei, this synaptic depression would disinhibit the deep cerebellar nuclei.

50537.2 BACKGROUND

IV. DATA MODELING WITH MATLAB

A number of motor learning experiments have provided additional support for the idea
that the cerebellum supports supervised learning via the climbing fibers. Sensory-motor
adaptation experiments in which the gain between the movement and its sensory conse-
quences are altered have shown transient increases in climbing fiber input (as measured
by the complex spike rate) during learning (Ojakangas and Ebner, 1992, 1994). In addition,
classical conditional experiments have suggested that the cerebellum plays a role in learn-
ing associations between unconditioned stimuli (US) and conditioned stimuli (CS) (Medina
et al., 2000). For example, learning the association between an air puff (US) generating an
eye-blink response and a tone (CS) is disrupted by reversible inactivation to parts of the
cerebellum (Krupa, Thompson, and Thompson, 1993). Moreover, it has been shown that
the tone enters the cerebellar cortex via the parallel fiber pathway, whereas the air puff
(acting like a teacher) enters through the climbing fiber input. In fact, a mathematical for-
mulation of classical conditioning proposed by Rescorla and Wagner (1972) quite closely
resembles the Widrow-Hoff error correction learning rule using in supervised neural
networks.

37.3 EXERCISES

37.3.1 Perceptrons

Start by creating a perceptron with two input nodes and one output node by creating a
13 2 weight matrix W (i.e., 1 output and 2 inputs) initialized to zero, a bias weight b ini-
tialized to zero, and a thresholding transfer function for the output unit:

.. W5 zeros(1,2);

.. b5 zeros(1,1);

.. net_inp5W*inp1b;

.. out5 sign(sign(net_inp)1 1);

If the net input to the output node is larger than 0, the output will be 1; otherwise it
will be 0. A bias weight can be thought of as connecting an additional input node whose
value is always 1 to the output node. The bias weight changes the point where this deci-
sion is made. For example, if the bias is 25, the net sum has to exceed 5 in order for the
output to yield 1 (the bias of 25 is subtracted from the net sum; if it is less than 5, it will
fall below 0).

Now set the weights from the two input nodes to 1 and 21, respectively. Set the bias
weight to zero.

If the sum of the input multiplied by the weight meets or exceeds 0, the network should
return 1; otherwise it should return 0. Test it by feeding it some inputs:

inp15 [1; 0.5] %Note: The first, positive weighted input larger than the second
inp25 [0.5; 1] %Note: The second, negative weighted input is larger than the first

Your output should be 1 for inp1 and 0 for inp2. The network classified these inputs
correctly. You can now feed the network a large number of random numbers and see if
they are classified correctly, like this:

a5 rand(2,10) %Create 20 random numbers, arranged as 2 rows, 10 columns

506 37. NEURAL NETWORKS PART II: SUPERVISED LEARNING

IV. DATA MODELING WITH MATLAB

If the value in the first input row is larger than the value in the second input row (for a
given column), the output value (for that column) should be 1; otherwise it should be 0.

EXERCISE 1

Adjust the bias to some arbitrary value and see how the input/output mapping changes.

By adjusting the weights and the bias, it can be shown that any linearly separable prob-
lem (a problem space that can be separated by a line or more generally by a hyperplane) can
be solved by a perceptron. To verify if this is the case, play around with the interactive per-
ceptron, where you can arbitrarily set the decision boundary yourself. Type nnd4db
(Figure 37.3). Try to separate the white and the black circles. They represent the inputs. The
output is represented by the black line (creating two regions; presumably one region corre-
sponding to an output of zero and another region corresponding to an output of one).

What if you don’t know the weights or don’t want to find the weights? What if you
only know the problem? Luckily, one of the strongest functions of neural networks is their
ability to learn—to solve problems like this on their own. We will do this now. The first
thing we need is a learning rule, a rule that tells us how to update the weights (and
biases), given a certain existing relationship between input and output. The perceptron
learning rule is an instance of supervised learning, giving the network pairs of inputs and

FIGURE 37.3 An interac-
tive display of the decision
boundary of a perceptron pro-
vided in the MATLAB Neural
Network Toolbox. The display
shows how a perceptron cre-
ates a linear decision boundary
whose slope and intercept can
be modified by adjusting the
weight vector and bias.

50737.3 EXERCISES

IV. DATA MODELING WITH MATLAB

desired (correct) outputs. The perceptron learning rule is essentially equivalent to the
Widrow-Hoff learning rule:

.. function [Wout bout]5 train_perceptron(W,b,inp,out,targ)

.. Wout5W1 (targ-out)*inp';

.. bout5b1 (targ-out);

.. end

To test this, set the weight matrix and bias weight back to zero. Use the random num-
bers you created as inputs and the correct answer as targets and train the network. You
can try this dynamically, in an interactive demo, by typing nnd4pr (see Figure 37.4).

37.3.2 Linear Networks

Now you will create a linear network with two input nodes and one output node. The
only difference between a linear network and a perceptron is the transfer function of the
output node. The output node’s activation is simply equal to the net input:

out5net_inp

Set the weights to 3 and 4 and bias to 0, and feed the network the following input:

inp5 [5; 7];

The same can be done by typing:

.. [3 4] * [5;7]

FIGURE 37.4 An interac-
tive display of the perceptron
learning rule provided in the
MATLAB Neural Network
Toolbox.

508 37. NEURAL NETWORKS PART II: SUPERVISED LEARNING

IV. DATA MODELING WITH MATLAB

In other words, this neural network implements an inner product (dot product).
Of course, we want a more useful neural net than just one that can take the dot product;

we can take the dot product without neural nets. A classical function of linear neural net-
works is the automatic classification of input objects into different categories. In order to
achieve that, we need to train the network. To do this, we will use the Widrow-Hoff learn-
ing rule again. However, this time we will feed the inputs and targets multiple times (i.e.,
through multiple epochs), each time incrementing the weights by a small amount scaled
by a learning rate parameter ε:

.. Wout5W1 ε*(targ-out)*inp';

.. bout5b1 ε*(targ-out);

To assess the quality of learning, we will measure the total sum squared error between
the output of the network and the target summed over all output units k and all training
samples p after each epoch of learning:

Total Error5
X

p

X

k

ðTp
k2O

p
kÞ2

Why not give it a try? Say we have six two-dimensional inputs from two sets: set1 and
set2.

.. set15 [2, 2; -2, 2 ; 0.5, 1.5];

.. set25 [1, 2 2; 2 1, 1; 2 0.5 2 0.5];

Plot them to see what is going on:

figure %Opening a new figure
.. plot(set1(:,1),set1(:,2),'*') %Plotting the first set
hold on; %Holding on
.. plot(set2(:,1),set2(:,2),'*', 'color', 'r')
%Plotting the second set in red
.. axis([2 2.5 2.5 2 2.5 2.5])
.. axis square

Looking at the graph, you can see what is going on (Figure 37.5). We also see that the
problem is, in principle, solvable; we can draw a line that separates the blue and the red
stars. Now create a network that will find this solution, starting at 0 weights and 0 bias.

Next, assign the corresponding targets. We arbitrarily assign 1 to the blue set and 0 to
the red set:

targets5 [1 1 1 0 0 0]

Finally, you have to decide on the learning rate, ε, and the number of times you run
through the entire training data set (i.e., the number of epochs). Set the learning rate to
0.01 and the number of epochs to 100 (Figure 37.6).

Challenge the trained network with some new input, and see if it correctly classifies it.
Pick something in the middle of the red range, like [21, 0]. You should get 0.20 as an output.
Of course, this should be 0. But this might be the best we can do, given the sparse input.

50937.3 EXERCISES

IV. DATA MODELING WITH MATLAB

EXERCISE 37.2

Explore some points in the space and see

what their output is. Is it about what you

expect? Does the network make gross

errors? What about the initial input vector?

A linear classifier allows one to roughly categorize and classify inputs if they are line-
arly separable. Adjusting the weights and biases amounts to creating a linear transfer func-
tion that separates the desired outputs maximally and optimally. Of course, there is only
so much that a linear function can do, but it’s not too bad.

2.5

2

1.5

1

0.5

0

–0.5

–1

–1.5

–2

–2.5
–2 –1 0 1 –2

FIGURE 37.5 A plot of six two-dimensional
inputs (blue and red stars) that are to be
classified.

Number of epochs

To
ta

l s
um

 s
qu

ar
ed

 e
rr

or

0
0

2

4

6

8

10

12

14

20 40 60 80 100

FIGURE 37.6 The sum square error as a function of
training epochs.

510 37. NEURAL NETWORKS PART II: SUPERVISED LEARNING

IV. DATA MODELING WITH MATLAB

EXERCISE 37.3

Use a linear neural network to classify

the “good” and “bad” Greebles used in

Chapter 36. Initially, set the weights to 1

and the bias to zero.

Note that there is some initial classification even without training (Figure 37.7, left
side). But it is not very good, and the absolute output values are all over the place. The
final classification by the linear network is pretty good (Figure 37.7, right side). Values
cluster around 1 and 0, although there is quite a bit of variance. The linear network
couldn’t separate the clusters any better than this, given the variance in the input and the
amount of training. You should always check your network by visualizing the outputs of
trained and untrained networks with simple plots like this.

37.3.3 Backpropagation

Most of the principles of backpropagation are the same as in the other networks, but we
now have to specify the number of layers, the number of input nodes, hidden nodes per
hidden layer, and output nodes, and nonlinear transfer functions of the hidden and output
nodes. For example, create a three-layer, feedforward network (i.e., one input layer, one
hidden layer, and one output layer) with a sigmoidal transfer function:

.. Wh5 rand(NHIDDEN,
NINP);

% weight matrix feeding hidden nodes

.. Wo5 rand(NOUT,
NHIDDEN);

% weight matrix feeding output nodes

.. bh5 zeros(NHIDDEN,1); % bias weights feeding hidden nodes

.. bo5 zeros(NOUT,1); % bias weights feeding output nodes

.. transfer_fn5@(x,alpha) 1./(11 exp(alpha*x));

The last line of code defines a function handle called transfer_fn to a sigmoid function
whose output ranges from 0 to 1. The steepness of the sigmoid is specified by alpha.

Before training
25

20

15

10

5
0 100 200 300 400

1.5

1

0.5

0

–0.5
0 100 200 300 400

After training FIGURE 37.7 The prob-
lem of categorizing “good”
and “bad” Greebles using a
supervised linear network
(see Chapter 36). Left:
Classification when all the
weights are set to 1 (before
training). Right: Classification
after application of the super-
vised learning rule (after
training).

51137.3 EXERCISES

IV. DATA MODELING WITH MATLAB

The backprop learning rule applied to the weights feeding the output nodes is identical
to the non-linear Widrow-Hoff learning rule (see Equation 37.10). However, for the
weights feeding the hidden units, the rule is specified in Equation 37.21.

EXERCISE 37.4

Solve the Greeble problem with a multi-

layer feedforward network using a sigmoid

transfer function and the backpropagation

learning rule. What are the results?

SUGGEST ION FOR EXPLORAT ION

Try Exercise 37.4 using different transfer

functions between the layers. See what can

be done. Or wait for the final project to

do this.

37.3.4 Sound Manipulation in MATLAB

As you saw in earlier chapters, MATLAB is not only useful for analyzing data; it is also
possible to use it for experimental control and data gathering. Here, you will see that
MATLAB can be used to design the stimulus material itself. Before you start, check the
volume control to make sure that the loudspeaker of your PC is not muted and that the
volume is turned up. There are many MATLAB functions dealing with auditory informa-
tion; as a matter of fact, there is a whole toolbox devoted to it. Here, we will only handle
sound in very fundamental ways.

The first thing you might want to do is to create your sound stimuli. To do so, try this:

.. x5 0:0.1:100;

.. y5 sin(x);

.. sound(y);

Did you hear anything? What about this:

.. y5 sin(2 * x);

.. sound(y);

.. y5 sin(4 * x);

.. sound(y);

You know that your code created sine functions of increasing frequency. What you are
listening to is the auditory representation of these sine functions, pure sine waves. Of
course, most acoustic signals are not that pure. Try this to listen to the sound of random-
ness, white noise:

.. x5 randn(1,10001);

.. sound(x)

512 37. NEURAL NETWORKS PART II: SUPERVISED LEARNING

IV. DATA MODELING WITH MATLAB

The sound function interprets the entries in an array (here, the array “x”) as amplitude
values, and plays them as sound via your speakers. That means you can manipulate psy-
chological qualities of the sound by MATLAB operations. You already saw how to manip-
ulate pitch (by manipulating the frequency). You can manipulate volume by changing the
magnitude of the values in the array. Sound expects values in the range 1 to 21. So how
does this sound?

x5 x / 5 ;
sound(x)

This should sound much less violent.
Of course, you can manipulate the sound in any way you want; for example, you can

mix two signals:

.. z5 x1 y;

.. sound(z)

This should sound like the sine wave from before, plus noise.

EXERCISE 37.6

What happens if you add two different frequencies of sine waves and play it?

In short, what you hear should sound more complex, and rightfully so. It can be shown
that any arbitrarily complex sound pattern (or any signal, really) can be constructed by
appropriately adding sine waves. We will use this property later. Speaking of complex
sounds, most practical applications will require you to deal with sounds that are much
more complex than pure sine waves. So let’s look at one. Luckily, MATLAB comes with a
complex sound bite:

.. load handel

.. sound(y, Fs);

You might be confused by the second parameter, Fs. It is the sampling rate at which the sig-
nal was sampled. It specifies how many amplitude values are played per second. If your array
has 10,000 elements and the sampling rate is 10,000, it takes one second to play it as sound.

EXERCISE 37.7

Play it again at a higher/lower sampling rate. What is happening?

Why don’t we take a look at the structure of the amplitude values in the y matrix? This
could help you understand how sound works.

51337.3 EXERCISES

IV. DATA MODELING WITH MATLAB

.. figure

.. plot(y)

This will do the trick, and it should look something like Figure 37.8.
If you already listened to it, this will probably not surprise you. As a matter of fact, this

information about sound amplitudes is not very powerful in itself. It is much better and
more useful to look at the spectral power of a signal over time. To do this, we will use a
function called spectrogram. It comes with the MATLAB Signal Processing Toolbox.

We won’t go into how exactly this function works. It is rather complex, and we could
spend a whole chapter on it alone. In principle, let’s say that it decomposes the signal into
sine waves and plots the power (how much of each frequency is in the signal) over time.
A spectrogram of the Handel sounds looks like Figure 37.9.

.. spectrogram (y, 256, 'yaxis')

The parameter, 256, breaks up the data into 256 segments and applies a Hamming win-
dow to each segment. 'yaxis' specifies that the frequency axis should be plotted on the y-
axis. Of course, you probably will want to import your own sounds into MATLAB. That
can be done using the wavread function. Load the appropriate files that we have created,
then type:

.. y5wavread('Kira1.wav');

EXERCISE 37.8

What is the person saying? Hint: The sig-

nal was sampled at 22050 Hz. You might

want to take that into account when playing

it. Look at the spectrogram, too.

FIGURE 37.8 The raw acoustic pressure
amplitude of the Handel sound bite.

514 37. NEURAL NETWORKS PART II: SUPERVISED LEARNING

IV. DATA MODELING WITH MATLAB

SUGGEST ION FOR EXPLORAT ION

Listen to your data, literally. Listen to

some of the material you created in

previous chapters. How does it sound?

In this section, you saw how MATLAB lets you create, manipulate, and analyze acoustic
stimuli. You can use it to design sound stimuli that are precisely timed and have very spe-
cific properties. Obviously, this is extremely useful for acoustic experiments.

37.4 PROJECT

The project is to create a network that correctly classifies the gender of two target
speech bites. In order to do this, train the network with a total of six speech bites of both
genders. Load these files (called Train_Kira1 to 3 and Train_Pascal1 to 3). Of course, the
two speakers differ in all kinds of ways other than just gender (age, race, English as a
first/second language, idiosyncratic speech characteristics, lifestyle, etc.). If one were to
face this problem in real life, one would have to train the network with a large number of
speakers from both genders so that the network can extract gender information abstract
from all these irrelevant dimensions. But for our purposes, this will be fine. Specifically,
you should do the following:

Create a network that reliably distinguishes the gender of the two target speech bites.
Provide some evidence that this is the case and submit the source code.

Hints:

• You should implement a network using the backpropagation learning rule.

1

0.9

0.8

0.7

0.6

0.5

N
or

m
al

iz
ed

 fr
eq

ue
nc

y
(x

π
ra

d/
sa

m
pl

e)

0.4

0.3

0.2

0.1

0

Time
1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000

FIGURE 37.9 The spectrogram representation
of the Handel sound bite.

51537.4 PROJECT

IV. DATA MODELING WITH MATLAB

• Take the spectrogram of the sound files. Use those as the inputs to your neural
network. See Figure 37.10 for the amplitude and spectrogram of the sentence “The dog
jumped over the fence.” The left subplot is a female speaker, and the right subplot is a
male speaker.

• a5 spectrogram(b, 256) will return an array of complex numbers in a. They have an
imaginary and a real part. For our purposes, the real part will do. For this, type
c5 real(a). c will now contain the real part of the complex numbers in a.

• This project is deliberately under-constrained. Basically, you can try whatever you want
to solve the problem. As a matter of fact, we encourage this, since it will help you
understand neural networks that much better. Don’t be frustrated, and don’t panic if
you can’t figure it out right away.

• If you take a spectrogram of the speech patterns with which you are supposed to train
the network, it will return 129 rows and multiple columns. A neural network that takes
the entire information from this matrix has to have 129 inputs.

• This is obviously rather excessive. If you closely observe the spectrogram (see
Figure 37.10, right), you might be able to get away with less. The rows tessellate the
frequency spectrum (y axis). Power in a particular frequency band is at a particular
row. Power in a particular frequency band at a particular time is in a particular
combination of row and column.

• The point is that the left spectrogram has much more power in the upper frequencies
than the one on the right. If you properly combine frequency bands (or sample them),
you might be able to get away with a neural network that has only five or ten inputs.

• The same applies for time. Your spectrogram will have several thousand columns. This
kind of resolution is not necessary to get the job done. Try combining (averaging) the
values in 100 or so columns into one. Then feed that to the neural network for training.

• Try using one hidden layer.
• Try having a large number of hidden units (definitely more than 1).

FIGURE 37.10 The amplitudes and spectrograms of a female and male speaker uttering “The dog jumped
over the fence.”

516 37. NEURAL NETWORKS PART II: SUPERVISED LEARNING

IV. DATA MODELING WITH MATLAB

• You will be using a supervised learning rule. The target is defined by which file the
data came from (Pascal or Kira). Create an artificial index, assigning 1 and 0 or 1 and 2
to each.

• Always remember what the rows and columns of the variables you are using represent.
Be aware of transformations in dimensions.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS CHAPTER

nnd4db
nnd4pr
demolin1
real
sound
spectrogram
wavread
@

517MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN THIS CHAPTER

IV. DATA MODELING WITH MATLAB

A P P E N D I X

A

Creating Publication-Quality Figures

A.1 INTRODUCTION

While we made a great many figures in the course of working through this book, their
appearance was rarely the focus of our discussion. However, as the theoretical neuroscien-
tist Konrad Körding once observed: “Each figure deserves to look good.” We agree with
this sentiment, and this appendix is written in the spirit of helping you to achieve just that.

Of course, if you do make figures for publication purposes, you should inform yourself
about and follow the requirements specified by the journal publishing your work.

Similarly, it is no secret that holy wars are fought about issues of design and style of
figures in the scientific community. Some people feel incredibly strongly about buzzwords
like “data ink” (Tufte’s notion that a figure should maximize the amount of data ink—ink
that represents data—and minimize all other ink, as it distracts from data ink, broadly
speaking—see http://www-personal.umich.edu/~jpboyd/eng403_chap2_tuftegospel.pdf and
Tufte and Graves-Morris, 1983.). One of these controversies revolves around the use of bar
graphs. Purists suggest that one should never use them, as the vertical part of the bar (the major-
ity of the figure) represents non-data ink, and only the horizontal piece on top of the bar graph
actually represents data. Others point out that using bar graphs hooks into pre-existing cognitive
architectures; everyone knowswhat a bar graph is and how to interpret it. Sowhy not use it?

We do not want to get involved in these controversies about the purity of doctrine. If
you do, there is plenty of reading material out there. Rather, we want to provide prag-
matic and sensible guidelines on how to make figures that look good, and provide infor-
mation on how to implement these suggestions (and that’s all they are) within MATLAB®.

A.2 FIGURE MAKEOVERS

Before we get started, we need some data to put into a figure. As usual, if we are in
need for a quick data fix, we’ll use trigonometric functions. Pretend these data represent
the outcomes of two experimental conditions, coarsely sampled, with little to no noise.

519

http://www-personal.umich.edu/~jpboyd/eng403_chap2_tuftegospel.pdf

Data:

.. x5 0:0.2:10;

.. cond15 sin(x);

.. cond25 2.*sin(x);

Plotting:

.. figure

.. plot(x,cond1)

.. hold on

.. plot(x,cond2)

So much for the “before” plot. It does represent the data, but we can do much better
than that (see Figure A.1).

SUGGEST ION

Don’t let any part of the axes obscure or interfere with the representation of the data.

As you can see in Figure A.1, the tick marks of the axes are pointed inward, potentially
interfering with the representation of the data, e.g., around x5 8 and y520.5 and 21.
There are several ways to fix this:

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 FIGURE A.1 The “before”
figure. Note that some of the
data is obscured by tick marks.
From a data-ink perspective,
this is entirely unacceptable.

520 A. CREATING PUBLICATION-QUALITY FIGURES

Use outward-facing tick marks:

.. set(gca,'TickDir','out')

Use shorter tick marks (the vector sets the length):

.. set(gca,'ticklength',[0.005 0.025])

Make sure the axes are plotted below the data:

.. set(gca,'layer','bottom')

The figure should now look something like Figure A.2.
Voila. No more interfering of axes tick marks with data ink. But speaking of data ink,

the upper x-axis and right y-axis now really look ridiculous and superfluous. In the spirit
of maximizing data ink, we can get rid of them, like so:

.. box off

SUGGEST ION

Do get rid of superfluous lines in the figure that only detract from the interpretation of

the data (“maximizing data ink,” sensu Tufte).

In this spirit, do use the function grid sparingly. Go ahead, try it. Simply typing “grid”
toggles a grid that overlays the data on and off. There are cases where the use of a grid

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 FIGURE A.2 We started
the makeover. The tick marks
are now facing outwards.

521A.2 FIGURE MAKEOVERS

helps with the interpretation of data, but these cases are rare. For the most part, grids are
a holdover from the days when people drew figures on grid or graph paper. Today,
MATLAB is doing the drawing, so in most cases, it just increases the non-data ink in a fig-
ure. Be careful when using it.

While we are at it (and this will depend strongly on the nature of the figure) we could
equalize the aspect ratio of the figure. Put differently, if one has a long time series, one
might want a figure that is more wide than high. However, in most other figures this is
inappropriate, as it can lead to cognitive distortions. For instance, if one makes a scatter-
plot of measurements before and after an intervention (same units), it is crucial to give the
x- and y-axes the same visual weight. In the case of our example figure, it is not strictly
necessary, but we’ll do it anyway to show how this plays out (see Figure A.3):

.. axis square

SUGGEST ION

This one is more than a suggestion.

Absolutely make sure that the font proper-

ties of your axis labels match the rest of the

text in your manuscript. The meaning of a

figure is impossible to determine without

looking at the figure labels. Thus, there is

no point in creating figures where the axis

labels are impossible to make out because

they are too small. Similarly, they should

not clash with the manuscript font. A popu-

lar choice is Helvetica oblique, used with

the font size of the manuscript text.

0 1 2 3 4 5 6 7 8 9 10

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 FIGURE A.3 Now with a squared axis.

522 A. CREATING PUBLICATION-QUALITY FIGURES

To implement this suggestion, type

.. set(gca,'FontSize',18);

.. set(gca,'FontAngle','italic');

.. set(gca,'FontName','Helvetica');

See Figure A.4 for the result.
Getting there. Of course, the visual weight of the axes’ tick labels is now way out of

proportion with the representation of the actual data.

SUGGEST ION

Make sure that data and axes are visually in balance.

To restore this balance, we need to scale up the representation of the data (see Figure A.5):

.. h15plot(x,cond1);

.. h25plot(x,cond2);

.. set(h1,'linewidth',2);

.. set(h2,'linewidth',2);

.. set(h1,'marker','.');

.. set(h2,'marker','.');

.. set(h2,'color','r');

.. set(h1,'markersize',25);

.. set(h2,'markersize',25);

This will do as an “after” image (not to be confused with an afterimage). If you do
want to use a figure like this in a publication, make sure to add suitable axis labels; we left
them off here because they are arbitrary labels from made-up data.

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 FIGURE A.4 Don’t these tick labels look nice now? Note
that for a real figure, the axes (and thus the figure) would only
be meaningful with specified axis labels. We deliberately left
them off here, as we just pulled the data out of a hat (or rather,
out of Matlab). But you could imagine that the x-axis
represents—for instance, time—and the y-axis voltage. Or
something along those lines.

523A.2 FIGURE MAKEOVERS

SUGGEST ION

Don’t make a figure too busy. In our

experience, it is preferable if each

figure makes one easily discernible point. If

necessary, use two panels instead. However,

if you do this, make sure to use the same

axis limits in both panels. Otherwise, they

become very hard to compare. This is a com-

mon mistake. In our case, you could set the

y-axis limits for both subpanels as

.. ylim([min([cond1 cond2]) max

([cond1 cond2])])

EXERCISE A.1

Give your figure a makeover, using the

principles outlined in this appendix. Use

some of the pre-existing data or figures from

the previous chapters to do it. Have your pick.

A.3 SAVING FIGURES IN THE DESIRED FORMAT

Many journals do not accept figures as jpegs or bitmaps. This is understandable. Vector
graphics formats scale easily, whereas this is not the case for rasterized images. This can
cause problems, as figures might have to get scaled up or down in the printing process.

The key function to use is print. It governs the output of a figure both to hardcopy
(a printer) and to files. It is quite versatile, but for our purposes, we will focus on saving
as PostScript and TIFF files.

0 2 4 6 8 10

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 FIGURE A.5 The “after” image. Compare it with the
“before” image to appreciate the power of properly setting fig-
ure properties. In many cases, it is worth it. For publications, it
is almost always worth it.

524 A. CREATING PUBLICATION-QUALITY FIGURES

For instance, the command

.. print ('-depsc', '-r300', 'Figure 1')

saves the current figure as a color Encapsulated PostScript (EPS) file with a resolution of
300 dpi (check with the editors for what is acceptable) and a filename of “Figure 1” in the
current folder. The following command:

.. print ('-dtiff', '-r300', 'Figure 1')

does the same thing, but the figure is saved as a TIFF file.

A.4 HOW TO MAKE ANIMATED GIFS

While the controversy on how to pronounce GIF will probably never be settled in a
way that makes everyone happy, we will show you here how to make one with MATLAB.
The point of this exercise is that animated GIFs are making a comeback. Some journals—
for instance, the Journal of Vision—now allow authors to upload an animated GIF that
summarizes their experiment. As there are more and more online journals, it is not hard
to see how animated figures that illustrate complex experimental procedures could
become much more common.

Let’s make a simple one, to illustrate the concept. We’ll use a quick and dirty sine wave
that expands over time. Perhaps this could serve as an illustration of wave propagation or
some such. Motion captures attention; why not use it?

.. Y5 cell(100,1);

.. FR5 cell(100,1);

.. for ii5 1:100

.. x5 0:1:ii;

.. Y{ii}5 sin(x);

.. end

.. figure

.. xlim([0 100])

.. hold on

.. for ii5 1:100

.. plot(Y{ii})

.. FR{ii}5 getframe;

.. pause(0.1)

.. end

getframe takes a snapshot of the current axes. We put it into the frame repository
FR, a cell. These frames can be played back with the command movie(FR) within
MATLAB. The pause in the previous code is not necessary; it just allows you to see
what is going on.

525A.4 HOW TO MAKE ANIMATED GIFS

If this is the desired animation (in our case, it is), we can now proceed to convert and
save it as an animated GIF:

.. for ii5 1:100

.. img5 frame2im(FR{ii});

.. [ndx, cmp]5 rgb2ind(img,256);

.. if ii 55 1

.. imwrite(ndx,cmp,'waveform','gif', 'Loopcount', inf, 'DelayTime', 0.1);

.. else

.. imwrite(ndx,cmp,'waveform','gif', 'WriteMode', 'append', 'DelayTime', 0.1);

.. end

.. end

There is a lot going on here. Let’s unpack it. First, we open a loop that goes through all
100 frames. Then, we extract the image data from the frames by using the function fra-
me2im. Then, we convert the RGB image into an indexed image by using the rgb2ind
function. Indexing saves a considerable amount of space. The GIF itself is opened if we
are in the first frame. A “Loopcount” of inf sets the GIF to repeat endlessly. You can also
give a finite value as to the number of animation repeats before it should stop.
“Delaytime” specifies the delay in seconds before displaying the next image. By setting
the “Writemode” to append for all other frame numbers above 1, we add the frames to the
existing file. And that’s it. The function imwrite can be used to write all kinds of other
image formats, such as JPG or BMP, as well.

MATLAB FUNCTIONS, COMMANDS, AND OPERATORS COVERED IN
THIS APPENDIX

grid
imwrite
print
getframe
rgb2ind
frame2im

526 A. CREATING PUBLICATION-QUALITY FIGURES

A P P E N D I X

B

Relevant Toolboxes

In this appendix, we will give a brief overview of some toolboxes that are highly rele-
vant to research in the neural sciences.

B.1 THE CONCEPT OF TOOLBOXES

One of the great strengths of MATLAB® is that in addition to a large (and growing) num-
ber of general purpose functions, MathWorks also sells kits of powerful and highly optimized
functions for special purposes. One such kit is called a toolbox. There are toolboxes available
for many different fields. For instance, there is a Financial Instruments Toolbox that allows
you to design complex financial products. Be very careful when using that one. You wouldn’t
inadvertently want to cause the downfall of western civilization as we know it. In general,
the number of toolboxes is large, growing, and their content is constantly changing. Thus, we
will only be able to give a brief overview of some of the most relevant ones here. Yet, if you
want to use toolboxes, it is important to keep an open mind. Almost all toolboxes can be use-
ful to neuroscience researchers in some way, e.g. the curve fitting toolbox.

Also, it should be noted that some people oppose the use of toolboxes on philosophical
grounds. They cite, for instance, the issue that using a toolbox spoils the purity of
MATLAB and makes the user dependent on a sophisticated black box that he doesn’t
really understand. Others object to the high cost of the individual toolboxes. There is no
question that you will understand something better if you code it yourself instead of buy-
ing an off-the-shelf solution. This is a balance that you have to strike yourself, and it will
largely depend on long term goals versus immediate needs. We advise you to be prag-
matic, rather than dogmatic, non-dogmatically.

B.2 NEURAL NETWORK TOOLBOX

You already encountered neural networks in Chapters 36 and 37 of this book. While we
tried to avoid the use of the Neural Network Toolbox in Chapter 36, you did see its utility

527

in Chapter 37. The Neural Network Toolbox features interactive demos of neural network
principles, e.g., the perceptron rule (see Figure B.1).

The Neural Network Toolbox also features a large number of functions to implement
large and complex neural networks. In principle, you can quickly redo your work from
these chapters with these functions. For instance, newc creates a competitive network, and
allows you to specify the number of input elements and layers. The function train starts
the training of the neural network, and sim classifies the input with the specified network.
newhop creates a recurrent Hopfield network. If you have a lot of work with complex
neural networks, you might want to use the toolbox; but if you worked through
Chapter 36, you may appreciate why it is better to code it yourself than to rely on an
opaque toolbox.

B.3 PARALLEL COMPUTING TOOLBOX

This toolbox was developed relatively recently, but will probably play a larger and
larger role in coming years as computers with more processing cores proliferate. The
advent of multicore processors allows users to run several processing threads in parallel.
For some computations, this can speed up time to completion dramatically. For instance, if
you have a for loop that takes a long time to execute, most of your cores will be idle until
an iteration of this loop is complete and another can be started. The Parallel Computing
Toolbox introduces the function parfor. This is a parallel for loop. As long as iterations of
the loop are independent of the outcome of previous iterations, each core of your proces-
sor can work on one iteration in parallel. Before you can use parfor (or other parallel

FIGURE B.1 The perceptron rule
demoed with the Neural Network
Toolbox.

528 B. RELEVANT TOOLBOXES

processing commands), you must start a “pool” of “workers”, corresponding to the num-
ber of cores you want to use. For instance, the syntax

.. matlabpool open 3

opens a worker pool with three parallel workers to execute parallelized code.
If you do use a lot of for loops in your code that are, in principle, independent of each

other, you might want to look into parallelizing them. It might speed things up a lot.

B.4 STATISTICS TOOLBOX

MATLAB comes with a number of statistical functions that are sufficient for most basic sta-
tistical work, such as corrcoef,mean, or std to calculate the Pearson correlation coefficient, the
mean, or the standard deviation of data, respectively. While these are sufficient for many—if
not most—purposes, there will come a time when you need to use more advanced statistical
functions. Instead of writing them yourself (which you are always welcome to do), you could
use the Statistics Toolbox. It contains a large number of statistical functions that are implemen-
ted efficiently; for instance, geomean returns the geometric mean, corr allows you to compute
different flavors of rank correlations, and kurtosis, aptly, calculates the kurtosis of a distribu-
tion. It is trivial to write a bootstrap function, but this toolbox comes with a ready-made one,
bootstrp. It also includes a fairly large number of probability density functions, e.g., gampdf
for the gamma distribution. The number of included functions is really quite staggering and
there is no way we can cover them here. If you do a lot of statistical computations and don’t
want to rewrite all of these functions yourself, you might want to consider this toolbox.

B.5 MATLAB COMPILER

As we covered previously in this book, MATLAB is an interpreted language. The code is
interpreted and executed line by line as the script is run. There are many reasons why you
might not want to do things that way at some point. For instance, you might want to deploy
your data gathering program to machines that don’t even have MATLAB installed. For this
purpose, MathWorks created the compiler. It compiles your code and builds a standalone
executable. This file can then be run on any machine. The key function here is mbuild. The
first time you run the compiler, you have to run ..mbuild �setup to select a compiler.
mcc invokes the MATLAB compiler, and deploytool allows you to do all of this within a
GUI. It is worth noting that compiled code usually also executes faster than interpreted
code, generally speaking.

B.6 DATABASE TOOLBOX

If you work with very large and complex datasets, you might want to consider storing
them in a relational database, such as MySQL. As a matter of fact, any ODBC/JDBC
compliant database will do. Of course, once your data is in this format, the question

529B.6 DATABASE TOOLBOX

is how you interface with it via MATLAB. That’s where the Database Toolbox comes in.
It provides the functionality that allows you to execute MySQL queries in MATLAB, and
retrieve them from the database for further processing.

The crucial function in this context is the database function. It allows you to create a
connection to an existing database, like this:

.. conn5database('database_name ', 'username', 'password ')

This creates a connection object named “conn,” which allows you to access the specified
database, providing these credentials. Once conn exists, it can also be pinged, e.g., by
typing

..ping(conn)

To actually execute a query, you can then type � for instance �
.. curs5 exec(conn, 'select x from y;')

which uses the connection object conn we just created to query table y in the connected
database for x, and puts the whole thing in a “data cursor” variable, which you can then
further process in MATLAB. Or you can type

.. curs5 fetch(conn, 'select x from y;',1000)

to import data from the database to a structure “curs”, which will contain the results of
the query. If you retrieve numeric data, you can set the database preferences by typing

.. setdbprefs('DataReturnFormat','numeric');

Executing the command above now returns the data directly to a Matlab array.
You can also skip the command line and use querybuilder to access a visual query

builder GUI.
If you do have data in a ODBC database and want to use MATLAB to work with it, it is

probably prudent to use this toolbox.

B.7 SIGNAL PROCESSING TOOLBOX

We have already done a lot of signal processing in this book, particularly in Chapters
11�13. Once you know about the Fourier transform, you can � in principle � build most
of the signal processing functions yourself. The toolbox provides a large number of signal
processing functions that are highly optimized and versatile. For instance, unless you are
an expert (or if you want to write one yourself for educational purposes), it will be hard to
improve on the spectrogram function that comes with this toolbox. Specifically, it provides
a large number of industrial strength functions to design, analyze, and implement digital
and analog filters. It provides all commonly used window shapes, including the notorious
kaiser window. Special purpose statistical functions, e.g., those to do cross-correlations,
are also included—for instance, xcorr. There are also all the usual waveform generations
functions, e.g., sinc to create a sinc function. Yes, you can write all of these yourself, and

530 B. RELEVANT TOOLBOXES

many a self-respecting signal processing scientist has done just that. If you don’t want to
do that, it is neat to have all these little functions (that you do need all the time) ready-
made and available. And they come with this toolbox.

B.8 DATA ACQUISITION TOOLBOX

If you want to collect data via MATLAB, this toolbox might come in handy. It allows
you to directly read in signals from devices connected to the computer via a NIDAQ card
and define data sources. There are also functions to generate signals and output them to a
device. Finally, it allows you to monitor signals via a virtual oscilloscope, invoked by the
function softscope.

B.9 IMAGE PROCESSING TOOLBOX

This toolbox might be of particular interest to you if you work on trying to understand
the visual system. The toolbox affords all kinds of sophisticated algorithms for image proces-
sing and analysis. Those who work with medical imaging, particularly MRIs, will benefit
from a direct way to read images from DICOM (digital imaging and communications in
medicine) format by using the function dicomread. For instance, you could conceivably read
MRI images into MATLAB, enhance the contrast, then save them again as DICOM images
by using dicomwrite. All kinds of image filtering and manipulation algorithms that are
familiar from programs like Photoshop are available here, e.g., through the edge function,
which finds edges in grayscale images or imhist which yields a histogram of the luminance
of an image.

B.10 PSYCHOPHYSICS TOOLBOX AND MGL

The Psychophysics Toolbox was not developed by MathWorks, and it can be down-
loaded for free at http://psychtoolbox.org/HomePage. It is most useful for the controlled
presentation of visual stimuli, and is thus mostly used by visual psychophysicists. One of
the great strengths of this toolbox is its generality, which leads to flexibility. If the hard-
ware and MATLAB allow the display of a stimulus, this toolbox will allow you to display
it with high temporal precision. While MATLAB is an interpreted language, the
Psychophysics Toolbox achieves high temporal fidelity by utilizing compiled low-level C-
code, which is closer to the hardware. MATLAB allows you to call these functions, so-
called MEX files (for “MATLAB executable”). With the Psychophysics Toolbox, you create
a stimulus as a MATLAB matrix, put it into a frame buffer, and then put that on the screen
and wait for a user response. The function screen constitutes the core of the Psychophysics
Toolbox. After opening a screen with 'OpenWindow', you can then put an image repre-
sented by a MATLAB matrix on the screen ('PutImage'). There are all kinds of other useful
functions within this toolbox, e.g., PsychGamma for the gamma calibration of the monitor,
Quest to efficiently calculate thresholds, getmouse to retrieve user input from the mouse,

531B.10 PSYCHOPHYSICS TOOLBOX AND MGL

http://psychtoolbox.org/HomePage

etc. Importantly in times of highly multithreaded operating systems, the Psychophysics
Toolbox lets you set the priority of the executing program, telling the OS that now is not a
good time to run a cleanup process in the background. There is a devoted user base, and
the Psychophysics Toolbox is in use by hundreds if not thousands of labs.

A very similar and more recent offering is provided by the “MGL” package, which
uses simple and atomic functions (implemented as MEX files) to provide OpenGL
functionality. At this point, MGL is only available for the Mac. The advantage of
MGL is its full integration with neuroimaging and eye tracking hardware. If
anything, the temporal precision is even higher than in the Psychophysics Toolbox.
MGL is in active development, is increasingly popular, and can be downloaded here:
http://gru.brain.riken.jp/doku.php/mgl/download.

B.11 CHRONUX

You (presumably) first encountered Chronux in Chapter 23, when analyzing LFP data.
Chronux was developed by the Mitra Lab at Cold Spring Harbor Laboratory. It is dis-
cussed in detail in Observed Brain Dynamics, and it makes extensive use of Slepian func-
tions. It can be downloaded for free at http://chronux.org/.

The large number of efficient and sophisticated signal processing functions afforded by
Chronux is beyond the scope of this brief blurb. For instance, Chronux provides spectral
analysis functions that inherently make use of multiple tapers—in contrast to those pro-
vided by MATLAB—that neatly recover the edges of the time window. If you are serious
about the processing of neural signals, you might want to consider giving it a spin.

B.12 MATHWORKS FILE EXCHANGE

MATLAB has a huge user base. While not everyone has the stamina to build an entire
toolbox, lots of people are willing to share individual functions that they think
could be useful to the community at large. There are thousands of these functions avail-
able on the MathWorks File Exchange, and all of them can be downloaded for free at
www.mathworks.com/matlabcentral/fileexchange/.

Many of these functions are modified versions of original MATLAB functions, such as
improved subplots, polar plots, etc. Some of them *are* entire toolboxes, for instance the
“Circular Statistics Toolbox”, which provides functions for the analysis of circular data, for
instance circular mean or circular variance, among many others: http://www.mathworks.
com/matlabcentral/fileexchange/10676-circular-statistics-toolbox-directional-statistics.

Before you go ahead and reinvent the wheel, you should probably check on the file
exchange if someone already did. Of course, you can also make your own toolbox and
share it with the world. You can find mine at http://goo.gl/sPxVK.

532 B. RELEVANT TOOLBOXES

http://gru.brain.riken.jp/doku.php/mgl/download
http://chronux.org/
http://www.mathworks.com/matlabcentral/fileexchange/
http://www.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox-directional-statistics
http://www.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox-directional-statistics
http://goo.gl/sPxVK

References

Preface References

Karpicke, J.D., Roediger, H.L., 2008. The critical importance of retrieval for learning. Science 319, 966�968.

Chapter 1 References
Genesee, F., 1985. Second language learning through immersion: A review of U.S. programs. Rev. Educ. Res.

55 (4, Winter), 541�561.
Grube, G.M.A., Reeve C.D.C., 1992. Plato: Republic. Hackett Publishing Co., Inc.
Hubel, D.H., Wiesel, T.N., 2004. Brain and visual perception: The story of a 25-year collaboration. Oxford

University Press, New York, 707.
Marr, D., 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual

Information. W.H. Freeman and Company, New York.
Whitehead, A.N., 1959. The aims of education. Daedalus 88.1, 192�205.

Chapter 2 References

Berry, D.C., Broadbent, D.E., 1984. On the relationship between task performance and associated verbalized
knowledge. Q. J. Exp. Psychol. 36A, 209�231.

Chapter 3 References

Azad, K., 2011. Math, Better Explained: Learn to Unlock Your Math Intuition. Amazon Digital Services.
Fawcett, T.W., Andrew, D.H., 2012. Heavy use of equations impedes communication among biologists. Proc.

Natl. Acad. Sci. 109.29, 11735�11739.
Gabbiani, F., Steven, J.C., 2010. Mathematics for neuroscientists. Academic Press.
Gigerenzer, G., Ulrich, H., 1995. How to improve Bayesian reasoning without instruction: Frequency formats.

Psychol. Rev. 102.4, 684�704.
Gladwell, M., 2009. What the dog saw: and other adventures. ePenguin.
“Student”. Gosset, W.S., 1908. “The probable error of a mean”. Biometrika 6, 1�25.
Hoffrage, U., Gerd, G., 1998. Using natural frequencies to improve diagnostic inferences. Acad. Med. 73.5,

538�540.
MacKay, 2003. Information Theory, Inference, and Learning Algorithms. Cambridge University Press.

Chapter 6 References

Donders, F.C., 1868. Over de snelheid van psychische processen. Onderzoekingen gedaan in het Physiologisch
Laboratorium der Utrechtsche Hoogeschool. Tweede Reeks II, 92�120, Reprinted in and translated as
Donders, F.C. (1969). On the speed of mental processes. Acta Psychologica, 30, Attention and Performance II,
412�431.

Shepard, R., Metzler, J., 1971. Mental rotation of three dimensional objects. Science 171 (972), 701�703.
Treisman, A., Gelade, G., 1980. A feature integration theory of attention. Cognit. Psychol. 12, 97�136.

Chapter 7 References

Helmholtz, H., 1867. Handbuch der Physiologischen Optik. Voss, Hamburg.
James, W., 1890. The principles of psychology, vol. 1. Henry Holt, New York.
Posner, M.I., 1980. Orienting of attention. Q. J. Exp. Psychol. 32, 3�25.

533

http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref1
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref1
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref2
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref2
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref2
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref3
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref3
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref4
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref4
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref5
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref5
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref6
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref6
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref6
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref7
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref7
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref7
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref8
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref9
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref9
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref9
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref10
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref10
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref11
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref11
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref11
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref12
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref12
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref12
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref12
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref12
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref12
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref13
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref13
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref14
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref14
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref15
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref16
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref17
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref17

Chapter 8 References

Carpenter, R., Robson, J., 1999. Vision Research: A Practical Guide to Laboratory Methods. Oxford University
Press, New York.

Fechner, G.T. 1848. Nanna, oder über das Seelenleben der Pflanzen. Leipzig. Leopold Voss.
Fechner, G.T., 1851. Zend-Avesta oder über die Dinge des Himmels und des Jenseits: Vom Standpunkt der

Naturbetrachtung. Leopold Voss, Leipzig.
Fechner, G.T., 1860. Elemente der Psychophysik. Breitkopf und Härtel, Leipzig.
Hecht, S.P., 1942. Energy, quanta, and vision. J. Gen. Physiol. 25, 819�840.
Norton, T.T., Corliss, D.A., Bailey, J.E., 2002. The Psychophysical Measurement of Visual Function. Butterworth-

Heinemann, Woburn, MA.

Chapter 9 References
Smith, S.T., 2006. MATLAB: advanced GUI development. Dog Ear Publishing.

Chapter 10 References

Fisher, R.A., 1925. Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh.
Green, D.M., Swets, J.A., 1966. Signal Detection Theory and Psychophysics. John Wiley & Sons, Inc, New York.
Rosenthal, R., 1976. Experimenter Effects in Behavioral Research. Irvington, New York.
Ziliak, S.T., McCloskey, D.N., 2008. The Cult of Statistical Significance. How the Standard Error Costs Us Jobs,

Justice, and Lives. University of Michigan Press.

Chapter 11 References
Van Drongelen, W., 2006. Signal Processing for Neuroscientists: An Introduction to the Analysis of Physiological

Signals. Academic Press, Burlington, MA.
Hillenbrand, J., Getty, L.A., Clark, M.J., Wheeler, K., 1995. Acoustic characteristics of American English vowels.

J. Acoust. Soc. Am. 97, 3099�3111.
Peterson, G.E., Barney, H.L., 1952. Control methods used in a study of the vowels. J. Acoust. Soc. Am. 24, 175�184.

Chapter 12 References
Van Drongelen, W., 2006. Signal Processing for Neuroscientists: An Introduction to the Analysis of Physiological

Signals. Academic Press, Burlington, MA.

Chapter 13 References

Percival, D., Walden, A., 2000. Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge.
Quiroga, R., Nadasdy, Z., Ben-Shaul, Y., 2004. Unsupervised spike detection and sorting with wavelets and

superparamagnetic clustering. Neural Comput. 16, 1661�1687.

Chapter 15 References

Fitzhugh, R., 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445�466.

Chapter 16 References
Dayan, P., Abbott, L.F., 2001. Theoretical neuroscience. MIT Press, Cambridge, MA.
Lotto, R.B., Williams, S.M., Purves, D., 1999. An empirical basis for Mach bands. Proc. Natl. Acad. Sci. USA 96,

5239�5244.
Ratliff, F., 1965. Mach bands: Quantitative studies on neural networks in the retina. Holden-Day, San Francisco, CA.
Sekular, R., Blake, R., 2002. Perception, 4th Ed. McGraw-Hill, New York.

Chapter 18 References
Hatsopoulos, N.G., Ojakangas, C.L., Paninski, L., Donoghue, J.P., 1998. Information about movement direction

obtained from synchronous activity of motor cortical neurons. Proc. Natl. Acad. Sci. USA 95 (26),
15706�15711.

534 REFERENCES

http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref18
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref18
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref9002
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref9002
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref19
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref20
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref20
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref21
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref21
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref22
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref23
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref24
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref25
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref26
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref26
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref27
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref27
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref27
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref28
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref28
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref29
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref29
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref30
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref31
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref31
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref31
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref32
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref32
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref33
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref34
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref34
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref34
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref35
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref36
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref37
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref37
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref37
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref37

Optican, L.M., Richmond, B.J., 1987. Temporal encoding of two-dimensional patterns by single units in primate
inferior temporal cortex. III. Information theoretic analysis. J. Neurophysiol. 57 (1), 162�178.

Panzeri, S., Senatore, R., Montemurro, M.A., Petersen, R.S., 2007. Correcting for the sampling bias problem in
spike train information measures. J. Neurophysiol. 98 (3), 1064�1072.

Richmond, B.J., Optican, L.M., 1987. Temporal encoding of two-dimensional patterns by single units in primate
inferior temporal cortex. II. Quantification of response waveform. J. Neurophysiol. 57 (1), 147�161.

Richmond, B.J., Optican, L.M., Podell, M., Spitzer, H., 1987. Temporal encoding of two-dimensional patterns
by single units in primate inferior temporal cortex. I. Response characteristics. J. Neurophysiol. 57 (1),
132�146.

Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379�423, 623�656.

Chapter 19 References
Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., Massey, J.T., 1982. On the relations between the direction of

two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2 (11), 1527�1537.
Hartline, H.K., 1940. The receptive fields of optic nerve fibers. Am. J. Physiol. 130, 690�699.

Chapter 20 References
Hatsopoulos, N.G., Xu, Q., Amit, Y., 2007. Encoding of movement fragments in the motor cortex. J. Neurosci. 27,

5105�5114.
Moran, D.W., Schwartz, A.B., 1999. Motor cortical representation of speed and direction during reaching.

J. Neurophysiol. 82, 2676�2692.

Chapter 21 References

Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E., 1986. Neuronal population coding of movement direction.
Science 233 (4771), 1416�1419.

Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., et al., 2006. Neuronal ensemble
control of prosthetic devices by a human with tetraplegia. Nature 442 (7099), 164�171.

Papsin, B.C., Gordon, K.A., 2007. Cochlear implants for children with severe-to-profound hearing loss. N. Engl.
J. Med. 357 (23), 2380�2387.

Chapter 22 References

Brockwell, A.E., Rojas, A.L., Kass, R.E., 2004. Recursive Bayesian decoding of motor cortical signals by particle
filtering. J. Neurophysiol. 91 (4), 1899�1907.

Brown, E.N., Frank, L.M., Tang, D., Quirk, M.C., Wilson, M.A., 1998. A statistical paradigm for neural spike train
decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells.
J. Neurosci. 18 (18), 7411�7425.

Georgopoulos, A.P., Kettner, R.E., Schwartz, A.B., 1988. Primate motor cortex and free arm movements to visual
targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population.
J. Neurosci. 8 (8), 2928�2937.

Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., et al., 2006. Neuronal ensemble
control of prosthetic devices by a human with tetraplegia. Nature 442 (7099), 164�171.

Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., Donoghue, J.P., 2002. Instant neural control of a
movement signal. Nature 416 (6877), 141�142.

Warland, D.K., Reinagel, P., Meister, M., 1997. Decoding visual information from a population of retinal ganglion
cells. J. Neurophysiol. 78 (5), 2336�2350.

Wu, W., Shaikhouni, A., Donoghue, J.P., Black, M.J., 2004. Closed-loop neural control of cursor motion using a
Kalman filter. Conf. Proc. IEEE Eng. Med. Biol. Soc. 6, 4126�4129.

Chapter 23 References
van Drongelen, W., 2007. Signal Processing for Neuroscientists: Introduction to the Analysis of Physiological

Signals. Elsevier/Academic Press, Amsterdam.
Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D.L., Carandini, M., 2009. Local origin of field potentials

in visual cortex. Neuron 61 (1), 35�41.
Mitra, P., Bokil, H., 2008. Observed Brain Dynamics. Oxford University Press, New York.

535REFERENCES

http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref38
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref38
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref38
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref39
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref39
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref39
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref40
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref40
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref40
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref41
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref41
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref41
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref41
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref42
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref42
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref42
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref43
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref43
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref43
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref44
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref44
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref45
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref45
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref45
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref46
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref46
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref46
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref47
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref47
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref47
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref48
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref48
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref48
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref49
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref49
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref49
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref50
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref50
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref50
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref51
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref51
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref51
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref51
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref52
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref52
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref52
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref52
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref53
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref53
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref53
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref54
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref54
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref54
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref55
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref55
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref55
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref56
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref56
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref56
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref57
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref57
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref58
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref58
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref58
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref59

O’Leary, J.G., Hatsopoulos, N.G., 2006. Early visuomotor representations revealed from evoked local field potentials
in motor and premotor cortical areas. J. Neurophysiol. 96 (3), 1492�1506.

Pesaran, B., Pezaris, J.S., Sahani, M., Mitra, P.P., Andersen, R.A., 2002. Temporal structure in neuronal activity
during working memory in macaque parietal cortex. Nat. Neurosci. 5 (8), 805�811.

Chapter 24 References

Aguirre, G.K., Zarahn, E., D’Esposito, M., 1998. The variability of human, BOLD hemodynamic responses.
Neuroimage 8, 360�369.

Bandettini, P.A., Wong, E.C., Hinks, R.S., Tikofsky, R.S., Hyde, J.S., 1992. Time course EPI of human brain function
during task activation. Magn. Reson. Med. 25, 390�397.

Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the motor cortex of resting
human brain using echo-planar MRI. Magn. Reson. Med. 34, 537�541.

Boynton, G.M., Engel, S.A., Glover, G.H., Heeger, D.J., 1996. Linear systems analysis of functional magnetic resonance
imaging in human V1. J. Neurosci. 16, 4207�4221.

Buchel, C., Friston, K.J., 1997. Modulation of connectivity in visual pathways by attention: cortical interactions
evaluated with structural equation modelling and fMRI. Cereb. Cortex 7, 768�778.

Buckner, R.L., 2003. The hemodynamic inverse problem: making inferences about neural activity from measured
MRI signals. Proc. Natl. Acad. Sci. USA 100, 2177�2179.

Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J., 2001. A method for making group inferences from functional
MRI data using independent component analysis. Hum. Brain Mapp. 14, 140�151.

Calhoun, V.D., Stevens, M.C., Pearlson, G.D., Kiehl, K.A., 2004. fMRI analysis with the general linear model:
removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms. Neuroimage
22, 252�257.

Chumbley, J.R., Friston, K.J., 2009. False discovery rate revisited: FDR and topological inference using Gaussian
random fields. Neuroimage 44, 62�70.

Cox, R.W., 1996. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages.
Comput. Biomed. Res. 29, 162�173.

Donaldson, D.I., Buckner, R.L., 2003. Effective paradigm design. In: Jezzard, P., Matthews, P.M., Smith, S.M.
(Eds.), Functional MRI: An Introduction to Methods. Oxford University Press.

Evans, A.C., Collins, D.L., Mills, S.R., Brown, E.D., Kelly, R.L., Peters, T.M., 1993. 3D statistical neuroanatomical
models from 305 MRI volumes. IEEE--Nuclear Science Symposium and Medical Imaging Conference,
pp. 1813�1817.

Forman, S.D., Cohen, J.D., Fitzgerald, M., Eddy, W.F., Mintun, M.A., Noll, D.C., 1995. Improved assessment of
significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn.
Reson. Med. 33, 636�647.

Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E., 2005. The human brain is
intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102,
9673�9678.

Friston, K.J., Buechel, C., Fink, G.R., Morris, J., Rolls, E., Dolan, R.J., 1997. Psychophysiological and modulatory
interactions in neuroimaging. Neuroimage 6, 218�229.

Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. Neuroimage 19, 1273�1302.
Friston, K.J., Holmes, A.P., Poline, J.B., Grasby, P.J., Williams, S.C., Frackowiak, R.S., et al., 1995. Analysis of fMRI

time-series revisited. Neuroimage 2, 45�53.
Genovese, C.R., Lazar, N.A., Nichols, T., 2002. Thresholding of statistical maps in functional neuroimaging using

the false discovery rate. Neuroimage 15, 870�878.
Gitelman, D.R., Penny, W.D., Ashburner, J., Friston, K.J., 2003. Modeling regional and psychophysiologic interac-

tions in fMRI: the importance of hemodynamic deconvolution. Neuroimage 19, 200�207.
Handwerker, D.A., Ollinger, J.M., D’Esposito, M., 2004. Variation of BOLD hemodynamic responses across subjects

and brain regions and their effects on statistical analyses. Neuroimage 21, 1639�1651.
Henson, R., Rugg, M., Friston, K.J., 2001. The choice of basis functions in event-related fMRI. HBM01 abstract,

Neuroimage, 13, 149.
Henson, R.N., Shallice, T., Gorno-Tempini, M.L., Dolan, R.J., 2002. Face repetition effects in implicit and explicit

memory tests as measured by fMRI. Cereb. Cortex 12, 178�186.

536 REFERENCES

http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref60
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref60
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref60
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref61
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref61
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref61
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref62
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref62
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref62
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref63
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref63
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref63
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref64
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref64
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref64
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref65
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref65
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref65
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref66
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref66
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref66
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref67
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref67
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref67
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref68
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref68
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref68
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref69
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref69
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref69
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref69
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref70
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref70
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref70
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref71
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref71
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref71
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref72
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref72
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref73
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref73
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref73
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref73
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref74
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref74
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref74
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref74
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref75
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref75
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref75
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref76
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref76
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref77
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref77
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref77
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref78
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref78
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref78
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref79
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref79
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref79
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref80
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref80
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref80
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref81
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref81
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref81

Huettel, S.A., McCarthy, G., 2001. The effects of single-trial averaging upon the spatial extent of fMRI activation.
Neuroreport 12, 2411�2416.

Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., et al., 1992. Dynamic
magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad.
Sci. USA 89, 5675�5679.

Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A., 2001. Neurophysiological investigation of the
basis of the fMRI signal. Nature 412, 150�157.

McIntosh, A.R., Bookstein, F.L., Haxby, J.V., Grady, C.L., 1996. Spatial pattern analysis of functional brain images
using partial least squares. Neuroimage 3, 143�157.

McLaren, D.G., Ries, M.L., Xu, G, Johnson, S.C., 2012. A generalized form of context-dependent psychophysiologi-
cal interactions (gPPI): a comparison to standard approaches. NeuroImage. 61, 1277�1286.

Ogawa, S., Tank, D.W., Menon, R., Ellermann, J.M., Kim, S.G., Merkle, H., et al., 1992. Intrinsic signal changes
accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl.
Acad. Sci. USA 89, 5951�5955.

Pauling, L., Coryell, C.D., 1936. The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and
Carbonmonoxyhemoglobin. Proc. Natl. Acad. Sci. USA 22, 210�216.

Raichle, M.E., Mintun, M.A., 2006. Brain work and brain imaging. Annu. Rev. Neurosci. 29, 449�476.
Shulman, G.L., McAvoy, M.P., Cowan, M.C., Astafiev, S.V., Tansy, A.P., d’Avossa, G., et al., 2003. Quantitative

analysis of attention and detection signals during visual search. J. Neurophysiol. 90, 3384�3397.
Smith, S.M., 2003a. Overview of fMRI analysis. In: Jezzard, P., Matthews, P.M., Smith, S.M. (Eds.), Functional

MRI: An Introduction to Methods. Oxford University Press.
Smith, S.M., 2003b. Preparing fMRI data for statistical analysis. In: Jezzard, P., Matthews, P.M., Smith, S.M. (Eds.),

Functional MRI: An Introduction to Methods. Oxford University Press.
Steffener, J., Tabert, M., Reuben, A., Stern, Y., 2010. Investigating hemodynamic response variability at the group

level using basis functions. Neuroimage 49, 2113�2122.
Worsley, K.J., Friston, K.J., 1995. Analysis of fMRI time-series revisited—again. Neuroimage 2, 173�181.

Chapter 25 References

Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its application to conduc-
tion and excitation in nerve. J. Physiol. 116, 500�544.

Chapter 26 References
del Castillo, J., Katz, B., 1954. The effect of magnesium on the activity of motor nerve endings. J. Physiol (Lond).

124, 553�559.
del Castillo, J., Katz, B., 1954. Quantal components of the end-plate potential. J. Physiol. 124, 560�573.
Fatt, P., Katz, B., 1952. Spontaneous sunthershold activity at motor nerve endings. J. Physiol. (Lond) 117, 109�128.

Chapter 27 References

Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its application to conduction
and excitation in nerve. J. Physiol. 117, 500�544.

Hodgkin, A.L., Katz, B., 1949. The effect of sodium ions on the electrical activity of the gaint axon of the squid.
J. Physiol. 108 (1), 37�77.

Chapter 29 References
Izhikevich, E.M., 2003. Simple model of spiking neurons. IEEE Trans. Neural. Netw. 14 (6), 1569�1572.

Chapter 30 References

Murray, J.D., 2002. Mathematical biology I: An introduction. Springer-Verlag, New York.
Strauss, W.A., 1992. Partial differential equations: An introduction. John Wiley & Sons, Inc, New York.
Wilson, H.R., 1999. Spikes, decisions, and actions: Dynamical foundations of neuroscience. Oxford University

Press, Oxford.

537REFERENCES

http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref82
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref82
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref82
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref83
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref83
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref83
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref83
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref84
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref84
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref84
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref85
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref85
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref85
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref86
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref86
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref86
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref86
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref87
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref87
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref87
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref88
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref88
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref89
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref89
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref89
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref90
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref90
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref91
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref91
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref92
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref92
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref92
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref93
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref93
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref94
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref94
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref94
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref95
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref95
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref95
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref96
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref96
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref97
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref97
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref98
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref98
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref98
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref99
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref99
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref99
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref100
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref100
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref101
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref102
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref103
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref103

Chapter 31 References

Shadlen, M.N., Newsome, W.T., 2001. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the
rhesus monkey. J. Neurophysiol. 86 (4), 1916�1936.

Swensson, R., 1972. The elusive tradeoff: Speed vs accuracy in visual discrimination tasks. Percept. Psychophys.
vol. 12 (1-A), 16�32.

Chapter 32 References
Herbst, J.A., Gammeter, S., Ferrero, D., Hahnloser, R.H., 2008. Spike sorting with hidden Markov models. J.

Neurosci. Methods 174 (1), 126�134.

Chapter 33 References

Brown, E.N., Barbieri, R., Ventura, V., Kass, R.E., Frank, L.M., 2002. The time-rescaling theorem and its application
to neural spike train data analysis. Neural. Comput. 14, 325�346.

Donald, E.K., 1969. Seminumerical Algorithms, The Art of Computer Programming, vol. 2. Addison Wesley, NJ.
von Neumann, J., 1951. Various techniques used in connection with random digits. Monte Carlo methods. Nat.

Bureau Standards 12, 36�38.

Chapter 34 References
Wilson, H.R., Cowan, J.D., 1972. Excitatory and inhibitory interactions in localized populations of model neurons.

J. Biophys. 12, 1�24.

Chapter 35 References
Bak, P., Chen, K., Tang, C., 1990. A forest-fire model and some thoughts on turbulence. Phys. Lett. A 147,

297�300.
Buice, M., Cowan, J.D., 2007. Field-theoretic approach to fluctuation effects in neural networks. Phys. Rev. E. 75,

051919.
Drossel, B., Schwabl, F., 1992. Self-organized critical forest-fire model. Phys. Rev. Lett. 69, 1629�1632.
Drossel, C., Schwabl, 1994. Crossover from percolation to self-organized criticality. Phys. Rev. E 50, R2399�R2402.

Chapter 36 References
Anderson, J.A., et al., 1977. Distinctive features, categorical perception, and probability learning: Some applications

of a neural model. Psychol. Rev. 84, 413�451.
Bliss, T.V., Lomo, T., 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized

rabbit following stimulation of the perforant path. J. Physiol. 232 (2), 331�356.
Gauthier, I., Behrmann, M., Tarr, M.J., 2004. Are Greebles like faces? Using the neuropsychological exception to

test the rule. Neuropsychologia 42 (14), 1961�1970.
Gauthier, I., Tarr, M.J., 1997. Becoming a “Greeble” expert: Exploring mechanisms for face recognition. Vision

Res. 37 (12), 1673�1682.
Hebb, D.O., 1949. Organization of behavior. John Wiley & Sons, New York.
James, W., 1890. The principles of psychology. Henry Holt & Sons, Inc, New York.
Rumelhart, D.E., Zipser, D., 1985. Feature discovery by competitive learning. Cogn. Sci. 9, 75�112.

Chapter 37 References
Adrian, E.D., Matthews, R., 1927. The action of light on the eye: Part I. The discharge of impulses in the optic

nerve and its relation to the electric changes in the retina. J. Physiol. 63 (4), 378�414.
Albus, J.S., 1971. A theory of cerebellar function. Math. Biosci. 10, 25�61.
Hebb, D.O., 1949. Organization of behavior. John Wiley & Sons, New York.
Ito, M., Kano, M., 1982. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive

stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci. Lett. 33 (3), 253�258.
Krupa, D.J., Thompson, J.K., Thompson, R.F., 1993. Localization of a memory trace in the mammalian brain.

Science 260 (5110), 989�991.

538 REFERENCES

http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref104
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref104
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref104
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref105
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref105
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref105
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref9005
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref9005
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref9005
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref106
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref106
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref106
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref107
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref9006
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref9006
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref9006
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref108
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref108
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref108
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref109
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref109
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref109
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref9008
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref9008
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref110
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref110
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref111
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref111
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref112
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref112
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref112
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref113
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref113
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref113
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref114
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref114
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref114
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref115
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref115
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref115
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref116
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref117
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref118
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref118
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref119
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref119
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref119
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref120
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref120
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref121
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref122
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref122
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref122
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref123
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref123
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref123

Marr, D., 1969. A theory of cerebellar cortex. J. Physiol. 202 (2), 437�470.
McCulloch, W.S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. Bull. Math.

Biophys. 5, 115�133.
Medina, J.F., et al., 2000. Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr. Opin.

Neurobiol. 10 (6), 717�724.
Minsky, M., Papert, S., 1969. Perceptrons: An introduction to computational geometry. MIT Press, Cambridge, MA.
Ojakangas, C.L., Ebner, T.J., 1992. Purkinje cell complex and simple spike changes during a voluntary arm movement

learning task in the monkey. J. Neurophysiol. 68 (6), 2222�2236.
Ojakangas, C.L., Ebner, T.J., 1994. Purkinje cell complex spike activity during voluntary motor learning:

Relationship to kinematics. J. Neurophysiol. 72 (6), 2617�2630.
Rescorla, R.A., Wagner, A.R., 1972. A theory of Pavlovian conditioning: Variations in the effectiveness of

reinforcement and nonreinforcement. In: Black, A., Prokasy, W.F. (Eds.), Classical conditioning II. Appleton-
Century-Crofts, New York, pp. 64�69.

Rosenblatt, F., 1958. The perceptron: A probabilistic model for information storage and organization in the brain.
Psychol. Rev. 65, 386�408.

Widrow, B., Hoff, M.E., 1960. Adaptive switching circuits. IRE WESCON Convention Record. IRE, New York,
96�104.

Appendix A References
Tufte, E.R., Graves-Morris, P.R., 1983. The visual display of quantitative information, Vol. 2. Graphics Press,

Cheshire, CT. ,http://www-personal.umich.edu/Bjpboyd/eng403_chap2_tuftegospel.pdf..

Appendix B References
Mitra, P., Hemant, B., 2007. Observed Brain Dynamics. Oxford University Press, USA.
Brainard, D.H., 1997. The psychophysics toolbox. Spat. Vis. 10.4, 433�436.
Cornelissen, F.W., Peters, E.M., John, P., 2002. The Eyelink Toolbox: eye tracking with MATLAB and the

Psychophysics Toolbox. Behav. Res. Methods Instrum. Comput. 34.4, 613�617.

539REFERENCES

http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref124
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref124
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref125
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref125
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref125
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref126
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref126
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref126
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref127
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref128
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref128
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref128
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref129
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref129
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref129
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref130
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref130
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref130
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref130
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref131
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref131
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref131
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref132
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref132
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref132
http://www-personal.umich.edu/∼jpboyd/eng403_chap2_tuftegospel.pdf
http://www-personal.umich.edu/∼jpboyd/eng403_chap2_tuftegospel.pdf
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref133
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref134
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref134
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref135
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref135
http://refhub.elsevier.com/B978-0-12-383836-0.00052-7/sbref135

Index

Note: Page numbers followed by “f” and “t” refer to figures and tables, respectively.

A
Action potential. See Fitzhugh-Nagumo (FN) model;

Neuron action potential modeling
Active neurons, 481�483, 482f, 485
Addition, 9

matrix, 61
addpath, 369
allchild, 148
alpha, 511
Alpha error, 211, 211t
Alpha rhythm, 419
Amplitude spectrum, analysis, 233�234
Analysis of variance, 95�97, 168, 169t, 170
anova1, 168, 170
anova2, 170
anovan, 170
ans 5 , 9�12
Arrays, 58

operations versus matrix operations, 21
Artificial neural network. See Neural network
Attention. See Posner paradigm
axes_props, 148

B
Backpropagation, neural networks, 504, 511�512
Band-pass filter, 350�351
bar, 28, 29b, 30
Baum-Welch algorithm, 456�457
Bayesian analysis, 100�102
bench, 183
Bernoulli process, events in discrete time, 464�465
Bernoulli random variable, 76, 396
Beta error, 211, 211t
Beta rhythm, 419
Bias, information theory, 323�325
Binned, 301�302
binned spike data, 297

exercises, 302
exponential function, 298
log-linear models, 300�301
MATLAB
project, 302�303

overview, 297�302

PETH, predicting, 301�302
Poisson distribution, 299�300

Binomial coefficient, 77�78
Binomial random variable, 397
Birdsong

Markov model, 450, 450f
sonogram structure, 450, 450f

Blood oxygen level-dependent (BOLD)
preprocessing of, 364�366
signal (fMRI), 363�364

Bottom_edge, 142
Brownian motion, 440
Butterworth filter, 350�351

C
cart2pol, 280
Cell arrays, 476�478
Center, 257
Centered second difference, 426
Central Limit Theorem, 79
Central tendency of distribution, 78
Cerebus system, 310
change_name1, 126
Chebyshev filter, 350�351
children, 147
Chronux, 357
circshift, 183�185
Clear, 106
clear all, 23
close all, 28, 42
Code organization, 103�113

commenting, 112�113
coupling and cohesion, 113�114
maintenance, 103
objects, 116�128
perils of global state, 115�116
reuse and maintainability, 113
scope, 108�112
script/function, 112
separation of concerns, 114�115
side effects, limiting, 115�116
variables, 104�108

coeff, 310

541

Coefficient of determination, 99
Cohesion, 113�114
Colorbar, 358
colormap, 277, 313
colormap (white), 313
colormap(colorcube(12)), 485�486
Command-line scope, 108�109
Comments, 112�113
Competitive learning rule, 492�493, 494f, 496f
Complex Fourier transform, 231�232
Conditional distribution, 322
Conditional probability, 82�83
Conditioned stimuli (CS), 506
Cone. See Retina models
Confidence interval, 355
Confidence values, 88�89
Continuous wavelet transform (CWT), 246
Control structures, 33�37
conv, 319�320, 371�372
conv2, 280�281, 284, 484�485
conv2_periodic.m, 484�485
Convolution, 273, 343�344

Mach band illusion
reproduction with MATLAB
exercises, 276�283
project, 283�284

overview, 275�276, 275f
overview, 273�276
visual system and receptive fields, 274�275

corrcoef, 45, 160
Cortical models, 444�446
Coupling, 113�114
cov, 308
cov(), 74
Covariance, 83�84

matrices, 305�308
cumsum, 277, 282
Cumulative distribution function, 87
Curve fitting, 291�293
cwt, 248
CWT. See Continuous wavelet transform (CWT)
Cyberkinetics Neurotechnology Systems, Inc., 310

D
Data import, 45
Data pruning, 45�46
dbstack, 111
Debugger, 128�130
Decision models, 439
Decision theory lab, 439

cortical models, 444�446
free response tasks, 443
MATLAB

project, 446�447
overview, 439
race model, 444
simple accumulation of evidence, 440�442

Decoding. See Neural decoding
delete, 127�128
Delta rhythm, 419
demolin1, 503
det(), 69
Determinant, 68�70
DFT. See Discrete Fourier transform (DFT)
diag, 497
Diagonal matrices, 59�60
diary, 149
diff, 314
Difference of Gaussians function. See Mexican hat

function
Differential equations
MATLAB built-in ordinary differential equation

solvers, 429�431
solution methods, 386�390

Diffusion, neurotransmitter modeling, 399�401, 401f
Diffusion drift model (DDM), 439
dir, 325
Directional tuning, 353�356
Discrete Fourier transform (DFT), 232
Discrete wavelet transform (DWT), 250
Division, 9�10
Documentation, 149�150
Downstroke, action potential, 403
drawnow, 399
dwt, 250
DWT. See Discrete wavelet transform (DWT)
Dynamic causal models (DCM), 367

E
Edge cases and unit testing, 132�134
eig, 308, 415
Eigendecomposition theorem, 72�73
Eigenvalues, 70�72
Eigenvectors, 70�72
applications of, 73�75

Elapsed time, 155
ellip, 350�351
Elliptic filter, 350�351
else, 36
Encoding. See Neural encoding
end, 33�37
Entropy, 322
5, 17
erf, 442�443, 475
erf(x), 87�88
erfinv(), 89

542 INDEX

Ergodicity, 238
error, 417
Error function, 87
Error rate (ER), 441
errorbar, 355
Errors, taming, 128�134

debugger, 128�130
edge cases and unit testing, 132�134
logging, 130�132

Euler’s method, differential equation solution,
386�390, 421�422

Evoked potentials, 352�353
Excitation block, 269�270
exp, 298
Expected value, 78�79
Exponential distribution, 85
Exponential function, 298
Exponentials, 10
exprnd, 467
eye(n), 60

F
for, 37, 258�260, 277�278
factorial2, 110�111, 128
factorial2(5), 128
Falling phase, action potential, 403
False discovery rate (FDR), 368
Family-wise error (FWE) correction, 368
Fast Fourier transform, 232�233
fcdf() function, 97
Fechner, Gustav Theodor, 173�175, 174f
Feedforward neural networks, 494�495
feval, 390�392
fft, 232�233
figure, 28, 41, 46, 155
figure_props, 148
Filter, 182
filter, 350
filtfilt, 350
find, 23�25, 313, 423
findall, 145
findobj, 147
Fitzhugh-Nagumo (FN) model, 263

exercises, 265�267
MATLAB
project, 268�270

overview, 263�265
traveling wave modeling, 425
MATLAB

built-in ordinary differential equation solvers,
429�431

exercises, 426�433
project, 434�438

overview, 425�426
second derivative operator, 426�429, 428f

fliplr, 282
flipud, 282
floor, 397�398
fMRI. See Functional magnetic resonance imaging

(fMRI)
Forest, 486�487
Forest fire lab, 481

exercises, 483�486
neural analysis, 482�483
overview, 481�483
projects, 487

ForestFireModel, 483
Formants

speech sounds, 236
vowels, 236t

format, 11, 30
Fourier decomposition, 237

amplitude spectrum analysis, 233�234
complex Fourier transform, 231�232
fast Fourier transform, 232�233
inverse discrete Fourier transform, 233
MATLAB project, 236
nonstationary signal analysis
Gaussian window, 240
Hamming window, 240
Hann window, 240
MATLAB

electroencephalogram analysis, 242
exercises, 240�242

overview, 237�240
short-time Fourier transform, 239�240, 242, 245

phase analysis, 234�235, 235f
power spectrum analysis, 234�235

real Fourier series, 229�231
fplot, 51, 51f
Frequency analysis. See Fourier decomposition; Wavelet
fspecial, 284
Function, 32

handles, 50�53
overview, 30

Function files, 112
Function-level scope, 109�110
Functional magnetic resonance imaging (fMRI), 361

analysis methods, 366�367
basic physics of, 362�363
BOLD Signal, 363�364
preprocessing of, 364�366

caveats and limitations, 369
data collection methods, 376�379
exercises, 369�376
experimental designs, 366

543INDEX

Functional magnetic resonance imaging (fMRI)
(Continued)

group analysis, 379
MATLAB

project, 376�379
multiple comparisons, 367�368
overview, 361�369

Fundamental error, 212

G
Gabor transform, 240
Gamma function, 106
Gamma rhythm, 419
Gating variable, 383
Gaussian distribution, 299�300, 319
Gaussian window, 240
Generalized linear model (GLM), 300�301
Generic equilibria, 257
genpath, 369
get, 142�143, 159�160, 200
getHostAddress, 201
glmfit, 300�301, 341
Global functions, 105
global increment_value, 112
Global scope, 111�112
Global variable, 115�116
Go/No Go task, 440�441
Graphical user interface (GUIs), 193

basics, 194
MATLAB

project, 207
overview, 193�194
for psychophysics, 202�207
structures and functions, 200�201
for tracking IP address, 194�202

Graphics
advanced plotting, 38�41
basic visualization, 25�30

Greebles, 498�499
guidata, 200, 205
guide, 195

H
hamming, 240
Hamming window, 240
Handle class, 122�128
handles, 200
Hann window, 240
Hebbian learning rule, 490�492
help, 9, 15, 55
help graph3D, 313
help waveform, 250
Hemodynamic response function (HRF), 364

Hidden Markov model (HMM), 456�457
hist3, 312�313
histc, 288�290, 334
hit, 30
HMM. See Hidden Markov model (HMM)
hmmtrain, 457, 459, 462
hmmviterbi, 460
Hodgkin-Huxley model. See Neuron action potential

modeling
hold, 30
hold on, 28, 41, 392
hold off, 28
Hopfield network, 497�498
Horizontal cell. See Retina models
Hyperplane, 502

I
Identity matrices, 60
idwt, 250
if, 36
if, elseif, 426�428
ifft, 233
Igon values, 68
im2frame, 184�185
Image, 176, 183
imagesc, 249, 277, 288�289, 374
imfilter, 284
imread, 177
imwrite, 185�186
ind5 find(dist, threshold), 313
Independent component analysis (ICA), 367
Indices, 59
Information theory, 317, 322�323
bias, 323�325
conditional distribution, 322
information theory, 322�323
joint probability distribution, 320�321
marginal probability distributions, 321
MATLAB

exercises, 326�327
project, 327

motor cortical data, 318�319
shuffle correction, 325�326
spike density functions, 319�320

Inspector, 197�198
Interactive programs, user input, 41�44
inv, 416
inv(A), 64
Inverse discrete Fourier transform, 233
Ion channels. See Voltage-gated ion channels
IP address, tracking
graphical user interface for, 194�202

isnan, 46

544 INDEX

J
Jacobian matrix, 265
Joint probability distribution, 81�84, 320�321

K
Kalman filter, 346�347
Kernel, 319
kin, 301�302
kin.x, 301�302
kin.xvel, 301�302
Kirchhoff’s Loop Rules, 406
Kolmogorov axioms, 75�76

L
Lambda, 465�466
Lamour frequency, 362
latent, 310
Least squares optimization, 98�99
Left_edge, 142
length, 15
Likelihood ratios, 219, 220t, 221, 222t
Limit cycle, 265
Linear algebra, 58�75. See also Matrices

addition, 61
determinant, 68�70
eigendecomposition, 72�73
eigenvalues and eigenvectors, 70�72
geometrical interpretation of matrix multiplication,

64�68
matrices, vectors, and arrays, 58�60
matrix multiplication, 62�64
principal component analysis (PCA), 73�75
scalar multiplication, 61�62
transposition, 60

Linear associator, 491�492
Linear filter approach, neural decoding, 339�341, 347
Linear regression, 97�100
linespec, 148
line_props, 148
linspace, 16, 283
lip_activity, 445�446
load, 15
load Forest, 486�487
Local field potentials, 349

directional tuning, 353�356
evoked potentials, 352�353
exercises, 359
MATLAB
project, 360

overview, 349�359
spectrograms, 356�359

Log-linear models, 300�301
Logging, 130�132

Logical operators, syntax, 25
logspace, 16
Long-term depression, 492�493
Long-Term Potentiation, 491

M
M-files, 30
Mach band illusion

overview, 275�276, 275f
reproduction with MATLAB
exercises, 276�283
project, 283�284

Magnetic resonance imaging. See Functional magnetic
resonance imaging (fMRI)

Marginal probability, 81�82
Marginal probability distributions, 321
Markov model, 449

birdsong, 450, 451f
MATLAB
exercises

hidden Markov model, 456
overview, 449�453
project, 461�462

Markov_sequence, 453
MATLAB, 242, 252

calculator functions, 9�12
launching, 8�9
learning approaches, 1
purpose and philosophy, 7�25

Matrices, 58�60
addition, 61
algebra, 18�22
characteristic equation of, 71
defining, 12�18
diagonal, 59�60
identity, 60
indexing, 23�25
multiplication, 62�64
geometrical interpretation of, 64�68

operations
versus array operations, 21

scalar multiplication, 61�62
square, 59�60

max, 155
Maximum a posteriori (MAP) estimation, neural

decoding, 341�342
Maximum likelihood algorithm, neural decoding,

332�334
Mean, 78�79, 355

estimate of, 80
mean, 47, 155
mean(), 81
Median, 78

545INDEX

memory, 185
mesh, 39
meshgrid, 261, 279�280, 282
meshgrid(), 258�260
Mexican hat function, 274, 279f, 282
Mexican hat wavelet, 247
Microsoft Windows, 193
min, 155
mnemonic variable names, 104, 106
Mode, 78
Morlet wavelet, 246�247, 247f
Motif, birdsong, 450
Motor cortical data, 318�319
movie, 184
movie2avi, 186
mtspecgramc, 357f
mtspecgramtrigc, 358
Multiple iterators, 444
Multiplication, 9
Multitaper spectral analysis, 357�358
Mutual information, 323�326
mvnrand, 308

N
nargin, 483�484
Natural logarithm, 10
Neural data analysis I, 287
Neural data analysis II, 297
Neural decoding

continuous variables, 337
linear filter, 339�341, 347
MATLAB project, 347
overview, 337�347
recursive Bayesian decoder, 347

discrete variables, 329
MATLAB analysis
data features, 334
exercises, 335

maximum likelihood algorithm, 332�334
overview, 329�334
peri-stimulus time histogram, 330f
population vector algorithm, 331�332
raster plot, 330f

maximum a posteriori (MAP) estimation, 341�342
recursive Bayesian estimation, 343�347

Neural encoding, 287
curve fitting, 291�293
exercises, 287�293
MATLAB

project, 294�295
overview, 287
peri-event time histogram, 289�290

raster plot, 288�289
rate encoding, 331
temporal encoding, 331
tuning curves, 290�291

Neural network, 489
exercises, 506�515
feedforward versus recurrent architecture, 494�495
Hopfield network, 497�498
overview, 489
supervised learning, 501

backpropagation, 511�512
linear network creation, 508�511, 508f
MATLAB
project, 515�517
sound manipulation, 512�515

multi-layer supervised networks, 503�505, 504f
neurobiology, 505�506
perceptron creation, 506�508, 508f
perceptron learning rule, 501
single-layer supervised networks, 501�503, 502t
Widrow-Hoff learning rule, 502�503

unsupervised learning, 489
competitive learning rule, 492�493, 494f, 496f
Hebbian learning rule, 490�492
MATLAB
competitive learning and multilayer networks,

495�497
Neural Network Toolbox, 498
project, 498�500
recurrent network, 494�495

Neuron action potential modeling, 263
action potential phases, 403
Hodgkin-Huxley model, 408, 408t
MATLAB

exercises, 409�410
project, 410

Neuron spikes. See Spiking neurons
Neurotransmitter release. See Synaptic transmission
nlinfit, 293�294, 348
Nodal sink, 256
Nodal source, 256�257
Non-homogeneous poisson process, 469�470
Normal distribution, 87�88
cumulative distribution function of, 87

normcdf, 91�92, 213
normcdf(x, mu, sigma), 87�88
normpdf, 212�213, 335
normrnd, 81, 306
Null distribution, 325
Null hypothesis, 90
Nullclines, plotting, 258�260
Nyquist limit, 234

546 INDEX

O
Object-oriented programming (OPP), 116�128

creating, 116�118
handle class, 122�128
inheritance, 118�122

Observation equation, recursive Bayesian estimation,
343

Observed probabilities, 324
ode45, 429
ode_euler(), 261�262
Ohm’s law, 384, 405�406
One-tailed hypothesis test, 90�91
Optic nerve, 411�412

P
Partial least squares (PLS), 367
pause, 37, 158
PCA. See Principal components analysis (PCA)
Perceptron learning rule, 501
Peri-event time histogram (PETH), 287, 289�290, 301
Peri-stimulus time histogram (PSTH), 289, 318�319,

330f
Phase analysis, 234�235, 235f
Phase plane analysis

exercises, 258�262
MATLAB
project, 262

nodal sink, 256
overview, 253�257
trajectory, 255

phase_plane, 262
pinv, 373
Pitch, auditory signals, 229
plot, 25�26, 30, 424
plot3, 499
plot_cwt, 249
Poisson distribution, 84�87, 299�300
Poisson process, events in continuous time, 465�467

derive Poisson distribution, 465�466
poisspdf, 213, 299�300, 335
poissrnd, 402, 467
polyfit, 291�292, 339
Population parameters, sample estimates of, 80�81
Population vector algorithm, neural decoding, 331�332
Posner paradigm, 166, 171

overview, 166, 166f
replication in MATLAB
exercises, 166�170
project, 170�171

Potassium channels. See Neuron action potential
modeling; Voltage-gated ion channels

Power spectrum, analysis, 234�235

pplane7, 265�266, 268�271, 476�477
Primary motor cortex (MI), 294
Principal components (PCs), 317
Principal components analysis (PCA), 73�75, 305

covariance matrices, 305�308
exercises, 313�314
MATLAB
project, 314�315

overview, 305�313
principal components, 308�310
spike sorting, 310�313

princomp, 310, 314
Probability and statistics, 75�102

ANOVA testing, 95�97
Bayesian analysis, 100�102
confidence values, 88�89
joint and conditional probability, 81�84
linear regression, 97�100
normal distribution, 87�88
Poisson distribution, 84�87
random variables, 75�84
significance testing, 89�97
Student’s t distribution, 93�95

Probability density function, 86, 467
Probability distribution function, 176, 320
Probability mass function, 397
PSTH. See Peri-stimulus time histogram (PSTH)
Psychophysics, 173

absolute threshold of vision determination, 188�191
graphical user interface for, 202�207
overview, 173�175
visual stimuli creation and presentation on screen,

175�187
pwelch, 371

Q
quad, 51�52
Quiescent neurons, 481�483, 482f
quiver, 261, 496
quiver(), 258�260
quiver3, 499

R
Race model, 444
rand, 158, 423, 469, 495
rand(N), 484
randi, 158�159, 355
Random variables, 75�84

probability mass function (PMF) of, 76
without statistics toolbox, 467�469
exponential distributions, 468
Poisson distributions, 469

547INDEX

Raster plot, 287�289, 330f
Rate encoding, 331
raw_data(), 126�127
Reaction diffusion equation, 426
Reaction time (RT), 439
real, 516
Real Fourier series, 229�231
Receiver operating characteristic (ROC) curve,

215�216, 216f, 217f, 218, 224f
Receptive field, vision, 274�275
recording2, 126�127
Rectangle, 166
Recurrent networks, 494�495
Recursive Bayesian estimation, neural decoding,

343�347
Recursive functions, 109�110
Refractory neurons, 481�482, 482f
regress, 292�294
regress(), 99�100
Relational operators, 25
repmat, 308, 373
reshape, 371, 434, 438
Retina models, 412�413

cone cell-horizontal cell interactions
equations, 412�413
mathematical background, 413�415
MATLAB
exercises, 415�416
project, 417

neurobiology, 411�412
Retinal feedback model, 253
Rhodopsin, 411�412
Rising phase, action potential, 403
RK4(), 261�262
ROC curve. See Receiver operating characteristic (ROC)

curve
Runge-Kutta method, differential equation solution,

387�388, 392

S
Saddle point, 254
Sample covariance, 307
Sample mean, 306
Sample variance, 306�307
sample_rate(), 126�127
save, 14�15
Scalar multiplication, 61�62
Scalogram, 247�249, 248f
Scope, 108�112

during recursive call, 110f
score, 310

Script files, 112
Scripts, 30�32
Separation of concerns, 114�115
Session, 314
set, 38�39, 141, 159, 200, 399, 509
Shannon entropy, 322
shg, 374
Short-time Fourier transform (STFT), 239�240, 242, 245
Shuffle correction, 325�326
(sigma), 308
Sigmoidal functions, 475
Signal detection theory, 209
MATLAB application

distributions of signal absent versus signal present,
214f

exercises, 212�225
frequency distribution histograms, 219, 221f
likelihood ratios, 219, 220t, 222, 222t
project, 225
receiver operating characteristic curve, 215, 216f,

217f, 218, 224f
overview, 209�212
payoff matrix, 210t

Significance level, 211
Significance testing, 89�97
ANOVA testing, 95�97
Student’s t distribution, 93�95

size, 15
Sodium channels. See Neuron action potential

modeling; Voltage-gated ion
Sodium reversal potential, 405
sound, 513�514
spectrogram, 240, 241f, 252, 356�359, 504f, 514, 516,

516f
Spike density function, 317, 319�320
Spike sorting, 310�313
Spike times, 288, 289f
Spike trains modeling, 463
Bernoulli process, events in discrete time, 464�465
MATLAB

project, 471
non-homogeneous poisson process, 469�470
overview, 463
Poisson process, events in continuous time, 465�467

derive Poisson distribution, 465�466
random variables without statistics toolbox, 467�469

exponential distributions, 468
Poisson distributions, 469

Spiking neurons
membrane potential of, 482f
simplified model, 419

548 INDEX

MATLAB exercises, 421�424
overview, 419�421

Spiral source, 257
sqrt, 20
Square matrices, 59�60
Square-integrable function, 246
Stack frame, 111
Standard deviation, 80, 306�307

estimate of, 80
unbiased estimate of, 80�81

State equation, particle filter, 343
std(), 81
STFT. See Short-time Fourier transform (STFT)
Stimulus onset asynchrony (SOA), 376�379
Stochastic process, 481, 487
strcmp, 161
Student’s t distribution, 93�95
subplot, 38, 295
subplot(3,3,i), 295
Subtraction, 9
Sum squared error, 502�503
Supervised learning. See Neural network
surf, 39, 401�402
surface, 312�313
switch, 426�428, 437
switch/case statements, 484
Syllable, birdsong, 450
Synaptic transmission, 395

neurotransmitter release modeling
Bernoulli random variables, 396
combination with diffusion modeling, 511�512
diffusion modeling, 399�401, 401f
Poisson random variables, 212
principles, 396
single molecule motion modeling, 398�399, 399f

overview, 395
synaptic cleft, 395

T
tanh, 475
Taylor series expansion, 387�388
tcdf, 374
tempfigpos, 143
Temporal encoding, 331
Temporal variation, 318�319
text, 160
Theta rhythm, 419
Threshold, 311, 313
Threshold of vision. See Psychophysics
tic, 154�155
Time histogram, 290
toc, 154�155

Trajectory, 255
transfer_fn, 511
transpose, 292
Trigonometric functions, 10
Trivial solution, 70
ttest(), 94
ttest2, 167
Tuning curves, 287, 290�291
Two-tailed hypothesis test, 90�91
Type I/II errors, 90

U
uint8, 175, 177, 181
Unconditioned stimuli (US), 506
Undershoot, action potential, 403
Uninformative neuron, 323
Unit, 295
Unsupervised learning. See Neural network
upazila, 178�179
Upstroke, action potential, 403�404

V
Values, 58
var, 307
var(), 81
Variable names, 104�108
Variance, 79�80, 306
Vectors, 58�59
Visual psychophysics. See Psychophysics
Visual search and pop-out paradigm, 151

overview, 153�154
replication in MATLAB
exercises, 154�161
project, 161�163

Visualization, 141�148
Viterbi algorithm, 454�456
Voltage-gated ion channels, 381

modeling
differential equation solution methods, 386�390
Kv channel, 384�385
MATLAB

exercises, 390�392
project, 392�393

Nav channel, 385�386
Ohm’s law, 384

overview, 383�390
Voxel, 364�365, 365f

W
while, 33�35, 37
wavedec, 250
wavedemo, 251

549INDEX

Wavelet, 245
continuous wavelet transform, 246
definition, 245�246
discrete wavelet transform, 250
MATLAB

electroencephalogram analysis, 252
exercises, 251�252
Wavelet Toolbox, 250�251

Mexican hat wavelet, 247
Morlet wavelet, 246�247, 247f
mother wavelet, 246
scalogram, 247�249, 248f

waverec, 250
wavread, 240, 514�515
wav_recording2, 126�127
which, 106
who, 14�15

why, 55
Widrow-Hoff learning rule, 502�503
Wilson-Cowan equations, 473
exercises, 475�476
MATLAB

projects, 476�480
model, 474�475
overview, 473�474

X
xcov, 371
xlsread, 499

x-nullcline, 254

Y
y-nullcline, 254

550 INDEX

	MATLAB® FOR NEUROSCIENTISTS
	Copyright
	Preface to the Second Edition
	Preface to the First Edition
	About the Authors
	How to Use this Book
	Structural and Conceptual Considerations
	Layout and Style
	Companion Web Site

	1 Introduction
	2 MATLAB Tutorial
	2.1 Goal of this Chapter
	2.2 Purpose and Philosophy of MATLAB
	2.2.1 Getting Started
	2.2.2 MATLAB as a Calculator
	2.2.3 Defining Matrices
	2.2.4 Basic Matrix Algebra
	2.2.5 Indexing

	2.3 Graphics and Visualization
	2.3.1 Basic Visualization

	2.4 Function and Scripts
	2.4.1 Scripts
	2.4.2 Functions
	2.4.3 Control Structures
	2.4.4 Advanced Plotting
	2.4.5 Interactive Programs

	2.5 Data Analysis
	2.5.1 Importing and Storing Data

	2.6 A Word on Function Handles
	2.7 The Function Browser
	2.8 Summary
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	3 Mathematics and Statistics Tutorial
	3.1 Introduction
	3.2 Linear Algebra
	3.2.1 Matrices, Vectors, and Arrays
	3.2.2 Transposition
	3.2.3 Addition
	3.2.4 Scalar Multiplication
	3.2.5 Matrix Multiplication
	3.2.6 Geometrical Interpretation of Matrix Multiplication
	3.2.7 The Determinant
	3.2.8 Eigenvalues and Eigenvectors
	3.2.9 Applications of Eigenvectors: Eigendecomposition
	3.2.10 Applications of Eigenvectors: PCA

	3.3 Probability and Statistics
	3.3.1 Introduction
	3.3.2 Random Variables
	3.3.2.1 Sample Estimates of Population Parameters
	3.3.2.2 Joint and Conditional Probabilities

	3.3.3 The Poisson Distribution
	3.3.4 Normal Distribution
	3.3.5 Confidence Values
	3.3.6 Significance Testing
	3.3.6.1 Student’s t Distribution
	3.3.6.2 ANOVA Testing

	3.3.7 Linear Regression
	3.3.8 Introduction to Bayesian Reasoning
	3.3.9 Outlook

	MATLAB Functions, Commands, and Operators Covered in This Chapter

	4 Programming Tutorial: Principles and Best Practices
	4.1 Goals of this Chapter
	4.2 Organizing Code
	4.2.1 A Few Words about Maintenance
	4.2.2 Variables and How to Name Them
	4.2.3 Understanding Scope
	4.2.4 Script or Function?
	4.2.5 The Art of Commenting

	4.3 Organizing More Code: Bigger Projects
	4.3.1 Why Reuse Code?
	4.3.2 Coupling and Cohesion
	4.3.3 Separation of Concerns
	4.3.4 Limiting Side Effects, or the Perils of Global State
	4.3.5 Objects
	4.3.5.1 Creating Objects
	4.3.5.2 Inheritance
	4.3.5.3 Passing Objects Around: The Handle Class
	4.3.5.4 Summary

	4.4 Taming Errors
	4.4.1 An Introduction to the Debugger
	4.4.2 Logging
	4.4.3 Edge Cases and Unit Testing
	4.4.4 A Few Words about Precision
	4.4.5 Suggestions for Optimization
	4.4.5.1 Vectorizing Matrix Operations
	4.4.5.2 Conditional Expressions
	4.4.5.3 Extracting Subsets from Arrays

	MATLAB Functions, Commands, and Operators Covered in This Chapter

	5 Visualization and Documentation Tutorial
	5.1 Goals of This Chapter
	5.2 Visualization
	5.3 Documentation
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	6 Collecting Reaction Times I:Visual Search and Pop Out
	6.1 Goals of this Chapter
	6.2 Background
	6.3 Exercises
	6.4 Project
	MATLAB Functions, Commands, and Operators Covered in this Chapter

	7 Collecting Reaction Times II: Attention
	7.1 Goals of this Chapter
	7.2 Background
	7.2.1 So What is the Posner Paradigm?

	7.3 Exercises
	7.4 Project
	MATLAB Functions, Commands, and Operators Covered in this Chapter

	8 Psychophysics
	8.1 Goals of this Chapter
	8.2 Background
	8.3 Exercises
	8.4 Project
	MATLAB Functions, Commands, and Operators Covered in this Chapter

	9 Psychophysics with GUIs
	9.1 Goals of This Chapter
	9.2 Introduction and Background
	9.3 GUI Basics
	9.4 Using a GUI to Track an IP Address
	9.5 Using a GUI for Psychophysics
	9.6 Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	10 Signal Detection Theory
	10.1 Goals of This Chapter
	10.2 Background
	10.3 Exercises
	10.4 Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	11 Frequency Analysis Part I: Fourier Decomposition
	11.1 Goals of this Chapter
	11.2 Background
	11.2.1 Real Fourier Series

	11.3 Exercises
	11.3.1 Complex Fourier Transform
	11.3.2 Fast Fourier Transform
	11.3.3 The Inverse DFT
	11.3.4 Amplitude Spectrum
	11.3.5 Power
	11.3.6 Phase Analysis and Coherence

	11.4 Project
	MATLAB Functions, Commands, and Operators Covered in this Chapter

	12 Frequency Analysis Part II: Nonstationary Signals and Spectrograms
	12.1 Goal of this Chapter
	12.2 Background
	12.2.1 The Fourier Transform: Stationary and Ergodic
	12.2.2 Windows

	12.3 Exercises
	12.3.1 Limitations of the STFT

	12.4 Project
	MATLAB Functions, Commands, and Operators Covered in this Chapter

	13 Wavelets
	13.1 Goals of This Chapter
	13.2 Background
	13.2.1 What is a Wavelet?
	13.2.2 The Continuous Wavelet Transform
	13.2.3 Choosing a Wavelet
	13.2.4 Scalograms
	13.2.5 The Discrete Wavelet Transform
	13.2.6 Wavelet Toolbox

	13.3 Exercises
	13.4 Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	14 Introduction to Phase Plane Analysis
	14.1 Goal of this Chapter
	14.2 Background
	14.3 Exercises
	14.4 Project
	MATLAB Functions, Commands, and Operators Covered in this Chapter

	15 Exploring the Fitzhugh-Nagumo Model
	15.1 Goal of this Chapter
	15.2 Background
	15.3 Exercises
	15.4 Project
	MATLAB Functions, Commands, and Operators Covered in this Chapter

	16 Convolution
	16.1 Goals of this Chapter
	16.2 Background
	16.2.1 The Visual System and Receptive Fields
	16.2.2 The Mach Band Illusion

	16.3 Exercises
	16.4 Project
	MATLAB Functions, Commands, and Operators Covered in this Chapter

	17 Neural Data Analysis I: Encoding
	17.1 Goals of this Chapter
	17.2 Background
	17.3 Exercises
	17.3.1 Raster Plot
	17.3.2 Peri-Event Time Histogram
	17.3.3 Tuning Curves
	17.3.4 Curve Fitting

	17.4 Project
	MATLAB Functions, Commands, and Operators Covered in this Chapter

	18 Neural Data Analysis II: Binned Spike Data
	18.1 Goals of this Chapter
	18.2 Background
	18.2.1 Exponential Function
	18.2.2 Poisson Distribution
	18.2.3 Log-Linear Models
	18.2.4 Predicting the PETH

	18.3 Exercises
	18.4 Project
	MATLAB Functions, Commands, and Operators Covered in this Chapter

	19 Principal Components Analysis
	19.1 Goals of this Chapter
	19.2 Background
	19.2.1 Covariance Matrices
	19.2.2 Principal Components
	19.2.3 Spike Sorting

	19.3 Exercises
	19.4 Project
	MATLAB Functions, Commands, and Operators Covered in this Chapter

	20 Information Theory
	20.1 Goals of this Chapter
	20.2 Background
	20.2.1 Motor Cortical Data
	20.2.2 Spike Density Functions
	20.2.3 Joint, Marginal, and Conditional Distributions
	20.2.4 Information Theory
	20.2.5 Understanding Bias
	20.2.6 Shuffle Correction

	20.3 Exercises
	20.4 Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	21 Neural Decoding I: Discrete Variables
	21.1 Goals of this Chapter
	21.2 Background
	21.2.1 Population Vector
	21.2.2 Maximum Likelihood
	21.2.3 Data

	21.3 Exercises
	21.4 Project
	MATLAB Functions, Commands, and Operators Covered in this Chapter

	22 Neural Decoding II: Continuous Variables
	22.1 Goals of This Chapter
	22.2 Background
	22.2.1 Linear Filter
	22.2.2 Maximum a Posteriori �䴀䄀倀 Estimation
	22.2.3 Recursive Bayesian Estimation

	22.3 Exercises
	22.4 Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	23 Local Field Potentials
	23.1 Goals of This Chapter
	23.2 Background
	23.2.1 Evoked Potentials
	23.2.2 Directional tuning
	23.2.3 Spectrograms

	23.3 Exercises
	23.4 Project
	MATLAB Functions, Commands, and Operators Covered in this Chapter

	24 Functional Magnetic Resonance Imaging
	24.1 Goals of This Chapter
	24.2 Background
	24.2.1 Basic Physics of the MRI Signal
	24.2.2 BOLD Signal �昀䴀刀䤀
	24.2.3 Preprocessing of the BOLD Signal
	24.2.4 Experimental Designs
	24.2.5 Analysis Methods
	24.2.6 Multiple Comparisons
	24.2.7 Caveats and Limitations

	24.3 Exercises
	24.4 Project
	24.4.1 Methods Used to Collect fMRI Data
	24.4.2 Group Analysis

	MATLAB Functions, Commands, and Operators Covered in This Chapter

	25 Voltage-Gated Ion Channels
	25.1 Goal of This Chapter
	25.2 Background
	25.2.1 The Model
	25.2.2 Kv Channel
	25.2.3 The Nav Channel
	25.2.4 Solving Differential Equations Numerically

	25.3 Exercises
	25.4 Project
	Matlab Functions, Commands, and Operators Covered in This Chapter

	26 Synaptic Transmission
	26.1 Goals of This Chapter
	26.2 Background
	26.3 Exercises
	26.3.1 Modeling Neurotransmitter Release
	26.3.2 Modeling Random Variables
	26.3.3 Modeling the Motion of a Single Molecule
	26.3.4 Modeling Diffusion

	26.4 Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	27 Modeling a Single Neuron
	27.1 Goal of This Chapter
	27.2 Background
	27.2.1 The Model

	27.3 Exercises
	27.4 Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	28 Models of the Retina
	28.1 Goal of This Chapter
	28.2 Background
	28.2.1 Neurobiological Background
	28.2.2 The Model
	28.2.3 Mathematical Background

	28.3 Exercises
	28.4 Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	29 Simplified Model of Spiking Neurons
	29.1 Goal of This Chapter
	29.2 Background
	29.2.1 The Model

	29.3 Exercises
	29.4 Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	30 Fitzhugh-Nagumo Model: Traveling Waves
	30.1 Goals of This Chapter
	30.2 Background
	30.3 Exercises
	30.3.1 Second Derivative Operator
	30.3.2 Built-in ODE Solvers
	30.3.3 Fitzhugh-Nagumo Traveling Wave

	30.4 Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	31 Decision Theory
	31.1 Goals of this Chapter
	31.2 Background
	31.3 Simple Accumulation of Evidence
	31.4 Free Response Tasks
	31.5 Multiple Iterators: The Race Model
	31.6 Cortical Models
	31.7 Project
	MATLAB Functions, Commands, and Operators Covered in this Chapter

	32 Markov Models
	32.1 Goal of this Chapter
	32.2 Introduction
	32.3 Finding the Most Probable Path: The Viterbi Algorithm
	32.4 Hidden Markov Models
	32.5 Training an HMM: The Baum-Welch Algorithm
	32.6 A Simple Example
	32.7 Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	33 Modeling Spike Trains as a Poisson Process
	33.1 Goals of this Chapter
	33.2 Background
	33.3 The Bernoulli Process: Events in Discrete Time
	33.4 The Poisson Process: Events in Continuous Time
	33.4.1 Simulating an Event Train Using a Poisson Model
	33.4.2 Picking Poisson and Exponentially Distributed Values

	33.5 Picking Random Variables Without the Statistics Toolbox
	33.5.1 Exponential Distributions
	33.5.2 Poisson Distributions

	33.6 Non-Homogeneous Poisson Processes: Time-Varying Rates of Activity
	33.7 Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	34 Exploring the Wilson-Cowan Equations
	34.1 Goal of This Chapter
	34.2 Background
	34.3 The Model
	34.4 Exercises
	34.5 Projects
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	35 Neural Networks as Forest Fires: Stochastic Neurodynamics
	35.1 Goals of This Chapter
	35.2 Background
	35.2.1 Neural Analysis

	35.3 Exercises
	35.4 Projects
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	36 Neural Networks Part I: Unsupervised Learning
	36.1 Goals of This Chapter
	36.2 Background
	36.2.1 But What is a Neural Network?
	36.2.2 Unsupervised Learning and the Hebbian Learning Rule
	36.2.3 Competitive Learning and Long-Term Depression
	36.2.4 Neural Network Architectures: Feedforward vs. Recurrent

	36.3 Exercises
	36.3.1 Competitive Learning Network
	36.3.2 Hopfield Network
	36.3.3 The MATLAB Neural Network Toolbox

	36.4 Project
	MATLAB Functions, Commands, and Operators Covered in This Chapter

	37 Neural Networks Part II: Supervised Learning
	37.1 Goals of This Chapter
	37.2 Background
	37.2.1 Single-Layer Supervised Networks
	37.2.2 Multilayer Supervised Networks
	37.2.3 Supervised Learning in Neurobiology

	37.3 Exercises
	37.3.1 Perceptrons
	37.3.2 Linear Networks
	37.3.3 Backpropagation
	37.3.4 Sound Manipulation in MATLAB

	37.4 Project
	MATLAB Functions, Commands, and Operators covered in This Chapter

	Appendix A Creating Publication-Quality Figures
	A.1 Introduction
	A.2 Figure Makeovers
	A.3 Saving Figures in the Desired Format
	A.4 How to Make Animated GIFs
	MATLAB Functions, Commands, and Operators Covered in This Appendix

	Appendix B Relevant Toolboxes
	B.1 The Concept of Toolboxes
	B.2 Neural Network Toolbox
	B.3 Parallel Computing Toolbox
	B.4 Statistics Toolbox
	B.5 MATLAB Compiler
	B.6 Database Toolbox
	B.7 Signal Processing Toolbox
	B.8 Data Acquisition Toolbox
	B.9 Image Processing Toolbox
	B.10 Psychophysics Toolbox and MGL
	B.11 Chronux
	B.12 Mathworks File Exchange

	References
	Index
	Blank Page

